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Formula-based Noetherian
Induction



Noetherian induction principles

Noetherian induction: let (E , <) be a well-founded poset

8m 2 E , (8k 2 E , k < m ) �(k)) ) �(m)

8p 2 E ,�(p)

+ �(k) are induction hypotheses (IHs)

In a first-order setting, E can be a set of

• (vector of) terms
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8p 2 E ,�(p)
• (first-order) formulas
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Formula-based induction proof techniques

(to recall,
8� 2 E , (8� 2 E , � <f � ) �) ) �

8⇢ 2 E , ⇢
)

• inductionless induction (E has equalities from the proof)
• term-rewriting induction [Reddy, 1990]
• implicit induction [Bronsard et al., 1994], [Bouhoula et al.,

1995]
+ generalization of [Reddy, 1990] and of the inductive procedures
for conditional equalities from [Kounalis and Rusinowitch, 1990;
Bronsard and Reddy, 1991]

• cyclic induction [Stratulat, 2012a]
+ induction performed along cycles of formulas

Advantages: lazy induction, mutual induction

Disadvantages: global ordering (at proof or cycle level), cannot be
captured by some specific inference rule 9



Direct relations between term- and formula-based induction
principles

Theorem (customizing term- to formula-based proofs)
The term-based induction principle can be represented as a
formula-based induction principle.
Proof. If E 0 is the set of term vectors for proving �(x), take
E = {�(u) | u 2 E 0} and define <f as:

�(u) <f �(v) if u <t v

Theorem (customizing formula- to term-based proofs)
The formula-based induction principle can be represented as a
term-based induction principle when E is of the form
{�(t1), . . . ,�(tn)}.
Proof. Define u <t v if �(u) <f �(v).

+ the general case is conjectured. Translating implicit into explicit
induction proofs is not satisfactory [Courant, 1996; Kaliszyk, 2005;
Nahon et al., 2009]
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What about the ‘Descente Infinie’ ?

+ contrapositive version of Noetherian induction

(to recall,
8m 2 E ,(8k 2 E , k < m ) �(k)) ) �(m)

8p 2 E ,�(p)
)

Definition (‘Descente Infinie’ induction)

8m 2 E ,¬�(m) ) (9k 2 E , k < m ^ ¬�(k))
8p 2 E ,�(p)

+ counterexample: element m of E for which �(m) does not hold
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Proof by formula-based induction

0 + y = y

s(u) + v = s(u+ v)

E : all formulas encountered in the introductory proof
{z + 0 = z, 0 + 0 = 0, s(x) + 0 = s(x), s(x+ 0) = s(x), s(x) = s(x)}

Induction ordering such that

• s(x+ 0) = s(x) <f s(x) + 0 = s(x), 8x 2 N, and
• x+ 0 = x <f s(x+ 0) = s(x), 8x 2 N

+ multiset extension of syntactic orderings (rpo, mpo,. . . )

Proof (à la Descente Infinie).
By contradiction, we assume that E has a minimal counterexample.
After case analysis, there is no minimal counterexample. 12
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Mechanical Proof Certification
Methodology



The Coq certification environment

• Coq: proof assistant based on the Calculus of Inductive
Constructions (http://coq.inria.fr)
+ integrates Noetherian induction

• proof certification
+ Curry-Howard correspondence:

• proofs as programs, written in the Gallina language
• formulas as types

+ proof terms are checked by the kernel
• formal proof developments:

• certification of a C-compiler [The CompCert project, 2014]
• Odd Order theorem [Gonthier et al., 2013]

15



Methodology for certifying formula-based induction reasoning

Idea: explicitly formalize

(1) the induction ordering and the formula weights by means of a
syntactic representation of formulas

(2) the formula-based induction principle

(3) the inference steps from the formula-based proof

Advantage: no proof reconstruction techniques are required

16



Weights for formulas

+ abstract term algebra: COCCINELLE [Contejean et al., 2007]

• syntactic representation of terms in Coq

Inductive term : Set :=
| Var : variable ! term
| Term : symbol ! list term ! term

17



Defining induction orderings in COCCINELLE

Inductive rpo (bb : nat) : term ! term ! Prop :=
| Subterm : 8 f l t s, mem equiv s l ! rpo eq bb t s ! rpo bb t (Term f l)
| Top gt :

8 f g l l’, prec P g f ! (8 s’, mem equiv s’ l’ ! rpo bb s’ (Term f l)) !
rpo bb (Term g l’) (Term f l)

| Top eq lex :
8 f g l l’, status P f = Lex ! status P g = Lex ! prec eq P f g ! (length

l = length l’ _ (length l’  bb ^ length l  bb)) ! rpo lex bb l’ l !
(8 s’, mem equiv s’ l’ ! rpo bb s’ (Term g l)) !
rpo bb (Term f l’) (Term g l)

| Top eq mul :
8 f g l l’, status P f = Mul ! status P g = Mul ! prec eq P f g !

rpo mul bb l’ l !
rpo bb (Term f l’) (Term g l)

with rpo mul ( bb : nat) : list term ! list term ! Prop :=
| List mul : 8 a lg ls lc l l’,

permut0 equiv l’ (ls ++ lc) ! permut0 equiv l (a :: lg ++ lc) !
(8 b, mem equiv b ls ! 9 a’, mem equiv a’ (a :: lg) ^ rpo bb b a’) !
rpo mul bb l’ l.

Notation less := (rpo mul (bb)). 18



Defining Coq specification and translation functions

Fixpoint plus (x y :nat): nat :=
match x with
| O ) y
| (S x’) ) S (plus x’ y)
end.

• COCCINELLE symbols: id 0, id S, id plus
+ precedence and status

• translation function for any natural into a COCCINELLE term
Fixpoint model nat (v : nat): term :=
match v with
| O ) (Term id 0 nil)
| (S x) ) let r := model nat x in (Term id S (r::nil))
end.
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Defining the set E and formula weights from a Spike proof

• syntactically represent each conjecture � as a weight w�

• the variables are shared using anonymous functions

fun x ) (�, w�)

• E 0 will consist of anonymous functions

Example
E 0: {(fun u1 ) ((plus u1 0) = u1, w1::w2::nil),. . . }, where

• w1 is (Term id plus ((model nat u1):: (Term id 0 nil):: nil ))

• w2 is model nat u1

• E is computed from E 0

20



Formalizing the formula-based induction principle

+ COCCINELLE extended with dual computable function for ‘less ’

Adding lemmas showing

• its equivalence with ‘less ’
• properties (well-foundedness, stability)

Specifying the formula-based induction principle

(to recall,
8� 2 E , (8� 2 E , � <f � ) �) ) �

8⇢ 2 E , ⇢
)

(1) (main lemma)
8 F, In F E 0 ! 8 u1, (8 F’, In F’ E 0 ! 8 e1, less (snd (F’ e1)) (snd (F u1))
! fst (F’ e1)) ! fst (F u1).

(2) (all true lemma)
8 F, In F E 0 ! 8 u1 : nat, fst (F u1).

+ (2) is derived from (1) using Coq’s Noetherian induction 21



Proving the main lemma

+ the anonymous functions from E 0 are treated independently,
one-by-one.

the conjecture of each anonymous function may be proved using
(instances of) other conjectures that are

• logically equivalent (deductive reasoning)

• smaller

22



Proving logical equivalences

• variable instantiations are controlled by Coq functional
schemas [Barthe and Courtieu, 2002]

Example (x is replaced by 0 and (S z) using f)

The instances are generated by the Coq script

pattern x, (f x). apply f ind.

23



One-to-one translations

• Equality reasoning using rewriting

• rewriting C[f(t)] with f(x) = . . . yields
pattern t. simpl f. cbv beta.

• pattern t isolates t from C,
• simpl f rewrites f(t),
• cbv beta puts back the resulted term in C.

• Tautologies (of the form t = t) are proved using auto.

24



Weight comparisons

User-defined tacticals for automatization:

• rewrite with model functions
• compute the ordering

(1) terms of the form (model sort (f x1 · · ·xn)) will be replaced
by (Id f (model sort x1) · · · (model sort xn))

(2) the replacement of terms of the form (model sort t) with
COCCINELLE abstraction variables of the form (Var i), i 2 N;

(3) computing by reflection the comparison result of weights with
abstraction variables;

(4) the use of stability property of ‘less ’ to compare with
abstraction variables instead of original weights.

25



Examples



Implicit induction inference systems

• inference rules: transitions between states
(conjectures, premises)

+ premises are ‘previous’ conjectures with no minimal
counterexamples (w.r.t. <f ).

• derivation of E0 with an inference system I:
(E0

, ;) `I (E1
, H

1) `I . . .

• proof: finite derivation whose last state has no conjectures:
(E0

, ;) `I (E1
, H

1) `I . . . `I (;, Hn)

27



The concrete inference system Iimp

+ Ax are axioms oriented into rewrite rules

GenNat (G): (E [ {�hxi}, H) `Iimp (E [ {�1,�2}, H [ {�}),
where �{x 7! 0} !Ax �1, �{x 7! s(x0)} !Ax �2

SimpEq (S): (E [ {�}, H) `Iimp (E [ { }, H),
if �!Ax[(E[H)f�

 

ElimTaut (E): (E [ {�}, H) `Iimp (E, H),
if � is a tautology

30



An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

35



An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

GenNat (G): (E [ {�hxi}, H) `Iimp (E [ {�1,�2}, H [ {�}),
where �{x 7! 0} !Ax �1, �{x 7! s(x0)} !Ax �2

35



An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

SimpEq (S): (E [ {�}, H) `Iimp (E [ { }, H),
if �!Ax[(E[�[H)f�

 

35



An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

ElimTaut (E): (E [ {�}, H) `Iimp (E, H),
if � is a tautology

35



Certifying the Iimp-proof of x+ 0 = x

• ordering

Definition index (f :symb) :=
match f with

| id 0 ) 2
| id S ) 3
| id plus ) 7
end.

Definition status (f :symb) :=
match f with

| id 0 ) rpo.Mul
| id S ) rpo.Mul
| id plus ) rpo.Mul

end.

• list of anonymous functions
Definition type LF := nat ! Prop ⇥ List.list term.

Definition E 0 := [F 1, F 2, F 3, F 4].
(* for all equalities from the proof *)

36



Definition F 1 : type LF:= (fun u1 ) ((plus u1 0) = u1,
(Term id plus ((model nat u1):: (Term id 0
nil)::nil))::(model nat u1)::nil)).

Definition F 2 : type LF:= (fun ) (0 = 0, (Term id 0
nil)::(Term id 0 nil)::nil)).

Definition F 3 : type LF:= (fun u2 ) ((S (plus u2 0)) = (S
u2), (Term id S ((Term id plus ((model nat u2):: (Term id 0
nil)::nil))::nil))::(Term id S ((model nat u2)::nil))::nil)).

Definition F 4 : type LF:= (fun u2 ) ((S u2) = (S u2),
(Term id S ((model nat u2)::nil) )::(Term id S ((model nat
u2)::nil))::nil)).

37



Proof of the main lemma

8 F, In F E 0 ! 8 u1, (8 F’, In F’ E 0 ! 8 e1, less (snd (F’ e1))
(snd (F u1)) ! fst (F’ e1)) ! fst (F u1).

Proof.
By case analysis.

• F 1 (recall, (plus u1 0) = u1): instantiate u1 by
pattern u1, (f u1 ).

• case u1 is 0: by auto.
• case u1 is S u2 : choose as IH

F 3 (recall, S (plus u2 0) = (S u2)), then simplify

• F 2 (recall, 0=0): by auto.

• F 3: choose as IH F 1, then simplify

• F 4 (recall, (S u2) = (S u2)): by auto.
38



Discussions

Implicit induction reasoning:

• easily automatized (Spike, RRL)
• generate large Spike proofs

• validation of the JavaCard platform [Barthe and Stratulat,
2003]

• validation of telecommunication protocols[Rusinowitch et al.,
2003]

The certification process may be less effective

• check every reductive ordering constraint
+ multiple calls to COCCINELLE functions

• check every formula from the proof
+ large E 0 sets.

39



The Coq tactic Spike

+ solves the translation problems at specification level
Theorem even xx : 8 x, even (add (x x)) = true.
Proof.

Spike equiv [[even, odd]]

greater [ [even, true ,false, S , 0, add],

[ add, S, 0] ].

Qed.

59









Conclusions and Future Work



Conclusions

• methodology for automatically certifying any formula-based
induction proof
+ implicit induction, cyclic induction

• automatic Coq certification of Spike’s implicit induction proofs
+ Coq checkpoints for Spike specifications and proofs:

(1) (ground) convergence and completeness properties: acceptance
of the translated functions by Coq

(2) variable instantiation schemas: functional schemes
(3) certifying the induction principle: the main lemma

+ limited Spike specifications + control in the automatic
translation of the proofs

61



Future Work

• Spike proof certification : allow more general specifications
and inference rules
+ certifying reductive-free cyclic proofs

• building a formula-based induction proof environment directly
in Coq

• for lazy reasoning
• for automatically performing cyclic proofs

+ direct use of Coq tactics and no translation

• dissemination and implementation for other proof
environments (Isabelle/HOL, PVS, . . . )
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More information at

• article in press

S. Stratulat. Mechanically certifying formula-based
Noetherian induction reasoning. Journal of Symbolic
Computation, 41 pages.

• http://code.google.com/p/spike-prover/
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More information at

• article in press

S. Stratulat. Mechanically certifying formula-based
Noetherian induction reasoning. Journal of Symbolic
Computation, 41 pages.

• http://code.google.com/p/spike-prover/

Thank you !

63

recent article (2017)
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