
Terms with Bindings as an Abstract Data Type

Jasmin Blanchette, Lorenzo Gheri, Andrei Popescu, Dmitriy Traytel

Vrije Universiteit Amsterdam Middlesex University London ETH Zürich

Terms of the λ-calculus

Var infinite set of variables, ranged over by x , y , z etc.

The set Trm of λ-terms, ranged over by t, s etc., defined by
grammar:

t ::= Vr x | Ap t1 t2 | Lm x t

... with the proviso that terms are equated (identified) modulo
α-equivalence (a.k.a. naming equivalence)

(Will often omit the injection Vr of variables into terms.)

E.g., Lm x x is considered equal to Lm y y

Terms as an abstract data type (ADT)

Trm endowed with algebraic structure, given by operators such as:
I the constructors Vr, Ap, Lm
I (capture-avoiding) substitution

[/_] : Trm→ Trm→ Var→ Trm
e.g., (Lm x (Ap x y)) [Ap x x / y] = Lm x ′ (Ap x ′ (Ap x x))

I swapping _[_∧_] : Trm→ Var→ Var→ Trm
e.g., (Lm x (Ap x y)) [x ∧ y] = Lm y (Ap y x)

I (finite) permutation
Perm = {σ : Vr→ Vr | {x | σ x 6= x} finite }
[] : Trm→ Perm→ Trm
e.g., (Lm x (Ap z y)) [x 7→ y , y 7→ z , z 7→ x] = Lm y (Ap x z)

I freshness _fresh_ : Var→ Trm→ Bool
e.g., x fresh Lm x x

Terms as an abstract data type (ADT)

Properties of the term algebra
I Various basic properties of the operators, e.g.,

1. x fresh t implies x fresh s[t/x]
2. {x ∈ Var | ¬ x fresh t } is finite

I Reasoning principle – induction
I Definition principle – recursion

A subset of the above will characterize the Trm algebra uniquely up
to isomorphism.

ADT characterization vs concrete representation

The particular representation – quotient, de Bruijn, weak/strong
HOAS, locally named/nameless – does not matter in the end: it’s
the same Platonic concept!

What matters is the end product:
I How expressive/useful are the (inductive) reasoning and

(recursive) definition principles?
I How expressive and modular is the construction of binding

structures?

Focus: recursion principles

We want such principles to be:
I Expressive: cover functions of interest, cover complex binding

structures
I Easy to use: do not require complex verifications in order for

the definitions to go through

First, some not very useful principles:
1. Free datatype of raw terms
2. de Bruijn
3. Gordon-Melham / weak HOAS

1. Work with the free datatype of raw terms
(no α-equivalence)

t ::= Vr x | Ap t1 t2 | Lm x t

Advantage: Can immediately define in proof assistants as standard
datatypes:

datatype Trm = Vr Var | Ap Trm Trm | Lm Var Trm

This yields the standard free recursor.

Major disadvantages:

I Substitution is not well-behaved

I Most of the times we would need to prove that the function is
invariant under α-equivalence—which is usually very complex

2. Work with a de Bruijn encoding

t ::= n | Ap t1 t2 | DBLm t

λ-abstraction takes no variable input, bound variables replaced by
numbers indicating which λ binds them.

Advantage: again, a free datatype

Major disadvantages:

I Dangling references DBLm 3 – number 3 refers to non-existing
DBLm in the term

I Recursor talks about a fixed variable to be bound (via DBLm)

I In the end still must define a proper Lm, or keep encoding
everything painfully using DBLm

But see some intelligent workarounds: Saving de Bruijn
(Norrish/Vestergaard 2007), Locally nameless (Charguéraud 2012),
Functor categories (Fiore et al. 1999)

3. Regard abstraction as taking a function as input

Despeyroux et. al 1995 (weak HOAS), Gordon/Melham 1996
Regard terms as a subset of the datatype:

datatype Termoid = Vr Var | Ap Termoid Termoid | LLm (Var→ Termoid)

Then Lm x t is defined as LLm (λy . t[y/x]).
Proper subset: LLm(λx . if x = y then ... else ...) incorrect, “exotic”
term.

Advantage: again, free-datatype recursor

Major disadvantages:

I Use LLm applied to restricted function space instead of Lm

I Cannot easily define useful functions

Some not very useful recursion principles

Summary of the disadvantages:

I The recursor inherited from raw-term encodings suffers from
lack of abstraction (notably substituion not well behaved)

I The recursor inherited from de Bruijn or functional (weak
HOAS) encodings replaces the standard λ-abstraction with a
different primitive

Some more useful recursion principles

The Nominal Logic recursion principle

Michael Norrish’s improvement

Our own contribution

Preliminaries: basic properties of terms I

Freshness versus constructors
(Fr1) z 6= x ⇒ z fresh Vr x
(Fr2) z fresh s ⇒ z fresh t ⇒ z fresh Ap s t
(Fr3) z = x ∨ z fresh t ⇒ z fresh Lm x t

Swapping versus constructors
(SwVr) (Vr x) [z1∧z2] = Vr (x [z1∧z2])
(SwAp) (Ap s t) [z1∧z2] = Ap (s [z1∧z2]) (t [z1∧z2])
(SwLm) (Lm x t) [z1∧z2] = Lm (x [z1∧z2]) (t [z1∧z2])

Algebraic properties of swapping
(SwId) t [z∧z] = t
(SwInv) t [x∧y] [x∧y] = t
(SwComp) t [x∧y] [z1∧z2] = (t [z1∧z2]) [(x [z1∧z2]) ∧ (y [z1∧z2])]

Algebraic properties of swapping versus freshness
(SwFr) x fresh t ⇒ y fresh t ⇒ t [x∧y] = t
(FrSw) z fresh t [x∧y] ⇔ z [x∧y] fresh t

Preliminaries: basic properties of terms II

Permutation versus constructors
(PmVr) (Vr x) [σ] = Vr (σ x)
(PmAp) (Ap s t) [σ] = Ap (s [σ]) (t [σ])
(PmLm) (Lm x t) [σ] = Lm (σ x) (t [σ])

Algebraic properties of permutation
(PmId) t [id] = t
(PmComp) t [σ] [τ] = t [τ ◦ σ]

Algebraic properties of permutation versus freshness
(PmFr) x fresh σ ⇒ t [σ] = t
(FrPm) z fresh t [σ] ⇔ z [σ−1] fresh t

Preliminaries: basic properties of terms III

Substitution versus constructors
(Sb1) (Vr x) [s/z] = (if x = z then s else Vr x)
(Sb2) (Ap t1 t2) [s/z] = Ap (t1 [s/z]) (t2 [s/z])
(Sb3) x 6= z ⇒ x fresh s ⇒ (Lm x t) [s/z] = Lm x (t [s/z])

Abstraction rules
(SwCong) z 6∈ {x1, x2} ⇒ z fresh t1, t2 ⇒ t1[z∧x1] = t2[z∧x1]
(SwCong) ⇒ Lm x1 t1 = Lm x2 t2
(SwRen) z 6= x ⇒ z fresh t ⇒ Lm x t = Lm z (t[z∧x])

(SbCong) z 6∈ {x1, x2} ⇒ z fresh t1, t2 ⇒ t1[(Vr z)/x1] = t2[(Vr z)/x1]
(SbCong) ⇒ Lm x1 t1 = Lm x2 t2
(SbRen) z 6= x ⇒ z fresh t ⇒ Lm x t = Lm z (t[(Vr z)/x])

Preliminaries: basic properties of terms IV

Finite support
(FinSupp) ∃X . X finite and ∀x , y 6∈ X . t[x 7→ y , y 7→ x] = t

Definability of freshness from permutations
(FrFromPm) x fresh t ⇐⇒ {y | t[x 7→ y , y 7→ x] 6= t} finite

Definability of freshness from swapping
(FrFromSw) x fresh t ⇐⇒ {y | t[x∧y] 6= t} finite

Freshness condition for binders (barebone version)
(FCB) ∃x . ∀t. x fresh Lm x t

Preliminaries: algebras (models)

All the above properties make sense
not only for the set Trm of terms
but also for any set A endowed with operators having the given
arities, e.g.,

I the constructors
Vr : Var→ A
Ap : A→ A→ A
Lm : Var→ A→ A

I substitution _[_ /_] : A→ A→ Var→ A

I swapping _[_∧_] : A→ Var→ Var→ A

I _[_] : A→ Perm→ A

I _fresh_ : Var→ A→ Bool

Recursion principles: barebone versions

THEOREM. Trm is initial object in the following categories of algebras:

1) Pitts 2) Norrish 3) Our results
PmVr PmAp PmLm SwVr SwAp SwLm SwVr SwAp SwLm
PmId PmComp SwId SwInv SwCong

SwFr FrSw
FrFromPm FCB FrVr FrAp FrLm FrVr FrAp FrLm
FinSupp

1’) Pitts swap-based 2’) Norrish perm-based 3’) Us with renaming
SwVr SwAp SwLm PmVr PmAp PmLm SwVr SwAp SwLm
SwId SwInv SwComp PmId PmComp SwRen

PmFr PmSw
FrFromSw FCB FrVr FrAp FrLm FrVr FrAp FrLm

Expressiveness (generality): 1 = 1′ ≤ 2 = 2′ ≤ 3′ ≤ 3

(Norrish 2004, Pitts 2006 based on previous work with Gabbay, Urban/Berghofer 2006,

Gheri/Popescu 2017, BGPT 2018)

Substitution-based variations

THEOREM. Trm is initial object in the following categories of algebras:

1) Our results 2) Our results
SbVr SbAp SbLm SbVr SbAp SbLm
SbRen SbCong
FrVr FrAp FrLm FrVr FrAp FrLm

Expressiveness (generality): 1 ≤ 2

(Popescu/Gunter 2011, Gheri/Popescu 2017, BGPT 2018)

Parenthesis: recursion from initial algebra
Initiality: Given any algebra A, there exists a unique morphism from Trm
algebra to A.

Given a set A, in order to define a function H : Trm→ A, organize it as
an algebra, i.e.,

1. define an algebraic structure: VrA : Var→ A, ApA : A→ A→ A,
LmA : Var→ A→ A, _∧A_ : A→ Var→ Var→ A, etc.

2. Verify that this satisfies the necessary properties (e.g., SwVr, SwAp)

In exchange, you get back an algebra morphism, i.e., a function
H : Trm→ A that commutes with the operators, e.g.,

H (Vr x) = VrA x

H (Ap t1 t2) = ApA (H t1) (H t2)

H (Lm x t) = LmA x (H t)

H (t [x∧y]) = (H t) [x∧Ay]

The commutation clauses are the recursive definition.

Intuition

We want a recursion principle that allows us to recurse over the
standard constructors:

H (Vr x) = . . . x . . .

H (Ap t1 t2) = . . . H t1 . . . H t2 . . .

H (Lm x t) = . . . x . . . H t . . .

To “help” recursion, we must describe the behavior of the intended
function H w.r.t. other operators besides constructors. E.g.,

H (t[x∧y]) = . . . H t . . . x . . . y . . .

x fresh H t ⇒ . . . H t . . . x . . . y . . .

Intuition

We want a recursion principle that allows us to recurse over the
standard constructors:

H (Vr x) = . . . x . . .

H (Ap t1 t2) = . . . H t1 . . . H t2 . . .

H (Lm x t) = . . . x . . . H t . . .

To “help” recursion, we must describe the behavior of the intended
function H w.r.t. other operators besides constructors. E.g.,

H (t[x∧y]) = . . . H t . . . x . . . y . . .

x fresh H t ⇒ . . . H t . . . x . . . y . . .

Example: the depth function
depth : Trm→ N

depth (Vr x) = 1
depth (Ap t1 t2) = max (depth t1, depth t2) + 1
depth (Lm x t) = depth t + 1

How to make this into a well-defined recursive function?

depth (t [x∧y]) = depth t

x fresh t implies True (vacuous)

In algebraic translation, the above means: Have organized N as an
algebra as follows:

VrN x = 1 m [x∧Ny] = m

ApN m n = m + n + 1 x freshN m = True
LmN x m = m + 1

Can use recursion theorems 1, 2, 3 or 3’ – must verify some trivial
identities.

Full-fledged recursors

The previous results give us only iterators

Obtain full-fledged recursors by:
I extending iteration to primitive recursion (general-purpose)
I factoring in variables to be “avoided” (binding-specific) – the

Barendregt convention

From barebone to full-fledged recursors I

Iteration

I the constructors
Vr : Var→ A
Ap : A→ A→ A
Lm : Var→ A→ A

I swapping _[_∧_] : A→ Var→ Var→ A

etc.

H (Var x) = VarA x

H (Ap t1 t2) = ApA (H t1) (H t2)

H (Lm x t) = LmA x (H t)

H (t [x∧y]) = (H t) [x∧Ay]

Can use not only returned value of H, but also original term

From barebone to full-fledged recursors I

Iteration 7→ Primitive recursion

I the constructors
Vr : Var→ A
Ap : Trm→ A→ Trm→ A→ A
Lm : Var→ Trm→ A→ A

I swapping _[_∧_] : Trm→ A→ Var→ Var→ A

etc.

H (Var x) = VarA x

H (Ap t1 t2) = ApA t1 (H t1) t2 (H t2)

H (Lm x t) = LmA x t (H t)

H (t [x∧y]) = (t, H t) [x∧Ay]

Can use not only returned value of H, but also original term

From barebone to full-fledged recursors I

Iteration 7→ Primitive recursion

I the constructors
Vr : Var→ A
Ap : Trm→ A→ Trm→ A→ A
Lm : Var→ Trm→ A→ A

I swapping _[_∧_] : Trm→ A→ Var→ Var→ A

etc.

H (Var x) = VarA x

H (Ap t1 t2) = ApA t1 (H t1) t2 (H t2)

H (Lm x t) = LmA x t (H t)

H (t [x∧y]) = (t, H t) [x∧Ay]

Can use not only returned value of H, but also original term

From barebone to full-fledged recursors II
1. Fix a finite set of variables X .

2. Amend all algebraic properties to assume freshness of the
binding variables w.r.t. X . E.g.,

(SwRen) z 6= x ⇒ z fresh t ⇒ z 6∈ X ⇒ x 6∈ X ⇒
Lm x t = Lm z (t[z∧x])
(FCB) ∃x . x 6∈ X ∧ ∀t. x fresh Lm x t

3. Obtain correspondingly amended recursive clauses. E.g.,
x 6∈ X ⇒ H (Lm x t) = LmA x t (H t)
x , y 6∈ X ⇒ H (t [x∧y]) = (t, H t) [x∧Ay]

E.g., when defining substitution:
Fix x , s
Take X = FVars s ∪ {x}
Clause for Lm:
y 6= x ⇒ y fresh s ⇒ (Lm y t)[s/x] = Lm y (t[s/x])

Note: Can go even further, and assume that X varies across the
recursive calls.

From barebone to full-fledged recursors II
1. Fix a finite set of variables X .

2. Amend all algebraic properties to assume freshness of the
binding variables w.r.t. X . E.g.,

(SwRen) z 6= x ⇒ z fresh t ⇒ z 6∈ X ⇒ x 6∈ X ⇒
Lm x t = Lm z (t[z∧x])
(FCB) ∃x . x 6∈ X ∧ ∀t. x fresh Lm x t

3. Obtain correspondingly amended recursive clauses. E.g.,
x 6∈ X ⇒ H (Lm x t) = LmA x t (H t)
x , y 6∈ X ⇒ H (t [x∧y]) = (t, H t) [x∧Ay]

E.g., when defining substitution:
Fix x , s
Take X = FVars s ∪ {x}
Clause for Lm:
y 6= x ⇒ y fresh s ⇒ (Lm y t)[s/x] = Lm y (t[s/x])

Note: Can go even further, and assume that X varies across the
recursive calls.

From barebone to full-fledged recursors II
1. Fix a finite set of variables X .

2. Amend all algebraic properties to assume freshness of the
binding variables w.r.t. X . E.g.,

(SwRen) z 6= x ⇒ z fresh t ⇒ z 6∈ X ⇒ x 6∈ X ⇒
Lm x t = Lm z (t[z∧x])
(FCB) ∃x . x 6∈ X ∧ ∀t. x fresh Lm x t

3. Obtain correspondingly amended recursive clauses. E.g.,
x 6∈ X ⇒ H (Lm x t) = LmA x t (H t)
x , y 6∈ X ⇒ H (t [x∧y]) = (t, H t) [x∧Ay]

E.g., when defining substitution:
Fix x , s
Take X = FVars s ∪ {x}
Clause for Lm:
y 6= x ⇒ y fresh s ⇒ (Lm y t)[s/x] = Lm y (t[s/x])

Note: Can go even further, and assume that X varies across the
recursive calls.

Summary I

1. When working with λ-terms, we prefer to consider

the standard constructors Vr, Ap, Lm : Var→ Trm→ Trm

rather than constructors “made up” from various encodings, e.g.,
DBLm : Trm→ Trm or LLm : (Var→ Trm)→ Trm

Why?

Because our constructions in logic and programming languages
refer to them.

2. We also prefer to work with λ-terms quotiented to α-equivalence
Why? Because important operators such as substitution are well-behaved
on quotiented terms only.

Summary I

1. When working with λ-terms, we prefer to consider

the standard constructors Vr, Ap, Lm : Var→ Trm→ Trm

rather than constructors “made up” from various encodings, e.g.,
DBLm : Trm→ Trm or LLm : (Var→ Trm)→ Trm

Why? Because our constructions in logic and programming languages
refer to them.

2. We also prefer to work with λ-terms quotiented to α-equivalence
Why? Because important operators such as substitution are well-behaved
on quotiented terms only.

Summary I

1. When working with λ-terms, we prefer to consider

the standard constructors Vr, Ap, Lm : Var→ Trm→ Trm

rather than constructors “made up” from various encodings, e.g.,
DBLm : Trm→ Trm or LLm : (Var→ Trm)→ Trm

Why? Because our constructions in logic and programming languages
refer to them.

2. We also prefer to work with λ-terms quotiented to α-equivalence
Why?

Because important operators such as substitution are well-behaved
on quotiented terms only.

Summary I

1. When working with λ-terms, we prefer to consider

the standard constructors Vr, Ap, Lm : Var→ Trm→ Trm

rather than constructors “made up” from various encodings, e.g.,
DBLm : Trm→ Trm or LLm : (Var→ Trm)→ Trm

Why? Because our constructions in logic and programming languages
refer to them.

2. We also prefer to work with λ-terms quotiented to α-equivalence
Why? Because important operators such as substitution are well-behaved
on quotiented terms only.

Summary II

3. Because (α-quotiented) λ-terms are not a free datatype, to recurse
over them while referring to their standard constructor, i.e., write
recursive clauses

H (Lm x t) = . . . x . . . t . . . H t . . .

must pay a price:

I consider more operators (e.g., freshness, swapping, permutation,
substitution)

I verify algebraic laws for the target domain

In return, we get:

I not only commutation with the constructors (the traditional
recursive clauses)

I but also useful commutation with the additional operators
(preservation of freshness, “substitution lemmas”)

Summary II

3. Because (α-quotiented) λ-terms are not a free datatype, to recurse
over them while referring to their standard constructor, i.e., write
recursive clauses

H (Lm x t) = . . . x . . . t . . . H t . . .

must pay a price:

I consider more operators (e.g., freshness, swapping, permutation,
substitution)

I verify algebraic laws for the target domain

In return, we get:

I not only commutation with the constructors (the traditional
recursive clauses)

I but also useful commutation with the additional operators
(preservation of freshness, “substitution lemmas”)

Summary III
4. Want our recursors to be as expressive as possible (be able to define
large classes of functions).

We classified and compared recursors from the literature and improved on
their expressiveness.

Our motivation:

I general theory of syntax with bindings, formalized in Isabelle/HOL

I user-friendly definitional package under development

Questions not discussed in this talk:

I How do we formally compare the expressiveness of different
recursors?

I How do the results scale to arbitrary syntaxes with bindings?

Thank you

Summary III
4. Want our recursors to be as expressive as possible (be able to define
large classes of functions).

We classified and compared recursors from the literature and improved on
their expressiveness.

Our motivation:

I general theory of syntax with bindings, formalized in Isabelle/HOL

I user-friendly definitional package under development

Questions not discussed in this talk:

I How do we formally compare the expressiveness of different
recursors?

I How do the results scale to arbitrary syntaxes with bindings?

Thank you

Summary III
4. Want our recursors to be as expressive as possible (be able to define
large classes of functions).

We classified and compared recursors from the literature and improved on
their expressiveness.

Our motivation:

I general theory of syntax with bindings, formalized in Isabelle/HOL

I user-friendly definitional package under development

Questions not discussed in this talk:

I How do we formally compare the expressiveness of different
recursors?

I How do the results scale to arbitrary syntaxes with bindings?

Thank you

Reserve Slides

Comparing expressiveness of recursion principles I
We fix

I a “base” category B
I and an object T ∈ |B|

A recursion principle for (B, T) is an “extension” category C together
with a “reduct” functor R : C → B such that

I C has an initial object I

I R I = T (can also assume R I ' T , but assume “=” for simplicity)

Intuition: The objects of C extend those of B with additional structure.
In particular, I extends T .

How it works: Let B ∈ |B|, an “intended target domain”. To define a
function f : T → B, we do the following:

(Step 1) We “extend” B to an object of C, i.e., take C ∈ |C| such that
R C = B

(Step 2) We obtain g : I → C by initiality

(Step 3) We take f = R g : T = R I → R C = B

Comparing expressiveness of recursion principles II

Let (C1, R1, I1) and (C2, R2, I2) be two recursion principles for
(B, T). We say that (C1, R1, I1) encompasses (is at least as
expressive as) (C2, R2, I2), written (C1, R1, I1) ≥ (C2, R2, I2), if
there exists a functor F : C1 → C2 such that:
(1) R2 ◦ F = R1

(2) for all C2 ∈ |C2| there exists C1 ∈ |C1| and a morphism
h : F C1 → C2 s.t. R1 C1 = R2 C2 and R2 h = 1B

(By initiality, condition 2 implies I2 ' F I1. For simplicity, we will
assume I2 = F I1.)

Note: The image of F through C1 is something like an initial
segment of C2.

Comparing expressiveness of recursion principles III

Intuition: The first principle can simulate the second principle.
Let B ∈ |B|.

(Step 1) We take C2 ∈ |C2| such that R2 C2 = B .
We take C1 and h : F C1 → C2 etc.

(Step 2) We obtain g2 : I2 → C2 by initiality.
We obtain g1 : I1 → C1 by initiality.
We note that g2 = h ◦ F g1 by initiality.

(Step 3) We take f2 = R2 g2.
We take f1 = R1 g1.
We note that f2 = f1.

Thus, via the “simulation” F , we can use the first principle to the
same effect as the second.

Back to terms

Starting point: We want a recursion principle that allows us to
recurse over the standard constructors:

H (Vr x) = . . . x . . .

H (Ap t1 t2) = . . . (H t1) . . . (H t2)

H (Lm x t) = . . . x . . . (H t) . . .

Hence take B to be AlgΣ0 , the category of algebras over the
signature Σ0 = {(Vrx)x∈Var, Ap, (Lmx)x∈Var}.

To “help” recursion, we need to extend Σ0 to larger signatures Σ,
factoring in the freshness predicate, the swapping, permutation and
substitution operator, etc. So the extensions C will be classes of
Σ-algebras satisfying various properties.

All our expressiveness comparison results are then instances of the
abstract framework.

