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Abstract
Although having computer checked proofs has several advantages, the use of interac-
tive proof assistants has not yet spread into the mathematical community. Problems
that withhold mathematicians from using proof assistants include: lack of automation,
libraries and expertise. Lean is a new proof assistant, developed towards use by math-
ematicians. I used Lean to formalize the Mason-Stothers theorem, which is a number
theoretical result whose proof is short and yet contains many algebraic concepts. To
develop the proof I created a reusable formal library including results on polynomials
and unique factorization domains.
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1. Introduction
Mathematical proofs are often hard to check for correctness. The proof presented by
Mochizuki, who claims to have solved the abc-conjecture, is a prime example (Castelvec-
chi, 2015). His proof, and the background he developed for it, is so vast and new that it is
taking years, and will continue to take years, to be understood and peer-reviewed by the
mathematical community. As of this moment there is no consensus on the correctness
of his proof.

We can use computers to verify the correctness of proofs. The process of creating
proofs that are so precise and complete that a computer can verify their correctness
is called mathematical formalization. In practice, one interacts with a proof assistant,
which in turn generates a formal proof, which is then checked by the proof checker that
is part of the proof assistant.

Having computer verified proofs has several advantages. In the first place, having a
proof that is verified by a computer gives a high level of trust in the correctness, as
we only have to trust the proof checker (including its logic and the system on which it
runs) and the translation of informal (textbook style) statements to formal statements.
Second, formalization helps organizing mathematics. Third, formalizing reveals lower
level mathematics, which is mathematics that is currently not explicitly formulated.
Fourth, formalization could be used for education in various ways. My first contact with
a proof assistant was in a logics course, where the homework assignments had to be
made in a proof assistant that provided instant feedback.

However, over 99% of the mathematical community is not using proof assistants,
because the current systems are too laborious to use. Sometimes, one line of a proof can
take a day to formalize. Obstacles that make proof assistants laborious to use are the
lack of automation, libraries and expertise. In order for a mathematician to formalize
anything, he or she needs to know the proof assistant and its libraries. A mathematician
does not want to spend time on trivial lemmas, hence automation is needed. Nor does
a mathematician want to develop the undergraduate (or graduate) mathematics that is
needed before he or she can formalize his or her new results.

Lean is a new proof assistant that is co-designed by a mathematician, with the needs
of working mathematicians foremost in mind. It attempts to combine the strength of
the two leading proof assistants (de Moura et al., 2015). Lean’s logical foundation is
a dependent type theory that is similar to the foundations of the Coq proof assistant.
Being roughly equally expressive as Coq, it aims to improve on Coq by having a small
kernel, and having a framework that is designed towards automation. From the Isabelle
proof assistant, Lean draws inspiration for the construction of its mathematical libraries,
as it uses the type class mechanism found in Isabelle/HOL. It aims to even Isabelle in
automation, while having the merit of a more expressive logic.
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In this bachelor thesis I used the Lean proof assistant to formalize the Mason-Stothers
theorem (Mason, 1984; Stothers, 1981) and a proof (Snyder, 2000). This number theo-
retical result is the polynomial analogue of the abc-conjecture. It has a short proof and
yet contains many algebraic concepts, which make it an excellent test case for formalizing
number theory using the Lean proof assistant. To develop the proof I created a reusable
formal library including results on polynomials and unique factorization domains. The
formalization was completed up to a single gap in the mathematical preliminary.

This thesis is divided in 7 chapters. Chapter 2 describes the Mason-Stothers theo-
rem and the mathematical machinery that it uses. Chapter 3 introduces the subject of
mathematical formalization and the Lean proof assistant. Chapter 4 describes the for-
malization of the reusable library and the Mason-Stothers theorem. Chapter 5 presents
a comparison between my Lean formalization and a similar development in the Isabelle
proof assistant. Chapter 6 presents a discussion of the usability of Lean for mathemati-
cians and future work. Finally, Chapter 7 draws conclusions.
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2. The Mason-Stothers Theorem

2.1. Mathematical Preliminaries
Rings Rings are sets which have two binary operations, the addition (+), and the mul-
tiplication (×), defined on them. Both + and × are associative, and the multiplication
distributes over addition. The precise definition of a ring is given in Appendix A. Rings
are a generalization of the integers (Z) and polynomials over Z. There are many types
of rings. In particular we can form the following hierarchy of different types of rings:
fields ⊂ Euclidean domains ⊂ principal ideal domains ⊂ unique factorization domains
⊂ integral domains ⊂ rings. For proving the Mason-Stothers theorem it is sufficient to
have fields, unique factorization domains and integral domains at our disposal. In this
thesis I denote an arbitrary ring by R, unless specified otherwise. And I always assume
that a ring has a multiplicative identity; this is in accordance with the definition of rings
in Lean.

Integral domains Integral domains are commutative rings with 0 ̸= 1, which in
addition do not have zero-divisors, i.e. we have a× b = 0 implies a = 0 or b = 0 for all
a, b in R. Integral domains are at the near bottom in the above hierarchy.

Unique factorization domains Unique factorization domains (UFDs) generalize the
unique prime factorization property of the integers (Z). However, in a general UFD the
factorization into irreducible factors is only unique up to order and associates. Both
‘irreducible’ and ‘association’ are related to units. A unit is an element that has a
multiplicative inverse. A non-zero non-unit element is irreducible if it cannot be factored
into two non-units. Two elements are said to be associated if they are equal up to
multiplication by a unit. In a UFD we have certain division properties. An element a
divides an element b, notation a|b, if there exists an element c such that b = a ∗ c. In a
UFD any two elements have a greatest common divisor (gcd). Two elements are said to
be coprime if their gcd is a unit.

In Section 4.1 I give precise definitions of UFDs and related notions. For units,
irreducible, the associated relation, UFDs, the divides relation, gcds, and coprime see
Definitions 4.1.1 to 4.1.7.

Fields A field is a commutative ring with 0 ̸= 1 in which every element that is not
equal to zero is a unit. Fields are at the top in the above hierarchy. For any ring R
there is a unique map from the integers (Z) to R that is compatible with the addition
and multiplication (i.e. a unital ring homomorphism). The smallest integer n > 0 which
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gets mapped to 0 under this map is called the characteristic of the field. If no such n
exists the field is said to have characteristic 0.

Polynomials Polynomials are expressions of the form a0 + a1X + a2X
2 + · · ·+ anX

n,
with ai ∈ R for some ring R. These expressions can be interpreted in two ways, as
polynomial functions or as polynomial forms.

Polynomial function Here we see polynomials as functions from R to R, where we
use the addition and multiplication from R to interpret + and ×, and interpret X
as a variable.

Polynomial form We give no meaning to the symbols, and treat it as a formal expres-
sions. In this case the expression above simply represents an ordered list of finitely
many elements of R (the ai), i.e. (a0, a1, a2, . . . , an), where the last element (an) is
non-zero.

That the above two interpretations are not equal becomes clear when we consider X
and X2 as polynomials over the finite field F2, where they are the same as polynomial
functions, but not the same as polynomial forms. In this thesis the term polynomial is
reserved for polynomial forms.

The set of polynomials over a ring R, denoted by R[X], has a ring structure as well.
Depending on the type of the ring R the polynomial ring has additional features. A
polynomial ring over an integral domain is an integral domain. A polynomial ring
over a UFD is a UFD. And a polynomial ring over a field is a Euclidean domain (and
therefore also a UFD by the aforementioned algebraic hierarchy). For polynomials a
formal derivative can be defined, which we denote by f ′. In the above polynomial
expression the term anX

n is called the leading term, and an is the leading coefficient. If
an ̸= 0, we call n the degree of the polynomial. The degree of the zero polynomial is
defined as deg(0) = 0 in this thesis and in Lean. A polynomial is called monic if the
leading coefficient equals 1. A polynomial of the form aX0 is said to be constant.

In Section 4.2 I give precise definitions of polynomials and related notions. For poly-
nomials over an arbitrary ring, monomials, polynomial addition, polynomials multipli-
cation, polynomial features (e.g. degree and leading coefficient), and formal derivatives
see Definitions 4.2.1 to 4.2.6.

Polynomial normal form When we have polynomials over a field K, any polynomial
f ∈ K[X] can be written in the normal form f = c p1p2 . . . pn, where c is a constant
polynomial, and the pi’s are all monic and irreducible. In the normal form we decompose
f into a constant factor and a multiset of monic irreducible factors. In the case that
f = 0, we set the multiset of monic irreducible factors equal to the empty set, which
then gives a unique normal form.

The radical of a polynomial The radical of a polynomial f , denoted by rad(f) is
the product of all distinct monic irreducible factors dividing f . I.e. if we write f in an
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adapted normal form, were we group equal factors of pi into factors of the form paii ,
f = c pa11 pa22 . . . pann , with c a constant polynomial, and the pi’s monic and irreducible,
the ai > 0 for all i, and in addition we assume that the pi’s are distinct, then rad(f) =
p1p2 . . . pn. The radical of a constant polynomial c is defined as rad(c) = 1.

2.2. Theorem Statement
Theorem 2.2.1 (The Mason-Stothers Theorem). Let a, b, and c be pairwise coprime
polynomials over a field K with characteristic 0, such that a + b + c = 0. Assume that
they are all non-zero and that they are not all constant. Then

max(deg(a), deg(b), deg(c)) < deg(rad(abc)).

I slightly modified the concluding statement of the Mason-Stohers theorem as com-
pared to Snyder (2000) because of the implementation of degrees as natural numbers in
Lean. There the conclusion was stated as max(deg(a), deg(b), deg(c) ≤ deg(rad(abc)))−
1. And if I would use the concluding statement from Snyder (2000), the condition that
a, b, and c are not all constant would not be needed, because in the case that they are all
constant we would get 0 ≤ 0−1, which holds for natural numbers in Lean, where we have
0 − 1 = 0. In modifying the conclusion to max(deg(a), deg(b), deg(c)) < deg(rad(abc)),
we obtain a statement which would not hold if a, b, and c are constant. Furthermore,
Snyder used n0(abc), which denotes the number of distinct zeros of the polynomial abc,
instead of deg(rad(abc)), but this is because he worked in the different setting of an
algebraically closed field.

2.3. Overview of the Proof
In proving the Mason-Stothers theorem, I used the argumentation given by Snyder
(2000), but with an adaptation inspired by Dahmen (2017). First, Snyder describes
the Mason-Stothers theorem in the more restricted setting of an algebraically closed
field (such as the complex numbers), while I work in the more general setting of a field
with characteristic 0. Second, I factorize my proof further, compared with Snyder. At
the highest level I factored the proof in 3 lemmas, a special case formulation of the
Mason-Stothers theorem, and the Mason-Stothers theorem.

The first lemma, which is stated below, is the most complex part of the Mason-Stothers
theorem. Its proof shows most of the mathematical tools that are needed.

Notations I denote gcd(a, b) by (a, b). The expression deg((a, b)) is shortened to
deg(a, b).

Lemma 2.3.1. Let f be a polynomial over a field K, then

deg(f) ≤ deg(f, f ′) + deg(rad(f)).
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Proof. Write
f = u pa11 pa22 . . . pann ,

with u a unit, the pi’s monic, irreducible and distinct, and the ai > 0 ∈ N. In the case
f is zero the lemma trivially holds. Consider f is non-zero. Then ∀pi, pai−1

i |f ′ (expand
f ′ via the product rule) and ∀pi, pai−1

i |f , hence pai−1
i |(f, f ′). Because all pi are distinct,

monic, and irreducible, and we work over a UFD, we have

pa1−1
1 pa2−1

2 . . . pan−1
n |(f, f ′).

Since f ̸= 0 we have (f, f ′) ̸= 0, and hence

deg(pa1−1
1 pa2−1

2 . . . pan−1
n ) ≤ deg(f, f ′).

Also, we have that

deg(f) = deg(pa1−1
1 pa2−1

2 . . . pan−1
n ) + deg(p1p2 . . . pn).

Combining these, we find that deg(f) ≤ deg(f, f ′) + deg(rad(f)).

In this proof we find the following mathematical machinery:

• polynomials;

• factorization of a polynomial in a unit and monic irreducible factors (polynomial
normal form);

• properties of division by irreducible polynomials in a UFD;

• derivatives for polynomials;

• greatest common divisor of two polynomials;

• radical of a polynomial.

I now state the other lemmas and the theorems. The proofs of these are given in
Section 4. They can mostly be proven when the aforementioned machinery is in place.
In addition to the earlier mentioned mathematical machinery, we need the characteristic
of a field in the proof of Mason-Stothers to be able to say that a polynomial is constant
if it has zero derivative, which only holds for a field with characteristic 0.

Lemma 2.3.2. Let f and g be coprime polynomials over a field K. And let the wronskian
of f and g be zero, that is, f ′g − fg′ = 0. Then f ′ = 0 and g′ = 0.

Lemma 2.3.3. Let f, g be polynomials over a field K. Then

deg(f ′g − fg′) ≤ deg(f) + deg(g)− 1.

11



Theorem 2.3.4 (The Mason-Stothers Theorem: Special Case Formulation). Let a, b,
and c be pairwise coprime polynomials over a field K with characteristic 0, such that
a+ b = c. Assume that they are all non-zero and that they are not all constant. Then

deg(c) < deg(rad(abc)).

Theorem 2.2.1 (The Mason-Stothers Theorem). Let a, b, and c be pairwise coprime
polynomials over a field K with characteristic 0, such that a + b + c = 0. Assume that
they are all non-zero and that they are not all constant. Then

max(deg(a), deg(b), deg(c)) < deg(rad(abc)).
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3. Mathematical Formalization and
the Lean Proof Assistant

We can use computers to verify the correctness of proofs. The process of creating proofs
that are so precise and complete that a computer can verify their correctness is called
mathematical formalization. In practice one interacts with a proof assistant. The user
of the proof assistant instructs the proof engine, which in turn creates a proof object
(or formal proof) which is then checked by the proof checker that is part of the proof
assistant (Geuvers, 2009). Figure 3.1 shows the interaction with a proof assistant.

Figure 3.1.: The interaction of the user with a proof assistant. Reprinted from Geuvers
(2009, p. 9).

3.1. The Process of Formalizing
The process of formalization (often) consists of three phases. In these phases we develop

1. a detailed document in LATEX;

2. the definitions and statement of theorems in the proof assistant;

3. the proofs in the proof assistant.

The formalization starts with writing down the proof very detailed; this can be done
in LATEX. The level of detail in this document is much higher than an ordinary math-
ematical paper, because in an ordinary textbook proof some steps are still left to the
reader. When this document is in place the development of the formal proof in the
proof assistant starts. In the second phase we develop the definitions and statements of
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the theorems. In the third phase we develop the proofs. This order gives a top-down
approach to formalization, also known as the waterfall model. However, I took a more
iterative approach, where the separation between phase 2 and 3 is less strict, and I re-
peatedly moved between phase 2 and 3. After finalizing the formalization, I created a
new phase 1 document from scratch.

3.2. The Lean Proof Assistant
In this formalization project the Lean proof assistant was used. The motivation for using
Lean was given in the introduction. In this section I describe Lean’s logic and how to
use Lean.

Logical foundation The logic that Lean uses is a form of typed lambda calculus
(Church, 1932). In typed lambda calculus every term has a type. Via the Curry-Howard
correspondence a logical statement can be encoded as a type (Howard, 1980). If a term in
the typed lambda-calculus has as its type a logical statement, then this term represents
a proof of the statement. Now proof checking becomes equivalent to type checking, a
phenomenon known as the proofs-as-types paradigm.

Types In Lean every term has a type, as was already mentioned. For example 2 : ℕ,
expresses that the constant 2 is of type ℕ, which is the type of natural numbers. A
function from N to N is expressed as f : ℕ -> ℕ, here f has the type ℕ -> ℕ. Even
types have a type in Lean. The type of a type is called a universe. This creates a
hierarchy of universes, where each universe is an element of a higher universe. Universes
are denoted by Type u, where u is the universe level. The bottom universe is called
Prop, and it is the universe were propositions live.

Lean allows for dependent types, also known as Pi types, where types can depend on
terms. An example of a dependent type is vector α n, which is the type of vectors
of elements of α of length n. The function f : ℕ -> ℕ is an example where a type
depends trivially on a term.

Lean supports quotient types. Where we start with a type α and a relation r on α,
and we obtain the type α ‘modulo’ r.

3.3. Interacting with Lean
Lean allows for multiple approaches to instructing the proof engine. In Lean the input
language is a combination of procedural and declarative statements. The procedural
language elements are called tactics; these are commands that aim to advance in the goal
state. Declarative statements resemble informal mathematical proofs more closely. Using
tactics can be faster than using declarative statements, however declarative statements
can give a clearer view on the structure of the proof. We often use a combination of
both.

14



Interacting with the Lean theorem prover feels like functional programming. In par-
ticular the notation for function application differs from ordinary mathematics, as well
as extensive use of the currying isomorphism (Avigad et al., 2018b). A mathematician
would define a function like f : X × Y → Z, and states function application, for x ∈ X
and y ∈ Y , by f(x, y). In Lean we express this as f : X → Y → Z and the function
application as f x y. Where the ’→’ associates to the right, and function application
associates to the left.

In writing mathematics the user can make the following declarations:

• axioms, which only have a type;

• definitions, which have a type and a value;

• inductive families of types, which is a mechanism for defining types.

Stating and proving a lemma or a theorem is equivalent to giving a definition, where the
type of the definition is the statement of the lemma, and the proof of the lemma is the
value of the definition. Using the inductive family of types we can construct types other
than the universes, and the dependent types. In fact, every concrete type in Lean is
either a type universe, dependent type, quotient type, inductive type or a combination
of these.

To illustrate these different types of declarations I provide an example for each of the
declarations above. An example axiom is the following:

axiom example_axiom : ∀x : ℕ, ∃ y : ℕ, y < x

This example illustrates that we must be careful in stating axioms, as they potentially
lead to contradictions, as is the case with this example. An example definition is the
following:

def f (x : ℕ) : ℕ := x + 7

Here we define the function f. It takes the single parameter x of type ℕ, and the type of
the output is ℕ. The type of f is ℕ -> ℕ, and the value of f is λ (x : ℕ), x + 7.
This last term is a lambda abstraction; these are used to build functions in lambda
calculus. An example of an (simple) inductive family of types is the natural numbers:

inductive nat
| zero : nat
| succ (n : nat) : nat

Here the two constructors that can be used for creating an object of type nat are zero
and succ.
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4. Formalization
In this chapter I discuss the formalization of the Mason-Stothers theorem and the formal-
ization of the background mathematics that was needed. The background mathematics
forms a reusable library. I start with describing the background mathematics that was
formalized.

Ring

UFD 

Integral domain

Field

Associated quotient
over aPolynomials over a

Sorry

⊂
⊂

⊂

Figure 4.1.: Structure of the reusable library for ring theory.

Overview of the reusable library The reusable library developed contains mainly
ring theory. Figure 4.1 shows an overview of the reusable library developed. Each box
represents a component of the formalized library. In the middle we find the hierarchy of
rings. On the sides we find the polynomials and the associated quotient that were devel-
oped for each type of ring. Lean’s library for mathematics, Mathlib, already contained
formalizations for rings, integral domains, and fields; I extended these formalizations.
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A formalization of unique factorization domains, polynomials, and the associated quo-
tient was built from scratch. The ‘sorry’ on the ‘polynomials over a UFD’ component
indicates the single missing proof of the entire formalization of Mason-Stothers and the
reusable library; it is described in Section 4.2.2.

Currently my formalization is situated in an independent repository (Wagemaker and
Hölzl, 2018). The aim is that in time the formalization will be transferred to Mathlib.

4.1. Unique Factorization Domains
Here I describe my formalization of UFDs, using the definitions from (Dummit and
Foote, 2004, p. 285). The Lean library already contained a type for rings, and for two
special types of rings: fields and integral domains (the top and near-bottom of the ring
hierarchy from Section 2.1).

To define UFDs we first classify certain ring elements.

Definition 4.1.1. Unit
We call x ∈ R a unit if it has a multiplicative inverse.

Lean already had a type for units:

structure units (α : Type u) [monoid α] :=
(val : α)
(inv : α)
(val_inv : val * inv = 1)
(inv_val : inv * val = 1)

Here structure is used to create a non-recursive inductive type.
I introduced a predicate that denotes if an element of the ring is a unit, since this

predicate is easier to work with. This is_unit predicate is defined as

def is_unit (a : α) : Prop := ∃b : units α, a = b

In this definition Lean performs a coercion on b that replaces b by b.val, which has
type α, hence the equality a = b is well defined.

Definition 4.1.2. Irreducible
We call a non-zero non-unit element y ∈ R irreducible if y = ab implies a is a unit, or b
is a unit, i.e. irreducible elements cannot be factored non-trivially.

I defined irreducible elements in Lean using:

def irreducible' [integral_domain α] (p : α) : Prop :=
p ≠ 0 ∧

¬is_unit p ∧
∀a b : α, p = a * b → (is_unit a ∨ is_unit b)

17



Here the ‘'’ is used to discriminate with another equivalent definition of irreducibility.
The uniqueness in a UFD is up to association; we define association here.

Definition 4.1.3. Associated Relation
The elements a, b ∈ R are associated if there exists a unit u such that a = u ∗ b. I.e. a
and b differ by a unit.

I defined it similarly in Lean:

def associated [integral_domain α] (x y : α) : Prop :=
∃u : units α, x = u * y

For the associated relation I introduced the infix notation a ~u b.

Definition 4.1.4. Unique Factorization Domain
A Unique Factorization Domain (UFD) is an integral domain with for each non-zero

element r that is not a unit it holds that:

• r can be written as a finite product of irreducible factors pi (not necessarily dis-
tinct): r = p1p2 . . . pn and

• this decomposition is unique up to associates and order: namely if r = q1q2...qm
is another factorization of r into irreducibles, then m = n and there is some
renumbering of the factors so that pi is associate to qi for i = 1, 2, . . . , n.

I implemented the factorizations as finite multisets. The type multiset was already
present in the library and represents finite multisets. The property that these factoriza-
tions are ‘unique up to associates’ uses that a relation (the association relation) holds for
certain pairs, with one element in the multiset {p1, p2, . . . , pn}, and the other element in
the multiset {q1, q2, . . . , qm}. I.e. the multisets {p1, p2, . . . , pn} and {q1, q2, . . . , qm} could
be built by adding pairs (pi, qj), for which some relation piRqj holds, one by one. In
other words, we are lifting a relation over elements to a relation over multisets. The
construction of adding the pairs one by one leads to the following inductive definition
of the lifting of a relation between multisets:

inductive rel_multiset {α β : Type u} (r : α → β → Prop) :
multiset α → multiset β → Prop

| nil : rel_multiset ∅ ∅
| cons : ∀a b xs ys, r a b →

rel_multiset xs ys →
rel_multiset (a::xs) (b::ys)

Here the cons constructor adds the elements a and b, of the pair (a,b), for which
the relation r holds (r a b), to the multisets xs and ys. Adding an the element a to
the multiset xs is denoted by a::xs.

Now we defined a UFD in Lean as:
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class unique_factorization_domain (α : Type u)
extends integral_domain α :=

(fac :
∀{x : α}, x ≠ 0 →

¬is_unit x →
∃p : multiset α, x = p.prod ∧ (∀x ∈ p, irreducible x))

(unique :
∀{f g : multiset α},

(∀x ∈ f, irreducible x) →
(∀x ∈ g, irreducible x) →
f.prod = g.prod →

rel_multiset associated f g)

Here fac represents the property that every element can be factored (point 1 in Defini-
tion 4.1.4), and unique expresses the uniqueness up to associates of these factorizations
(point 2 in the Definition 4.1.4).

4.1.1. Greatest Common Divisor
Definition 4.1.5. Divides Relation
Let R be a commutative ring, and let a, b ∈ R. We say that a divides b, notation a|b, if
there exists a c ∈ R such that b = a ∗ c.

The divides relation was already implemented in Lean:

instance comm_semiring_has_dvd : has_dvd α :=
has_dvd.mk (λa b, ∃c, b = a * c)

Definition 4.1.6. Greatest Common Divisor
Let R be a commutative ring, and let a, b ∈ R. Then we call d ∈ R a greatest common
divisor of a and b, notation d = gcd(a, b), if it satisfies the following axioms:

(i) d|a (d divides a)

(ii) d|b

(iii) ∀e ∈ R with e|a and e|b, we have e|d

In general the gcd is not unique. It is, however, unique up to associates. Note that
over Z we can have the additional axiom that the gcd is non-negative, this would lead
to a unique gcd for any two elements. However, we cannot do this in an arbitrary ring.

I took a computational approach in defining the gcd. I defined it as a function that
produces an element that has the desired properties. Given a ring R, we defined gcd as
a function gcd : R2 → R (with the aforementioned properties).
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class has_gcd (α : Type u) [comm_semiring α] :=
(gcd : α → α → α)
(gcd_right : ∀a b, gcd a b ∣ b)
(gcd_left : ∀a b, gcd a b ∣ a)
(gcd_min : ∀a b g, g ∣ a → g ∣ b → g ∣ gcd a b)

Definition 4.1.7. Coprime
Let R be a ring, which has a gcd for each pair of elements, then we call a, b ∈ R coprime
if gcd(a, b) is a unit.

This translated directly in Lean.

def coprime (a b : α) := is_unit (gcd a b)

In UFDs every pair of elements has a gcd. If we let a and b be two non-zero ele-
ments with factorizations a = u pe11 pe22 . . . penn and b = v pf11 pf22 . . . pfnn , where the pi are
irreducible, distinct, and not-associated, and u and v are units, then

d = p
min(e1,f1)
1 p

min(e2,f2)
2 . . . pmin(en,fn)

n

is a gcd of a and b.
However obtaining these specific representations of a and b, where the irreducible

factors are distinct and not-associated is non-trivial. Suppose we wanted to obtain
them, because we are in a UFD we can first get the factorizations a = p1p2 . . . pn and
b = q1q2 . . . qm, and then we would have to define an algorithm that transfers these
factorizations to factorizations with distinct and not-associated factors. Formalizing
this algorithm would be lengthy, and then we would still have to prove that the d given
above is actually a gcd of a and b.

Instead of using an algorithm to obtain the non-associated factors, I took a more
direct approach were I could avoid these representations. In this direct approach I used
the intersection operation on (finite) multisets. The intersection on multisets can be
explained as follows: we see multisets as functions from the ring to N, then for any
two multisets f , and g, we have (f ∩ g)(x) = min(f(x), g(x)). The idea is to apply
this intersection operation to the multisets with the factors in a and b, to obtain the
gcd. That is if a = p1p2 . . . pn and b = q1q2 . . . qm, that we take the intersection of the
multisets: {p1, p2, . . . , pn} ∩ {q1, q2, . . . , qm}. However this would not work if we had
factors pi which would be distinct but associated. E.g. in Z, we have 2~u − 2, and we
could factorize 4 = 2 ∗ 2 or 4 = (−2) ∗ (−2), we know that gcd(4, 4) = 4, but if we
intersect the factorizations, we would get {2, 2} ∩ {−2,−2} = ∅.

To circumvent this problem with distinct but associated irreducible factors, I devel-
oped the associated quotient structure, which is the quotient obtained of the ring with
respect to the associated relation (which is an equivalence relation). This structure has
the nice property that two elements are equal if and only if they are associated, hence
the case of having distinct but associated elements can never occur here.
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4.1.2. The Associated Quotient
The associated quotient is obtained by considering the elements of a ring modulo asso-
ciation. Recall that we defined association (a~ub) for elements a, b ∈ α by ∃u : units :
α, a = u ∗ b, i.e. a and b differ by a unit.

Definition 4.1.8. Associated Quotient
Let R be a commutative ring. Then the associated quotient of R, denoted by R/~u, is
the set of all equivalence classes with respect to the associated relation.

In Lean I defined the type quot to denote the associated quotient. To obtain this
quotient type in Lean we first form a setoid, which is a set (the carrier set of the
commutative ring) equipped with an equivalence relation (association).

def setoid (β : Type u) [comm_semiring β] : setoid β :=
{r := associated, iseqv := associated.eqv}

From this setoid we create a quotient type:

def quot (β : Type u) [comm_semiring β] : Type u :=
quotient (setoid β)

Now quot is the type of the associated quotient.
As an algebraic structure the associated quotient is a commutative monoid with 1 and

0. The binary operation is the multiplication that is lifted from the ring to the associated
quotient. The divisibility relation (a | b) gives the associated relation a preorder.

Associated quotient over integral domains On integrals domains the preorder is
extended to a partial order, as we can prove the anti-symmetry (a ≤ b∧ b ≤ a ⇒ a = b).

Associated quotient over UFDs This partial ordering could be extended to a
bounded lattice, when working over UFDs. The bottom of this lattice is ⊥ = 1, because
1 divides every element. The top of this lattice is ⊤ = 0, because every element divides
0. The supremum is the greatest common divisor and the infimum is the least common
multiple (lcm).

To prove the existence of a gcd in UFDs, I first proved its existence in the associated
quotient over a UFD. In order to do this, I lifted the notion of irreducibility and the
factorization of the UFD to the quotient. The lifting of the irreducible predicate is called
irred. The lifting of the property that every element can be factorized in irreducible
elements (point 2 in Definition 4.1.4) is done via the lemma representation below.

lemma representation (a' : quot α) : a' ≠ 0 →
∃p : multiset (quot α), (∀a ∈ p, irred a) ∧ a' = p.prod

From this statement asserting the existence of a factorization in irreducible factors, we
can obtain an actual multiset, with the factors dividing the element, by using the axiom
of choice. This is done in Lean using some. I defined the function that takes an element
and gives a multiset of irreducible factors, named to_multiset, below.
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def to_multiset (a : quot α) : multiset (quot α) :=
if h : a = 0 then 0 else classical.some (representation a h)

With this to_multiset function I defined a sup and inf (or meet and join) to obtain
a lattice structure for the associated quotient.

def inf (a b : quot α) :=
if a = 0 then b
else if b = 0 then a
else (to_multiset a ∩ to_multiset b).prod

def sup (a b : quot α) :=
if a = 0 then 0
else if b = 0 then 0
else (to_multiset a ∪ to_multiset b).prod

Here the ∩ and ∪ operators are working on multisets, as described earlier. Once these
definitions for sup and inf were in place, the proof that they had the desired properties
(of being gcd and lcm) was not difficult.

Now to obtain the gcd of two elements a, b in the UFD, we take the inf of the equiv-
alence classes of a, and b, (inf([a], [b])), and take a representative for this equivalence
class.

gcd := assume a b : α, quot.out (inf (mk a) (mk b))

Here α is the type of the UFD, and quot.out takes the representative, and with mk a,
we obtain the equivalence class of a.

4.2. Polynomials
The polynomial library I develop is a continuation of the work from Hölzl (2017), which
is an initial write-up, containing a definition for polynomials, an induction rule, and
basic lemmas for degrees and derivatives.

Definition 4.2.1. Polynomial
We define R[X], the polynomials over R, to be the set of all function from N to R with
finite support.

We can see polynomials as infinite lists with only finitely many non-zero terms, i.e. f =
(a0, a1, . . . , an, 0, 0, . . . ) is a polynomial, such that for all m > n we have that am = 0.
Here f(n) = an for all n ∈ N, and hence f is a function from N to R.

Lean already contained a library for describing functions with a finite support.

def finsupp (α : Type u) (β : Type v) [has_zero β] :=
{f : α → β // finite {a | f a ≠ 0}}
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It is implemented as a subtype. In a subtype we take a type and add an extra con-
dition or property for the elements of this type; it is an example of a non-recursive
inductive type. We can create an element of a subtype by providing an element, and
the proof that this element has the property needed for the subtype. The definition
of finsupp can be understood as the type of functions from α to β, (f : α → β),
for which the set of elements in the domain that are mapped to a non-zero value is
finite, (finite {a | f a ≠ 0}). For finite support functions from α to β the infix
notation α →₀ β is used.

The polynomial definition is now:

def polynomial (α : Type u) [semiring α] := ℕ →₀ α

We can represent polynomials using the following formal expression: f = a0 + a1X +
a2X

2 + · · · + anX
n, as was discussed in Section 2.1, which is convenient for making

definitions using polynomials.
The smallest polynomials are the monomials, which are only non-zero for a single

element in their domain.

Definition 4.2.2. Monomial
We define monomials as polynomials of the form aXn, for some a ∈ R and n ∈ N.
Monomials of the form aX0, or simply a, are called constant polynomials.

For the finsupp type (and hence for the polynomials) these ‘smallest’ functions are
called singles, and they are defined as:

def single (a : α) (b : β) : α →₀ β :=
⟨λa', if a = a' then b else 0, proof⟩

Here a is an element in the domain, and b is an element in the codomain.
Two special monomials are X, and Ca the constant polynomial with value a. These

are defined in Lean as:

def X : polynomial α := finsupp.single 1 1
def C (a : α) : polynomial α := finsupp.single 0 a

I defined a predicate that indicates if a polynomial is a constant polynomial.

def is_constant (p : polynomial α) : Prop := ∃ c : α, p = C c

To work with polynomials, and to define functions on polynomials (and finite support
functions), we need to be able to destruct them, and extract the information they con-
tain. This is done using the sum operator that is available for finite support functions.
Given a function f : α → β with finite support, and a function g : α × β → γ. Then
we can compute Σa∈ support(f) g(a, f(a)) using the sum operator. This sum operator is
defined in Lean as:

def sum [has_zero β] [add_comm_monoid γ] (f : α →₀ β)
(g : α → β → γ) : γ :=

f.support.sum (λa, g a (f a))
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To illustrate the sum operator I use it to represent polynomials in a form similar to
f = a0 + a1X

1 + a2X
2 + · · ·+ anX

n. For this we use the sum operator and the special
polynomials X and C.

lemma sum_const_mul_pow_X {f : polynomial α} :
finsupp.sum f (λn a, C a * X ^ n) = f

Now I give definitions for the two binary operations that give polynomials (and fi-
nite support functions) their ring structure (Dummit and Foote, 2004, p. 295). These
definitions were already implemented in Lean.

Definition 4.2.3. Polynomial Addition
The addition of polynomials is ‘componentwise’:

n∑
i=0

aiX
i +

n∑
i=0

biX
i =

n∑
i=0

(ai + bi)X
i

(here an or bn may be zero in order for addition of polynomials of different degrees to
be defined).

The addition was implemented in Lean by zipping the addition of R.

instance [add_monoid β] : has_add (α →₀ β) :=
⟨zip_with (+) (add_zero 0)⟩

Definition 4.2.4. Polynomial Multiplication
The multiplication of polynomials is performed by first defining (aX i)(bXj) = abX i+j

and then extending to all polynomials by the distributive laws, so that in general we
have

(
n∑

i=0

aiX
i)× (

n∑
i=0

biX
i) =

n+m∑
k=0

(
k∑

i=0

aibk−i)X
k.

The multiplication was implemented using the sum operator. Let f and g be functions
with finite support, then we can write the above multiplication definition in terms of the
sum operator as

f × g :=Σa∈ support(f)
b∈ support(g)

(f(a)× g(b))Xa+b

=Σa∈ support(f)
b∈ support(g)

single(a+ b)(f(a)× g(b))

In Lean this gives

instance [has_add α] [semiring β] : has_mul (α →₀ β) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂,

single (a₁ + a₂) (b₁ * b₂)⟩
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Here the $ sign is used to reduce the amount of parentheses; It means that everything
on the right of $ should be grouped.

For a polynomial we identify the following features.

Definition 4.2.5. Polynomial Features
Let f = a0 + a1X + a2X

2 + · · · + anX
n ∈ R[X]. If an ̸= 0 then f is of degree n, anXn

is the leading term, and an is the leading coefficient. The polynomial is called monic if
an = 1.

To make these definitions in the formalization we must work a bit harder. We first
define the supremum of a finite set of elements of type α, where α is equipped with a
lattice structure, by folding the join (⊔) of the lattice over the finite set. The bottom of
the lattice (⊥) is used to start the fold.

variables {α : Type u} {β : Type w}
[decidable_eq β] [semilattice_sup_bot α]

def Sup_fin (s : finset β) (f : β → α) : α := s.fold (⊔) ⊥ f

Now the degree was defined as the supremum of the support of the polynomial.

def degree (p : polynomial α) : ℕ := p.support.Sup_fin id

With the degree defined, I defined the leading coefficient as the polynomial evaluated at
its degree, where this evaluation is with regard to the mapping N → R.

def leading_coeff (p : polynomial α) : α := p (degree p)

The property of being monic translated directly.

def monic (p : polynomial α):= leading_coeff p = 1

4.2.1. Polynomials over Integral Domains
An integral domain is a commutative ring with 0 ̸= 1 and no zero-divisors, as was
described in Section 2.1. It is well known that a polynomial ring over an integral domain
is an integral domain. I proved this using the leading coefficients of a polynomial.

lemma zero_ne_one : (0 : polynomial α) ≠ 1

lemma eq_zero_or_eq_zero_of_mul_eq_zero :
∀f g : polynomial α, f * g = 0 → f = 0 ∨ g = 0

Formal derivative of polynomials

Definition 4.2.6. Formal Derivative of Polynomial
Let f = a0 + a1X + a2X

2 + · · · + anX
n be a polynomial, then the derivative of f is

f ′ = a1 + 2a2X + 3a3X
2 + · · ·+ annX

n−1.
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The derivative was implemented using the sum operator:

f ′ = Σn∈support(f)(

{
0 if n = 0

(m+ 1)f(m+ 1)Xm if n = m+ 1
)

Which translates in Lean to:

def derivative (p : polynomial α) : polynomial α :=
p.sum (λn a, nat.cases_on n 0 (λn, single n (a * (n + 1))))

Here nat.cases_on is used to make a case distinction on the natural number n. For
the derivative of f in Lean I introduce the notation d[f].

Most notably the product rule for differentiation is used in the proof of the Mason-
Stothers theorem.

lemma derivative_mul {f : polynomial α} :
∀{g}, derivative (f * g) =

derivative f * g + f * derivative g

4.2.2. Polynomials over Unique Factorization Domains
It can be proven that a polynomial ring over a UFD is itself a UFD. The proof of this
is statement is the only missing proof in the entire formalization of Mason-Stothers, the
proof of Mason-Stothers, and the background mathematics that was formalized; it has
to be proved in later work to finalize the formalization of the Mason-Stothers theorem.
A missing proof in Lean is indicated by sorry. It has the effect of adding an axiom.

instance {α : Type u} [unique_factorization_domain α] :
unique_factorization_domain (polynomial α) :=

{fac := sorry,
unique := sorry,
.. polynomial.integral_domain}

4.2.3. Polynomials over Fields
Monic polynomials In a polynomial ring over a field, each non-zero polynomial can
be made monic by multiplying with the inverse of the leading coefficient.

def make_monic [field α] (f : polynomial α) :=
if (f = 0) then 0 else (C (f.leading_coeff)⁻¹ * f)

By lifting make_monic to the associated quotient, we can always choose the unique
monic representative.

lemma monic_monic_out_of_ne_zero [field α]
(f : quot (polynomial α)) (h : f ≠ 0) :

monic (monic_out f)

Here monic_out is obtained by lifting make_monic.
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Polynomial normal form In a field we can write f in a normal form. I have proven
that a field is a UFD (which is trivial, since each element not equal to zero is a unit).
And as we took as an axiom that a polynomial ring over a UFD is itself a UFD, we have
that a polynomial ring over a field is a UFD. Hence we can obtain a factorization of f
as a product of irreducible factors. Now by grouping all the leading coefficients of the
irreducible factors of f we obtain the normal form.

Definition 4.2.7. Polynomial Normal Form
Let K be a field, and f ∈ K[X] a polynomial. Then the normal form of f is given
by f = c p1p2 . . . pn, where c is a constant polynomial, and the pi’s are all monic and
irreducible. In the normal form we decompose f into a constant factor and a multiset of
monic irreducible factors. In the case that f = 0, we set the multiset of monic irreducible
factors equal to the empty set, which then gives a unique normal form.

I proved the existence of this normal form.

lemma polynomial_fac [field α] (x : polynomial α) :
∃c : α, ∃p : multiset (polynomial α), x = C c * p.prod ∧

(∀x ∈ p, irreducible x ∧ monic x)

To practically work with this normal form of f , I used choice to obtain the factors
and the constant from the above existential lemma.

def c_fac (p : polynomial α) : α :=
if (p = 0) then 0 else some (polynomial_fac p)

def factors (p : polynomial α) : multiset (polynomial α) :=
if (p = 0)

then 0 else classical.some (some_spec $ polynomial_fac p)

The term factors comes with the accompanying lemmas that state these factors are
monic and irreducible.

lemma factors_monic (p : polynomial α) :
∀x ∈ p.factors, monic x

lemma factors_irred (p : polynomial α) :
∀x ∈ p.factors, irreducible x

To finalize the normal form we write f using the constant factor and the monic
irreducible factors.

lemma factors_eq (p : polynomial α) :
p = C p.c_fac * p.factors.prod
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Radical of a polynomial

Definition 4.2.8. Radical
Let K be a field and f be a polynomial over K. Write f in an adapted normal form,
were we group equal factors of pi into factors of the form paii , f = c pa11 pa22 . . . pann , with
c a constant polynomial, and the pi’s monic and irreducible, the ai > 0 for all i, and
in addition we assume that the pi’s are distinct, i.e. pi ̸= pj if i ̸= j. Then the radical
of f is rad(f) = p1p2 . . . pn. In other words, we take the product of the distinct monic
irreducible factors dividing f . The radical of a constant polynomial c is defined as
rad(c) = 1.

In Lean I defined the radical by removing the duplicate factors in factors.

def rad (p : polynomial β) : polynomial β :=
p.factors.erase_dup.prod

Field of characteristic zero

Definition 4.2.9. Characteristic zero
Let K be a field, and let e : Z → K be the unique map from Z to K that is compatible
with the addition and multiplication. If for all n ∈ Z with n ̸= 0 it holds that e(n) ̸= 0,
then K is said to have characteristic zero.

For implementing the property of characteristic zero, it is sufficient to only consider
n ∈ N due to properties of the map e (it is a ring homomorphism).

def characteristic_zero (α : Type u) [semiring α] : Prop :=
∀n : ℕ, n ≠ 0 → (↑n : α) ≠ 0

Here the ‘↑’ is the map e function; it acts as a coercion from ℕ to α.

4.3. The Proof of the Mason-Stothers Theorem
In this section I give the informal proof of the Mason-Stothers theorem; the formalization
follows this proof. I state the formal translations of the lemmas, and I highlight some of
the steps in the formal proof.

For completeness, I again state the proof of the first lemma.

Lemma 2.3.1. Let f be a polynomial over a field K, then

deg(f) ≤ deg(f, f ′) + deg(rad(f)).

Proof. Write
f = u pa11 pa22 . . . pann ,

with u a unit, the pi’s monic, irreducible and distinct, and the ai > 0 ∈ N. In the case
f is zero the lemma trivially holds. Consider f is non-zero. Then ∀pi, pai−1

i |f ′ (expand
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f ′ via the product rule) and ∀pi, pai−1
i |f , hence pai−1

i |(f, f ′). Because all pi are distinct,
monic, and irreducible, and we work over a UFD, we have

pa1−1
1 pa2−1

2 . . . pan−1
n |(f, f ′).

Since f ̸= 0 we have (f, f ′) ̸= 0, and hence

deg(pa1−1
1 pa2−1

2 . . . pan−1
n ) ≤ deg(f, f ′).

Also, we have that

deg(f) = deg(pa1−1
1 pa2−1

2 . . . pan−1
n ) + deg(p1p2 . . . pn).

Combining these, we find that deg(f) ≤ deg(f, f ′) + deg(rad(f)).

The statement of Lemma 2.3.1 translated in Lean as:

lemma Mason_Stothers_lemma (f : polynomial β) :
degree f ≤

degree (gcd f (derivative f )) + degree (rad f) := proof

In the first step of the proof we write f in the polynomial normal form that I defined
in Section 4.2.3.

The intermediate step ∀pi, pai−1
i |f ′ was stated as a the following lemma:

private lemma Mason_Stothers_lemma_aux_1 (f : polynomial β) :
∀x ∈ f.factors,

x^(count x f.factors - 1) ∣ d[f.factors.prod] := proof

We had to apply the product rule for derivatives to f ′. This required a generalization
to the earlier described product rule for derivatives:

lemma derivative_prod_multiset
{s : multiset (polynomial α)} :

derivative (s.prod) =
(s.map (λb, derivative (b) * (s.erase b).prod)).sum :=

proof

The division properties of irreducible elements in a UFD come into play at the step
where we go from: ∀i, pai−1

i |(f, f ′) to pa1−1
1 pa2−1

2 . . . pan−1
n |(f, f ′). This statement followed

from a general statements in UFDs. Below α is a type with a UFD structure.

lemma facs_to_pow_prod_dvd_multiset {s : multiset α} {z : α}
(h1 : ∀x ∈ s, irreducible x ∧ (x^(count x s)) ∣ z ∧

∀y ∈ s, x ≠ y → ¬ (x ~u y)) :
s.prod ∣ z := proof
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This division property, of irreducible elements in a UFD, is also found in division by
prime numbers in N. In N we have that 2|a and 5|a implies 2 ∗ 5|a, because 2 and
5 are prime. There we also have 2n|a and 5m|a implies 2n ∗ 5m|a. In a general UFD
we have to take into account association. E.g. over Z we don’t have 2|a and −2|a
implies −2 ∗ 2|a, because 2 and −2 are associated. Therefore we have the clause
∀y ∈ s, x ≠ y → ¬ (x ~u y).

Lemma 2.3.2. Let f and g be coprime polynomials over a field K. And let the wronskian
of f and g be zero, that is, f ′g − fg′ = 0. Then f ′ = 0 and g′ = 0.

Proof. Rewriting to f ′g = fg′, we find that f |f ′g, and g|fg′. Now because f and g are
coprime, and the polynomial ring over K is a UFD, we have that f |f ′ and g|g′. This
only holds if both f ′ = 0, and g′ = 0.

Lemma 2.3.2 translated in Lean as:

lemma derivative_eq_zero_and_derivative_-
eq_zero_of_coprime_of_wron_eq_zero

{a b : polynomial β}
(h1 : coprime a b)
(h2 : d[a] * b - a * d[b] = 0) :

d[a] = 0 ∧ d[b] = 0 := proof

In the proof we again make use of the special division properties in a UFD:

lemma dvd_of_dvd_mul_of_coprime {a b c : α} (h1 : a ∣ b * c)
(h2 : coprime a b) :

a ∣ c := proof

Lemma 2.3.3. Let f, g be polynomials over a field K. Then

deg(f ′g − fg′) ≤ deg(f) + deg(g)− 1.

Proof. We make four case distinctions:
1 deg(f) = 0 g′ = 0
2 ” g′ ̸= 0
3 deg(f) ̸= 0 deg(g) = 0
4 ” deg(g) ̸= 0

In each case we simplify using the the properties of degree.

Remark. The case where f and g are constant holds because the degree was defined as
a natural number (where 0− 1 = 0).

Lemma 2.3.3 translated in Lean as:

lemma degree_wron_le {a b : polynomial β} :
degree (d[a] * b - a * d[b]) ≤ degree a + degree b - 1 :=

proof

30



Theorem 2.3.4 (The Mason-Stothers Theorem: Special Case Formulation). Let a, b,
and c be pairwise coprime polynomials over a field K with characteristic 0, such that
a+ b = c. Assume that they are all non-zero and that they are not all constant. Then

deg(c) < deg(rad(abc)).

Remark. In this special case of the formulation we set a+ b = c, whereas in the general
case we have a+ b+ c = 0.

Proof. Via the sum rule for derivatives we have that a′ + b′ = c′. Multiplying the first
equation by a′, the second by a, and subtracting, we find

a′b− ab′ = a′c− ac′. (4.1)

Since (a, a′)|a and (a, a′)|a′, we have (a, a′)|a′b − ab′. Similarly (b, b′)|a′b − ab′, and by
equation (4.1) also (c, c′)|a′b − ab′. Since a, b and c are coprime, we have that (a, a′),
(b, b′) and (c, c′) are also coprime. And because we are in a UFD, we obtain

(a, a′)(b, b′)(c, c′)|a′b− ab′. (4.2)

We prove by contradiction that a′b− ab′ is non-zero. Assume that a′b− ab′ = 0, then by
equation (4.1) also a′c− ac′ = 0, now we apply the Lemma 2.3.2 twice to get a′ = b′ =
c′ = 0, which is a contradiction since we have that not all a, b, and c are constant. And
in a field of characteristic 0, a polynomial is constant if and only if its derivative is zero.

Since we now have that a′b− ab′ is non-zero, we can use equation (4.2) to obtain

deg((a, a′)(b, b′)(c, c′)) ≤ deg(a′b− ab′). (4.3)

Also because a′b−ab′ is non-zero we have that (a, a′)(b, b′)(c, c′) is non-zero. Now because
we work in an integral domain we have

deg((a, a′)(b, b′)(c, c′)) = deg(a, a′) + deg(b, b′) + deg(c, c′). (4.4)

By combining equations (4.3) and (4.4) with the Lemma 2.3.3 we obtain

deg(a, a′) + deg(b, b′) + deg(c, c′) ≤ deg(a) + deg(b)− 1.

By adding deg(c) on both sides and rewriting, we obtain

deg(c) ≤ deg(a)− deg(a, a′) + deg(b)− deg(b, b′) + deg(c)− deg(c, c′)− 1.

Now we apply Lemma 2.3.1 three times to get:

deg(c) ≤ deg(rad(a)) + deg(rad(b)) + deg(rad(c))− 1

≤ deg(rad(abc))− 1.

Taking the 1 to the other side allows us to conclude that

deg(c) < deg(rad(abc)).
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The Lean translation of this special case formulation is left out because it is similar
to the general case formulation that follows. The Lean code of the proof just presented,
is placed in appendix B. Several auxiliary lemmas that are used in that proof are not
included in the appendix.

Theorem 2.2.1 (The Mason-Stothers Theorem). Let a, b, and c be pairwise coprime
polynomials over a field K with characteristic 0, such that a + b + c = 0. Assume that
they are all non-zero and that they are not all constant. Then

max(deg(a), deg(b), deg(c)) < deg(rad(abc)).

Proof. We rewrite a+ b+ c = 0 to a+ b = −c, and then we use Theorem 2.3.4 to obtain
deg(−c) < deg(rad(ab(−c))). Directly it follows deg(c) < deg(rad(abc)). Similarly
we obtain these expressions for a and b. The conclusion follows by definition of the
maximum.

I formulated the Mason-Stothers theorem in Lean as

theorem Mason_Stothers [field β]
(h_char : characteristic_zero β)
(a b c : polynomial β)
(ha : a ≠ 0)
(hb : b ≠ 0)
(hc : c ≠ 0)
(h_coprime_ab : coprime a b)
(h_coprime_bc : coprime b c)
(h_coprime_ca : coprime c a)
(h_add : a + b + c = 0)
(h_constant :

¬(is_constant a ∧ is_constant b ∧ is_constant c)) :
max (degree a) (max (degree b) (degree c))

< degree (rad (a*b*c))
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5. Comparison to the Isabelle
Formalization

Independent formalizations of the Mason-Stothers theorem have been performed recently
in the Isabelle proof assistant (Eberl, 2017) and the Coq proof assistant (Mahboubi,
2018). In this chapter I compare my formalization in Lean to the formalization in
Isabelle.

5.1. Unique Factorization Domains
In Isabelle a UFD is defined (Thiemann and Yamada, 2016) using a factorial-monoid
(Ballarin et al., 2017). A monoid is an algebraic structure similar to a group, but without
the inverses. An example of a monoid is a ring restricted to the multiplication. Now
a factorial monoid has the same factorization properties as a UFD. Having a factorial-
monoid gives a nice fine-structuring in the algebraic hierarchy. In Isabelle a UFD is
defined as an integral domain R where the R\{0} forms a factorial-monoid.

In proving the existence of a gcd in a UFD, Thiemann and Yamada (2016) also made
use of the associated quotient. But in comparison I make a more direct use, as I first
prove that gcds exist in the associated quotient. The Isabelle formalization makes less
direct use of the associated quotient, which is possibly because quotients are cumbersome
to work with in Isabelle. Their idea for obtaining the gcd is similar to my idea, as they
also take the intersection of the equivalence classes of the irreducible factors:
"∃c cs. c ∈carrier G ∧set cs ⊆carrier G ∧wfactors G cs c ∧

fmset G cs = fmset G as #∩ fmset G bs"
Here they want to obtain gcd(a, b). In this statement as and bs are the multisets with
factors obtained from the factorization assumption, with fmset the factors in these mul-
tisets are mapped to their equivalence classes, wfactors G cs c states that the product
of all the factors in cs is associated to c. Here the term carrier refers to the carrier set
of the monoid. In Lean we do not use explicit carrier sets, because there the carrier set
is the set of all elements of a type; this is possible in Lean as types are more flexible.

5.2. Polynomials
The polynomial formalization that was used in the Mason-Stothers theorem was given
by Huffman et al. (2016). They define polynomials as function from N to some type
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which has a zero, together with the statement that for all except finitely many n we
have f(n) = 0.
typedef 'a poly = "{f :: nat ⇒'a::zero. ∀∞n. f n = 0}"
This type is similar to our polynomial type definition; the difference is that we were more
general by first defining functions with finite support, and then taking polynomials as a
special case.

To practically work with polynomials, they defined a list style constructor and scalar
multiplication for polynomials:
lift_definition pCons :: "'a::zero ⇒'a poly ⇒'a poly"

is "λa p. case_nat a (coeff p)"
If p is a polynomial, then pCons(a, p) = pX + a, so it shifts the polynomial.
lift_definition smult :: "'a::comm_semiring_0 ⇒'a poly ⇒'a poly"

is "λa p n. a ∗ coeff p n"
Based on these two constructs, they can define polynomial multiplication:
definition "p ∗ q =

fold_coeffs (λa p. smult a q + pCons 0 p) p 0"
The main difference, in working with polynomials, is that we put the emphasis on

the support, whereas support is not even mentioned in the Isabelle formalization. They
see polynomials as lists, which can be manipulated by the smult and pcons operator,
and we see them as sums (over the support) of monomials, which can be manipulated
using the sum operator. The viewpoint of sums of monomials (or singles in the case of
an arbitrary finite support function) is more general because it can be applied to any
function with a finite support, while the viewpoint of a list is not suited for arbitrary
functions with finite support (they could be seen as a finite set of tuples).

In working with support and monomials (in particularly the C a and X) we not only
provide a more general view on polynomials, but also a more intuitive view. That our
representation of polynomials is intuitive to work with is showcased by our induction
rule:

lemma induction_on
{M : polynomial α → Prop} (p : polynomial α)
(M_C : ∀(a : α), M (C a))
(M_add : ∀{p q}, M p → M q → M (p + q))
(M_mul_X : ∀{p}, M p → M (p * X) ) :

M p

5.3. The Mason-Stothers Theorem
The Isabelle formalization of the Mason-Stothers theorem, contains an interesting fac-
torization of the proof. The proof is based on the proof stated in Lemmermeyer (2005),
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which in turn, is based on Snyder (2000). They first proof the Mason-Stothers theorem
for an arbitrary field, and later on for a field with characteristic 0.
theorem Mason_Stothers:

fixes A B C :: "'a :: {factorial_ring_gcd, field} poly"
assumes nz: "A ̸=0" "B ̸=0" "C ̸=0" "∃p ∈{A,B,C}. pderiv p ̸=0"

and sum: "A + B + C = 0"
and coprime: "Gcd {A, B, C} = 1"

shows "Max {degree A, degree B, degree C} < degree (radical (A ∗ B ∗ C))"
Now for an field of characteristic 0 the assumption "∃p ∈{A,B,C}. pderiv p ̸=0" becomes
"∃p ∈{A,B,C}. degree p ̸=0" (which is equivalent to A,B,C not all constant). We note
that by defining the gcd and the maximum for sets, the so called big-operators, we could
obtain a similar clean statement of the theorem.
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6. Discussion
In this chapter I discuss the usability of Lean for mathematicians and improvements
that can be made on my formalization.

6.1. Usability
Setting Up and Running Lean

I had problems with the Lean package manager leanpkg under Windows. To circum-
vent this problem I installed a virtualized version of Ubuntu (Linux) on which I installed
Lean. One cannot expect that a mathematician is an expert in solving software issues,
hence the set-up should be smooth.

The evaluation speed of Lean was fast enough in small files, but at longer files it could
slow the user down. Lean evaluates files from top to bottom. If a change is made in the
file all lemmas after the change are re-evaluated. In a file with around 1500 lines the
evaluation from top to bottom usually took longer than a minute. This was slowing me
down as a user because I had to wait to see my current goal state. In addition there
seemed to be a bug, so that sometimes when a change was made half way the file, it
re-evaluated the entire file. The evaluation speed depends on the setup; I worked on a
laptop, with Lean running on a virtualized operating system.

Learning to Formalize Using Lean

The step from reading the standard Lean introductory text and doing the exercises
to performing a serious formalization proved challenging. The first part of learning to
formalize is getting to know a proof assistant. For Lean there is an introductory text
Theorem proving in Lean by Avigad et al. (2018b). This book gives an overview of
formalization and the possibilities of Lean. Each chapter comes with exercises. Albeit
this book gives a good overview, I experienced a big gap between, on the one hand,
reading this book and doing the exercises and, on the other hand, performing a serious
formalization. I suggests adding a chapter that aims to bridge this gap. This chapter
should include the following subjects: the process of formalizing, Mathlib (the library),
coding conventions, the channels for help from fellow formalizers.

6.1.1. Automation
Tactic documentation Lean has several useful tactics that are not well-documented,
i.e. they were not described in the standard texts: Theorem Proving in Lean (Avigad
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et al., 2018b) and The Lean Reference Manual (Avigad et al., 2018a). The rewrite
tactic has the possibility to rewrite at a specific occurrence in an expression (using
occs := ...), which is a common use-case, but was not discussed in the documenta-
tion. The important tactic rcases, which is used for existential elimination in tactic
proofs, was never mentioned in the documentation. The combination tactics rwa and
rsimp, which combine a rewrite or simplification with a finish by assumption, were also
not documented.

Simple lemmas on natural numbers During the formalization I occasionally had
to prove trivial facts about the natural numbers, these are prime candidates for future
automation. As an example of such as a trivial lemma:

private lemma eq_zero_or_exists_eq_succ_succ_of_ne_one
{n : ℕ} (h : n ≠ 1) :

n = 0 ∨ ∃ m, n = nat.succ (nat.succ m) :=
begin

by_cases h2 : n = 0,
{simp *},
{

rcases (nat.exists_eq_succ_of_ne_zero h2) with ⟨m, hm⟩,
subst hm,
simp * at *,
rw succ_eq_succ_iff_eq at h,
rcases (nat.exists_eq_succ_of_ne_zero h) with ⟨s, hs⟩,
subst hs,
exact ⟨s, rfl⟩,

}
end

We see that the proof takes several lines. Lemmas as these would be solved by a linear
arithmetic tactic, but this is not (yet) available in Lean.

6.1.2. Library
This formalization made heavy use of the Mathlib library. To name some subjects:
the natural number (nat), finite sets (finset), finite multisets (multiset), finite
support functions (finsupp), units (unit), rings (ring), fields (field), integral
domains (integral_domain), lattices (lattice). Without these previously formal-
ized notions, the duration of my formalization would have increased dramatically. I did
extend most of these structures with lemmas that were needed for my formalization.

Data structures In this formalizations I occasionally had to prove lemmas about
basic data structures, these proofs were often laborious. As an example a lemma on
finite sets:
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lemma finset.sum_ite_general''
{α : Type u} {β : Type v} [decidable_eq α]
[add_comm_monoid β] {f g : α → β} (s : finset α)
(p : α → Prop) [decidable_pred p] :

s.sum (λ z, if p z then f z else g z) =
(s.filter p).sum f + (s.filter $ λx, ¬ p x).sum g :=

proof

Here we sum an “if then else” function over a finite set. The proof took 28 lines. Proving
and using lemmas on basic data structures is needed in any formalization. However a
mathematician might not expect this, nor might he or she want to be bothered with
developing basic data structures.

6.1.3. Lower Level Mathematics
In this formalization a great deal of lower level mathematics was formalized, namely:
the associated quotient. When I wanted to prove that UFDs have a gcd, I used the
quotient with respect to the associated relation. This structure is often used implicit
by mathematicians, but is now made explicit. This is an example of where proof for-
malization reveals the hidden and implicit structure of mathematics, and hence could
contribute to better understanding. Yet it is not all positive, because a mathematician
would regard this associated quotient as trivial, and might not want to spend time to
develop this structure.

6.2. Future Work
Besides the missing proof that was described in Section 4.2.2, there are also improve-
ments that can be made on the parts that are already functional. In this section I point
out several possible improvements.

Long proofs The formalization contains several lemmas with long proofs, these lengthy
proofs could be due to inefficient implementation. I experienced that the length of my
proofs decreased substantially as I learned more of Lean. As an estimate, the average
length of my proofs is reduced by a factor 2 to 3 at the end of project, compared to the
beginning of the project. When Mason-Stothers was formalized, I performed a clean-up
of approximately 2

3
of the code, where I reduced the length of the proofs using my im-

proved skills. As I did not cover all the code, some of the longer proofs can potentially
be shortened. At current the longest proofs are about the polynomial normal form, and
the radical. I suggest performing a further clean-up of the code. This will lead to better
insights on which proofs are inherently lengthy (and possibly need restructuring).

The is-unit predicate Currently the is_unit predicate is defined as

def is_unit (a : α) : Prop := ∃b : units α, a = b
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Note that there is an implicit coercion here for b. Where units is the group of units
of a type. It might give cleaner and shorter proofs to define

def is_unit (a : α) : Prop :=
∃ b : α, a * b = 1 ∧ b * a = 1

The reason to have it defined using the already existing units type, was because there
were already several lemmas for this type.

Computational definitions The current definition of UFDs could be replaced by a
computational definition. For UFDs an option would be to define a function

factorization: α → multiset α.

A computational approach leads to content that can be executed as a computer pro-
gram, and we do not lose information due to existential quantifiers. For example, for
polynomials over a field, which are a UFD, we could implement factorization using
the polynomial normal form, which then gives more information than using the axiom
of choice. In order to give such an implementation of factorization we need the
algorithm that groups the leading coefficients of the irreducible factors; this algorithm
can possibly be extracted from the lemma that proved the existence of the normal form.
For the integers, the factorization function could be implemented to only return
positive factors.

Fine structuring the algebraic structure graph At current the algebraic structure
graph is: fields ⊂ unique factorization domains ⊂ integral domains ⊂ rings. Which
can be made finer: fields ⊂ Euclidean domains ⊂ principal ideal domains ⊂ unique
factorization domains ⊂ Bezout domain ⊂ gcd domain ⊂ integral domain ⊂ rings. In
particular Euclidean-domains and Principal Ideal domains are very common ring types.
And the gcd domain would be convenient to introduce because several lemmas proven
for our formalization would already be valid in a gcd domain.

Scalar multiplication on polynomials For functions with finite support a scalar
multiplication was defined. However this scalar multiplication is not used in the poly-
nomial library developed here. Instead we always used polynomial multiplication with
the constant polynomial (C a). Using the scalar multiplication could possibly reduce
the size of some of the proofs.

Naming Several names I introduced should be reconsidered. I called the type for
the associated quotient: quot, which is too general. The lifting of the irreducible
predicate to the associated quotient I called: irred, however this could simply have
been irreducible. The lifting of the factorization property to the associated quotient
I called: to_multiset, this name could be misinterpreted as a coercion.
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7. Conclusion
Proof assistants and mathematical formalization have several advantages, but are sel-
domly used by mathematicians, due to lack of automation, libraries and expertise. Lean
is a new proof assistant, developed towards use by mathematicians. I performed a case-
study, were I formalized the Mason-Stothers theorem in Lean. Lean proved suited for
this task, and the single proof in the mathematical preliminary that is still missing from
the formalization is merely a result of lack in time. In developing the proof, I had to for-
malize a great deal of background mathematics, about 4/5 of the formalization consisted
of background. I developed a reusable library for polynomials and unique factorization
domains. The formal proof of the Mason-Stothers closely resembles the informal proof.
The most interesting proof of the formalization was that a gcd exists in a UFD, which
required a substantial formalization of lower level mathematics (the associated quotient).
I compared the main components of my formalization (polynomials, UFDs, and Mason-
Stothers) to an independent formalization of these subjects in Isabelle. This let to ideas
on possible improvements of my formalization, and showed that Lean performed well in
some areas (the direct use of quotients structures, and having no need for explicit carrier
sets). Regarding the usability of Lean, I discussed several possible improvements on the
documentation. The automation in Lean has room for improvements. I used the library
a lot during the formalization, but I had to extend it at times. Future work would start
with filling the gap in the mathematical preliminary, followed by a further clean-up of
the code.
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A. Mathematical Definitions for
Rings

We follow the definition from Dummit and Foote (2004).

1. A ring R is a tuple (S,+,×), where S is a set called the carrier set, and + and
× are two binary operations on S called addition and multiplication. They satisfy
the following axioms:

a) (S,+) is a commutative group.
b) × is associative: (a× b)× c = a× (b× c) for all a, b, c ∈ S.
c) the distributive laws hold in R: for all a, b, c ∈ S

(a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c).

2. The ring R is commutative if multiplication is commutative.

3. The ring R is said to have an identity (or contain a 1) if there is an element 1 ∈ S
with 1× a = a× 1 for all a ∈ S.

Instead of saying the carrier set S of R, we will simply say R.
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B. Mason-Stothers Theorem in
Lean

theorem Mason_Stothers_special [field β]
(h_char : characteristic_zero β)
(a b c : polynomial β)
(ha : a ≠ 0)
(hb : b ≠ 0)
(hc : c ≠ 0)
(h_coprime_ab : coprime a b)
(h_coprime_bc : coprime b c)
(h_coprime_ca : coprime c a)
(h_add : a + b = c)
(h_constant :

¬(is_constant a ∧ is_constant b ∧ is_constant c)) :
degree c < degree (rad (a*b*c)) :=

begin
have h_der_not_all_zero

: ¬(d[a] = 0 ∧ d[b] = 0 ∧ d[c] = 0),
{

rw [derivative_eq_zero_iff_is_constant h_char,
derivative_eq_zero_iff_is_constant h_char,
derivative_eq_zero_iff_is_constant h_char],

exact h_constant,
},
have h_der : d[a] + d[b] = d[c],
{

rw [←h_add, derivative_add],
},
have h_wron : d[a] * b - a * d[b] = d[a] * c - a * d[c],

from h_wron a b c h_add h_der,
have h_dvd_wron_a : gcd a d[a] ∣ d[a] * b - a * d[b],

from h_dvd_wron_a a b c,
have h_dvd_wron_b : gcd b d[b] ∣ d[a] * b - a * d[b],

from h_dvd_wron_b a b c,
have h_dvd_wron_c : gcd c d[c] ∣ d[a] * b - a * d[b],

from h_dvd_wron_c a b c h_wron,
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have h_gcds_dvd : (gcd a d[a]) * (gcd b d[b]) *
(gcd c d[c]) ∣ d[a] * b - a * d[b],
from h_gcds_dvd a b c h_coprime_ab h_coprime_bc

h_coprime_ca h_dvd_wron_a h_dvd_wron_b h_dvd_wron_c,
have h_wron_ne_zero : d[a] * b - a * d[b] ≠ 0,

from h_wron_ne_zero a b c h_coprime_ab
h_coprime_ca h_der_not_all_zero h_wron,

have h_deg_add :
degree (gcd a d[a] * gcd b d[b] * gcd c d[c]) =

degree (gcd a d[a]) + degree (gcd b d[b]) +
degree (gcd c d[c]),

from h_deg_add a b c h_wron_ne_zero h_gcds_dvd,
have h_deg_add_le : degree (gcd a d[a]) +

degree (gcd b d[b]) +
degree (gcd c d[c]) ≤

degree a + degree b - 1,
{

rw [←h_deg_add],
have h1 : degree (gcd a d[a] * gcd b d[b] * gcd c d[c]) ≤

degree (d[a] * b - a * d[b]),
from degree_dvd h_gcds_dvd h_wron_ne_zero,

exact nat.le_trans h1 (degree_wron_le),
},
have h_deg_c_le_1 :

degree c ≤ (degree a - degree (gcd a d[a])) +
(degree b - degree (gcd b d[b])) +

(degree c - degree (gcd c d[c])) - 1,
from rw_aux_1 a b c h_add h_constant h_deg_add_le,

have h_le_rad : degree a - degree (gcd a d[a]) +
(degree b - degree (gcd b d[b])) +

(degree c - degree (gcd c d[c])) - 1 ≤
degree (rad (a * b * c)) - 1,

from rw_aux_2 ha hb hc h_coprime_ab
h_coprime_bc h_coprime_ca,

have h_ms : degree c ≤ degree (rad (a*b*c)) - 1,
from nat.le_trans h_deg_c_le_1 h_le_rad,

have h_eq : degree (rad (a*b*c)) - 1 + 1 =
degree (rad (a*b*c)),

{
have h_pos : degree (rad (a*b*c)) > 0,

from degree_rad_pos a b c ha hb hc h_constant,
apply nat.succ_pred_eq_of_pos h_pos,

},
exact show degree c < degree (rad (a*b*c)),
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from calc degree c + 1 ≤
degree (rad (a*b*c) ) - 1 + 1 : by simp [h_ms]
... = degree (rad (a*b*c)) : h_eq

end
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