
Mechanically Certifying Formula-based
Noetherian Induction Reasoning

Sorin Stratulat

Université de Lorraine, LITA

1

Formula-based Noetherian
Induction

Noetherian induction principles

Noetherian induction: let (E , <) be a well-founded poset

8m 2 E , (8k 2 E , k < m) �(k))) �(m)

8p 2 E ,�(p)

+ �(k) are induction hypotheses (IHs)

In a first-order setting, E can be a set of

• (vector of) terms
8m 2 E , (8k 2 E , k <t m) �(k))) �(m)

8p 2 E ,�(p)
• (first-order) formulas

8� 2 E , (8� 2 E , � <f �)))
8⇢ 2 E ,

+ �(�) = �, 8� 2 E 7

Noetherian induction principles

Noetherian induction: let (E , <) be a well-founded poset

8m 2 E , (8k 2 E , k < m) �(k))) �(m)

8p 2 E ,�(p)

+ �(k) are induction hypotheses (IHs)

In a first-order setting, E can be a set of

• (vector of) terms
8m 2 E , (8k 2 E , k <t m) �(k))) �(m)

8p 2 E ,�(p)
• (first-order) formulas

8� 2 E , (8� 2 E , � <f �) �(�))) �(�)

8⇢ 2 E ,�(⇢)
+ �(�) = �, 8� 2 E 7

Noetherian induction principles

Noetherian induction: let (E , <) be a well-founded poset

8m 2 E , (8k 2 E , k < m) �(k))) �(m)

8p 2 E ,�(p)

+ �(k) are induction hypotheses (IHs)

In a first-order setting, E can be a set of

• (vector of) terms
8m 2 E , (8k 2 E , k <t m) �(k))) �(m)

8p 2 E ,�(p)
• (first-order) formulas

8� 2 E , (8� 2 E , � <f �) �)) �

8⇢ 2 E , ⇢
+ �(�) = �, 8� 2 E 7

Formula-based induction proof techniques

(to recall,
8� 2 E , (8� 2 E , � <f �) �)) �

8⇢ 2 E , ⇢
)

• inductionless induction (E has equalities from the proof)
• term-rewriting induction [Reddy, 1990]
• implicit induction [Bronsard et al., 1994], [Bouhoula et al.,

1995]
+ generalization of [Reddy, 1990] and of the inductive procedures
for conditional equalities from [Kounalis and Rusinowitch, 1990;
Bronsard and Reddy, 1991]

• cyclic induction [Stratulat, 2012a]
+ induction performed along cycles of formulas

Advantages: lazy induction, mutual induction

Disadvantages: global ordering (at proof or cycle level), cannot be
captured by some specific inference rule 9

Direct relations between term- and formula-based induction
principles

Theorem (customizing term- to formula-based proofs)
The term-based induction principle can be represented as a
formula-based induction principle.
Proof. If E 0 is the set of term vectors for proving �(x), take
E = {�(u) | u 2 E 0} and define <f as:

�(u) <f �(v) if u <t v

Theorem (customizing formula- to term-based proofs)
The formula-based induction principle can be represented as a
term-based induction principle when E is of the form
{�(t1), . . . ,�(tn)}.
Proof. Define u <t v if �(u) <f �(v).

+ the general case is conjectured. Translating implicit into explicit
induction proofs is not satisfactory [Courant, 1996; Kaliszyk, 2005;
Nahon et al., 2009]

10

What about the ‘Descente Infinie’ ?

+ contrapositive version of Noetherian induction

(to recall,
8m 2 E ,(8k 2 E , k < m) �(k))) �(m)

8p 2 E ,�(p)
)

Definition (‘Descente Infinie’ induction)

8m 2 E ,¬�(m)) (9k 2 E , k < m ^ ¬�(k))
8p 2 E ,�(p)

+ counterexample: element m of E for which �(m) does not hold

11

What about the ‘Descente Infinie’ ?

+ contrapositive version of Noetherian induction

(to recall,
8m 2 E ,(8k 2 E , k < m) �(k))) �(m)

8p 2 E ,�(p)
)

Definition (‘Descente Infinie’ induction)

8m 2 E ,¬�(m)) (9k 2 E , k < m ^ ¬�(k))
8p 2 E ,�(p)

+ counterexample: element m of E for which �(m) does not hold

11

Proof by formula-based induction

0 + y = y

s(u) + v = s(u+ v)

E : all formulas encountered in the introductory proof
{z + 0 = z, 0 + 0 = 0, s(x) + 0 = s(x), s(x+ 0) = s(x), s(x) = s(x)}

Induction ordering such that

• s(x+ 0) = s(x) <f s(x) + 0 = s(x), 8x 2 N, and
• x+ 0 = x <f s(x+ 0) = s(x), 8x 2 N

+ multiset extension of syntactic orderings (rpo, mpo,. . .)

Proof (à la Descente Infinie).
By contradiction, we assume that E has a minimal counterexample.
After case analysis, there is no minimal counterexample. 12

Proof by formula-based induction

0 + y = y

s(u) + v = s(u+ v)

E : all formulas encountered in the introductory proof
{z + 0 = z, 0 + 0 = 0, s(x) + 0 = s(x), s(x+ 0) = s(x), s(x) = s(x)}

Induction ordering such that

• s(x+ 0) = s(x) <f s(x) + 0 = s(x), 8x 2 N, and
• x+ 0 = x <f s(x+ 0) = s(x), 8x 2 N

+ multiset extension of syntactic orderings (rpo, mpo,. . .)

Proof (à la Descente Infinie).
By contradiction, we assume that E has a minimal counterexample.
After case analysis, there is no minimal counterexample. 12

Proof by formula-based induction

0 + y = y

s(u) + v = s(u+ v)

E : all formulas encountered in the introductory proof
{z + 0 = z, 0 + 0 = 0, s(x) + 0 = s(x), s(x+ 0) = s(x), s(x) = s(x)}

Induction ordering such that

• s(x+ 0) = s(x) <f s(x) + 0 = s(x), 8x 2 N, and
• x+ 0 = x <f s(x+ 0) = s(x), 8x 2 N

+ multiset extension of syntactic orderings (rpo, mpo,. . .)

Proof (à la Descente Infinie).
By contradiction, we assume that E has a minimal counterexample.
After case analysis, there is no minimal counterexample. 12

Proof by formula-based induction

0 + y = y

s(u) + v = s(u+ v)

E : all formulas encountered in the introductory proof
{z + 0 = z, 0 + 0 = 0, s(x) + 0 = s(x), s(x+ 0) = s(x), s(x) = s(x)}

Induction ordering such that

• s(x+ 0) = s(x) <f s(x) + 0 = s(x), 8x 2 N, and
• x+ 0 = x <f s(x+ 0) = s(x), 8x 2 N

+ multiset extension of syntactic orderings (rpo, mpo,. . .)

Proof (à la Descente Infinie).
By contradiction, we assume that E has a minimal counterexample.
After case analysis, there is no minimal counterexample. 12

Proof by formula-based induction

0 + y = y

s(u) + v = s(u+ v)

E : all formulas encountered in the introductory proof
{z + 0 = z, 0 + 0 = 0, s(x) + 0 = s(x), s(x+ 0) = s(x), s(x) = s(x)}

Induction ordering such that

• s(x+ 0) = s(x) <f s(x) + 0 = s(x), 8x 2 N, and
• x+ 0 = x <f s(x+ 0) = s(x), 8x 2 N

+ multiset extension of syntactic orderings (rpo, mpo,. . .)

Proof (à la Descente Infinie).
By contradiction, we assume that E has a minimal counterexample.
After case analysis, there is no minimal counterexample. 12

Mechanical Proof Certification
Methodology

The Coq certification environment

• Coq: proof assistant based on the Calculus of Inductive
Constructions (http://coq.inria.fr)
+ integrates Noetherian induction

• proof certification
+ Curry-Howard correspondence:

• proofs as programs, written in the Gallina language
• formulas as types

+ proof terms are checked by the kernel
• formal proof developments:

• certification of a C-compiler [The CompCert project, 2014]
• Odd Order theorem [Gonthier et al., 2013]

15

Methodology for certifying formula-based induction reasoning

Idea: explicitly formalize

(1) the induction ordering and the formula weights by means of a
syntactic representation of formulas

(2) the formula-based induction principle

(3) the inference steps from the formula-based proof

Advantage: no proof reconstruction techniques are required

16

Weights for formulas

+ abstract term algebra: COCCINELLE [Contejean et al., 2007]

• syntactic representation of terms in Coq

Inductive term : Set :=
| Var : variable ! term
| Term : symbol ! list term ! term

17

Defining induction orderings in COCCINELLE

Inductive rpo (bb : nat) : term ! term ! Prop :=
| Subterm : 8 f l t s, mem equiv s l ! rpo eq bb t s ! rpo bb t (Term f l)
| Top gt :

8 f g l l’, prec P g f ! (8 s’, mem equiv s’ l’ ! rpo bb s’ (Term f l)) !
rpo bb (Term g l’) (Term f l)

| Top eq lex :
8 f g l l’, status P f = Lex ! status P g = Lex ! prec eq P f g ! (length

l = length l’ _ (length l’  bb ^ length l  bb)) ! rpo lex bb l’ l !
(8 s’, mem equiv s’ l’ ! rpo bb s’ (Term g l)) !
rpo bb (Term f l’) (Term g l)

| Top eq mul :
8 f g l l’, status P f = Mul ! status P g = Mul ! prec eq P f g !

rpo mul bb l’ l !
rpo bb (Term f l’) (Term g l)

with rpo mul (bb : nat) : list term ! list term ! Prop :=
| List mul : 8 a lg ls lc l l’,

permut0 equiv l’ (ls ++ lc) ! permut0 equiv l (a :: lg ++ lc) !
(8 b, mem equiv b ls ! 9 a’, mem equiv a’ (a :: lg) ^ rpo bb b a’) !
rpo mul bb l’ l.

Notation less := (rpo mul (bb)). 18

Defining Coq specification and translation functions

Fixpoint plus (x y :nat): nat :=
match x with
| O) y
| (S x’)) S (plus x’ y)
end.

• COCCINELLE symbols: id 0, id S, id plus
+ precedence and status

• translation function for any natural into a COCCINELLE term
Fixpoint model nat (v : nat): term :=
match v with
| O) (Term id 0 nil)
| (S x)) let r := model nat x in (Term id S (r::nil))
end.

19

Defining Coq specification and translation functions

Fixpoint plus (x y :nat): nat :=
match x with
| O) y
| (S x’)) S (plus x’ y)
end.

• COCCINELLE symbols: id 0, id S, id plus
+ precedence and status

• translation function for any natural into a COCCINELLE term
Fixpoint model nat (v : nat): term :=
match v with
| O) (Term id 0 nil)
| (S x)) let r := model nat x in (Term id S (r::nil))
end.

19

Defining the set E and formula weights from a Spike proof

• syntactically represent each conjecture � as a weight w�

• the variables are shared using anonymous functions

fun x) (�, w�)

• E 0 will consist of anonymous functions

Example
E 0: {(fun u1) ((plus u1 0) = u1, w1::w2::nil),. . . }, where

• w1 is (Term id plus ((model nat u1):: (Term id 0 nil):: nil))

• w2 is model nat u1

• E is computed from E 0

20

Formalizing the formula-based induction principle

+ COCCINELLE extended with dual computable function for ‘less ’

Adding lemmas showing

• its equivalence with ‘less ’
• properties (well-foundedness, stability)

Specifying the formula-based induction principle

(to recall,
8� 2 E , (8� 2 E , � <f �) �)) �

8⇢ 2 E , ⇢
)

(1) (main lemma)
8 F, In F E 0 ! 8 u1, (8 F’, In F’ E 0 ! 8 e1, less (snd (F’ e1)) (snd (F u1))
! fst (F’ e1)) ! fst (F u1).

(2) (all true lemma)
8 F, In F E 0 ! 8 u1 : nat, fst (F u1).

+ (2) is derived from (1) using Coq’s Noetherian induction 21

Proving the main lemma

+ the anonymous functions from E 0 are treated independently,
one-by-one.

the conjecture of each anonymous function may be proved using
(instances of) other conjectures that are

• logically equivalent (deductive reasoning)

• smaller

22

Proving logical equivalences

• variable instantiations are controlled by Coq functional
schemas [Barthe and Courtieu, 2002]

Example (x is replaced by 0 and (S z) using f)

The instances are generated by the Coq script

pattern x, (f x). apply f ind.

23

One-to-one translations

• Equality reasoning using rewriting

• rewriting C[f(t)] with f(x) = . . . yields
pattern t. simpl f. cbv beta.

• pattern t isolates t from C,
• simpl f rewrites f(t),
• cbv beta puts back the resulted term in C.

• Tautologies (of the form t = t) are proved using auto.

24

Weight comparisons

User-defined tacticals for automatization:

• rewrite with model functions
• compute the ordering

(1) terms of the form (model sort (f x1 · · ·xn)) will be replaced
by (Id f (model sort x1) · · · (model sort xn))

(2) the replacement of terms of the form (model sort t) with
COCCINELLE abstraction variables of the form (Var i), i 2 N;

(3) computing by reflection the comparison result of weights with
abstraction variables;

(4) the use of stability property of ‘less ’ to compare with
abstraction variables instead of original weights.

25

Examples

Implicit induction inference systems

• inference rules: transitions between states
(conjectures, premises)

+ premises are ‘previous’ conjectures with no minimal
counterexamples (w.r.t. <f).

• derivation of E0 with an inference system I:
(E0

, ;) `I (E1
, H

1) `I . . .

• proof: finite derivation whose last state has no conjectures:
(E0

, ;) `I (E1
, H

1) `I . . . `I (;, Hn)

27

The concrete inference system Iimp

+ Ax are axioms oriented into rewrite rules

GenNat (G): (E [{�hxi}, H) `Iimp (E [{�1,�2}, H [{�}),
where �{x 7! 0} !Ax �1, �{x 7! s(x0)} !Ax �2

SimpEq (S): (E [{�}, H) `Iimp (E [{ }, H),
if �!Ax[(E[H)f�

ElimTaut (E): (E [{�}, H) `Iimp (E, H),
if � is a tautology

30

An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

35

An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

GenNat (G): (E [{�hxi}, H) `Iimp (E [{�1,�2}, H [{�}),
where �{x 7! 0} !Ax �1, �{x 7! s(x0)} !Ax �2

35

An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

SimpEq (S): (E [{�}, H) `Iimp (E [{ }, H),
if �!Ax[(E[�[H)f�

35

An Iimp-proof of x+ 0 = x

Rewrite rules
0 + y ! y

s(u) + v ! s(u+ v)

Iimp-proof of x+ 0 = x:

({x+ 0 = x}, ;)

`G

Iimp
({0 = 0, s(x0 + 0) = s(x0)}, {x+ 0 = x})

`S

Iimp
({0 = 0, s(x0) = s(x0)}, {x+ 0 = x})

`E(2)
Iimp

(;, {x+ 0 = x})

ElimTaut (E): (E [{�}, H) `Iimp (E, H),
if � is a tautology

35

Certifying the Iimp-proof of x+ 0 = x

• ordering

Definition index (f :symb) :=
match f with

| id 0) 2
| id S) 3
| id plus) 7
end.

Definition status (f :symb) :=
match f with

| id 0) rpo.Mul
| id S) rpo.Mul
| id plus) rpo.Mul

end.

• list of anonymous functions
Definition type LF := nat ! Prop ⇥ List.list term.

Definition E 0 := [F 1, F 2, F 3, F 4].
(* for all equalities from the proof *)

36

Definition F 1 : type LF:= (fun u1) ((plus u1 0) = u1,
(Term id plus ((model nat u1):: (Term id 0
nil)::nil))::(model nat u1)::nil)).

Definition F 2 : type LF:= (fun) (0 = 0, (Term id 0
nil)::(Term id 0 nil)::nil)).

Definition F 3 : type LF:= (fun u2) ((S (plus u2 0)) = (S
u2), (Term id S ((Term id plus ((model nat u2):: (Term id 0
nil)::nil))::nil))::(Term id S ((model nat u2)::nil))::nil)).

Definition F 4 : type LF:= (fun u2) ((S u2) = (S u2),
(Term id S ((model nat u2)::nil))::(Term id S ((model nat
u2)::nil))::nil)).

37

Proof of the main lemma

8 F, In F E 0 ! 8 u1, (8 F’, In F’ E 0 ! 8 e1, less (snd (F’ e1))
(snd (F u1)) ! fst (F’ e1)) ! fst (F u1).

Proof.
By case analysis.

• F 1 (recall, (plus u1 0) = u1): instantiate u1 by
pattern u1, (f u1).

• case u1 is 0: by auto.
• case u1 is S u2 : choose as IH

F 3 (recall, S (plus u2 0) = (S u2)), then simplify

• F 2 (recall, 0=0): by auto.

• F 3: choose as IH F 1, then simplify

• F 4 (recall, (S u2) = (S u2)): by auto.
38

Discussions

Implicit induction reasoning:

• easily automatized (Spike, RRL)
• generate large Spike proofs

• validation of the JavaCard platform [Barthe and Stratulat,
2003]

• validation of telecommunication protocols[Rusinowitch et al.,
2003]

The certification process may be less effective

• check every reductive ordering constraint
+ multiple calls to COCCINELLE functions

• check every formula from the proof
+ large E 0 sets.

39

The Coq tactic Spike

+ solves the translation problems at specification level
Theorem even xx : 8 x, even (add (x x)) = true.
Proof.

Spike equiv [[even, odd]]

greater [[even, true ,false, S , 0, add],

[add, S, 0]].

Qed.

59

Conclusions and Future Work

Conclusions

• methodology for automatically certifying any formula-based
induction proof
+ implicit induction, cyclic induction

• automatic Coq certification of Spike’s implicit induction proofs
+ Coq checkpoints for Spike specifications and proofs:

(1) (ground) convergence and completeness properties: acceptance
of the translated functions by Coq

(2) variable instantiation schemas: functional schemes
(3) certifying the induction principle: the main lemma

+ limited Spike specifications + control in the automatic
translation of the proofs

61

Future Work

• Spike proof certification : allow more general specifications
and inference rules
+ certifying reductive-free cyclic proofs

• building a formula-based induction proof environment directly
in Coq

• for lazy reasoning
• for automatically performing cyclic proofs

+ direct use of Coq tactics and no translation

• dissemination and implementation for other proof
environments (Isabelle/HOL, PVS, . . .)

62

More information at

• article in press

S. Stratulat. Mechanically certifying formula-based
Noetherian induction reasoning. Journal of Symbolic
Computation, 41 pages.

• http://code.google.com/p/spike-prover/

63

recent article (2017)

More information at

• article in press

S. Stratulat. Mechanically certifying formula-based
Noetherian induction reasoning. Journal of Symbolic
Computation, 41 pages.

• http://code.google.com/p/spike-prover/

Thank you !

63

recent article (2017)

References

G. Barthe and P. Courtieu. Efficient reasoning about executable
specifications in Coq. In Theorem Proving in Higher Order
Logics, volume 2410 of LNCS, pages 31–46. Springer Berlin,
2002.

G. Barthe and S. Stratulat. Validation of the JavaCard platform
with implicit induction techniques. In R. Nieuwenhuis, editor,
RTA (Rewriting Techniques and Applications), volume 2706 of
LNCS, pages 337–351. Springer, 2003.

A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated
mathematical induction. Journal of Logic and Computation,
5(5):631–668, 1995.

F. Bronsard and U. S. Reddy. Conditional rewriting in Focus. In
Conditional and Typed Rewriting Systems, pages 1–13, 1991.

F. Bronsard, U.S. Reddy, and R. Hasker. Induction using term
64

orderings. In CADE (Conf. on Automated Deduction), volume
814 of LNCS, pages 102–117. Springer, 1994.

R. M. Burstall. Proving properties of programs by structural
induction. The Computer Journal, 12:41–48, 1969.

E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain.
Certification of automated termination proofs. Frontiers of
Combining Systems, pages 148–162, 2007.

J. Courant. Proof reconstruction. Research Report RR96-26, LIP,
1996. Preliminary version.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A
machine-checked proof of the Odd Order Theorem. In S. Blazy,
C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving - 4th International Conference, ITP 2013,

64

Rennes, France, July 22-26, 2013. Proceedings, volume 7998 of
Lecture Notes Computer Science, pages 163–179. Springer, 2013.

A. Henaien and S. Stratulat. Performing implicit induction
reasoning with certifying proof environments. In A. Bouhoula,
T. Ida, and F. Kamareddine, editors, Proceedings Fourth
International Symposium on Symbolic Computation in Software
Science, Gammarth, Tunisia, 15-17 December 2012, volume 122
of Electronic Proceedings in Theoretical Computer Science,
pages 97–108. Open Publishing Association, 2013.

C. Kaliszyk. Validation des preuves par récurrence implicite avec
des outils basés sur le calcul des constructions inductives.
Master’s thesis, Université Paul Verlaine - Metz, 2005.

D.E. Knuth and P.B. Bendix. Simple word problems in universal
algebras. In Computational Problems in Abstract Algebra, pages
263–297, 1970.

64

E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning.
In Proceedings of the eighth National conference on Artificial
intelligence - Volume 1, AAAI’90, pages 240–245. AAAI Press,
1990.

J. McCarthy. A basis for a mathematical theory of computation. In
Computer Programming and Formal Systems, pages 33–70.
North-Holland, 1963.

D. R. Musser. On proving inductive properties of abstract data
types. In POPL, pages 154–162, 1980.

F. Nahon, C. Kirchner, H. Kirchner, and P. Brauner. Inductive
proof search modulo. Annals of Mathematics and Artificial
Intelligence, 55(1–2):123–154, 2009.

H. Poincaré. La Science et l’Hypothèse. Flammarion, 1902.

U.S. Reddy. Term Rewriting Induction. Proceedings of the 10th
64

International Conference on Automated Deduction, pages
162–177, 1990.

M. Rusinowitch, S. Stratulat, and F. Klay. Mechanical verification
of an ideal incremental ABR conformance algorithm. Journal of
Automated Reasoning, 30(2):53–177, 2003.

S. Stratulat and V. Demange. Automated certification of implicit
induction proofs. In CPP’2011 (First International Conference on
Certified Programs and Proofs), volume 7086 of Lecture Notes
Computer Science, pages 37–53. Springer Verlag, 2011.

S. Stratulat. A general framework to build contextual cover set
induction provers. J. Symb. Comput., 32(4):403–445, 2001.

S. Stratulat. Integrating implicit induction proofs into certified
proof environments. In IFM’2010 (8th International Conference
on Integrated Formal Methods), volume 6396 of Lecture Notes in
Computer Science, pages 320–335, 2010.

64

S. Stratulat. A unified view of induction reasoning for first-order
logic. Séance poster de la conférence Turing-100, Juin 2012.

The CompCert project, 2014.

C.-P. Wirth. Descente infinie + Deduction. Logic Journal of the
IGPL, 12(1):1–96, 2004.

H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable
induction principle for equational specifications. In Proceedings
of the 9th International Conference on Automated Deduction,
pages 162–181, London, UK, 1988. Springer-Verlag.

64

