
Implementation of Lambda-Free
Higher-Order Superposition

MASTER’S THESIS

by

Petar Vukmirović

submitted to obtain the degree of

MASTER OF SCIENCE (M.SC.)

at

VRIJE UNIVERSITEIT AMSTERDAM
FACULTY OF SCIENCE

Course of Studies

COMPUTER SCIENCE

First supervisor: Dr. Jasmin Christian BLANCHETTE

Vrije Universiteit Amsterdam

Second supervisor: Prof. Dr. Stephan SCHULZ

DHBW Stuttgart

Amsterdam, February 2018

iii

Abstract

In the last decades, first-order logic (FOL) has become a standard language for de-
scribing a large number of mathematical theories. Numerous proof systems for FOL
which determine what formulas are universally true emerged over time. On the
other hand, higher-order logic (HOL) enables one to describe more theories and to
describe existing theories more succinctly. Due to more complicated higher-order
proof systems, higher-order automatic theorem provers (ATPs) are much less mature
than their first-order counterparts. Furthermore, many HOL ATPs are not effectively
applicable to FOL problems. In this thesis, we extend E, a state-of-the-art first-order
ATP, to a fragment of HOL that is devoid of lambda abstractions (LFHOL). We de-
vise generalizations of E’s indexing data structures to LFHOL, as well as algorithms
like matching and unification. Furthermore, we generalized internal structures used
by E as well as inferences and simplifications to support HOL features in an efficient
manner. Our generalizations exhibit exactly the same behavior and time complexity
as original E on FOL problems.

v

Acknowledgements

I would like to thank my supervisor, Jasmin Blanchette for patiently guiding me
thorugh this project for the last couple of months. His support and know-how
helped me write much better text and do better research than I could on my own.
Furthermore, I would like to thank Stephan Schulz for providing me with valuable
information on E implementation details, reading this thesis and giving very useful
comments.

Many readers helped shape the text of the thesis further. In particular, I thank
Ahmed Bhayat, Alexander Bentkamp, Alexander Steen, Daniel El Ouraoui, Giles
Reger, Hans-Jörg Schurr, Pascal Fontaine, Predrag Janičić, Simon Cruanes and Tomer
Libal for the time they took to read the thesis and make some very constructive
comments.

I am specially thankful to the whole group of Theoretical Computer Science at
Vrije Universiteit Amsterdam for making a pleasent atmosphere to work in. I would
like to thank my family for support and especially friends Jelisaveta, Tara and Verica
for listening through my stress rants on a daily basis. Last but not least, I thank
Martijn for the understanding he has and taking every step in this journey with me
for the last couple of months.

vii

Contents

AbstractAbstract iii

AcknowledgementsAcknowledgements v

1 Introduction1 Introduction 1
1.1 Motivation1.1 Motivation . 1
1.2 Contributions1.2 Contributions . 2
1.3 Software1.3 Software . 3

2 Background2 Background 5
2.1 First-Order Logic2.1 First-Order Logic . 5
2.2 Refutational Theorem Proving2.2 Refutational Theorem Proving . 9
2.3 The Superposition Calculus2.3 The Superposition Calculus . 10
2.4 The E Theorem Prover2.4 The E Theorem Prover . 12
2.5 Lambda-Free Higher-Order Logic2.5 Lambda-Free Higher-Order Logic . 13

3 Generalizing Types and Terms3 Generalizing Types and Terms 17
3.1 Types3.1 Types . 17

3.1.1 Types in the Original E3.1.1 Types in the Original E . 17
3.1.2 Types in hoE3.1.2 Types in hoE . 18

3.2 Terms3.2 Terms . 19
3.2.1 Terms in the Original E3.2.1 Terms in the Original E . 19
3.2.2 Terms in hoE3.2.2 Terms in hoE . 20

3.3 Knuth-Bendix Order3.3 Knuth-Bendix Order . 22
3.3.1 First-order Knuth-Bendix Order3.3.1 First-order Knuth-Bendix Order 22
3.3.2 Knuth-Bendix Order Extended to LFHOL Terms3.3.2 Knuth-Bendix Order Extended to LFHOL Terms 23

4 Generalizing Matching and Unification4 Generalizing Matching and Unification 25
4.1 Matching4.1 Matching . 25

4.1.1 First-Order Matching Algorithm4.1.1 First-Order Matching Algorithm 25
4.1.2 E Implementation of the Matching Algorithm4.1.2 E Implementation of the Matching Algorithm 26
4.1.3 Lambda-Free Higher-Order Matching Algorithm4.1.3 Lambda-Free Higher-Order Matching Algorithm 27
4.1.4 hoE Implementation of LFHOL Matching Algorithm4.1.4 hoE Implementation of LFHOL Matching Algorithm 29

4.2 Unification4.2 Unification . 30
4.2.1 First-order Unification Algorithm4.2.1 First-order Unification Algorithm 31
4.2.2 E Implementation of the Unification Algorithm4.2.2 E Implementation of the Unification Algorithm 32
4.2.3 Lambda-Free Higher-Order Unification Algorithm4.2.3 Lambda-Free Higher-Order Unification Algorithm 32
4.2.4 hoE Implementation of LFHOL Unification Algorithm4.2.4 hoE Implementation of LFHOL Unification Algorithm 33

5 Generalizing the Indexing Data Structures5 Generalizing the Indexing Data Structures 35
5.1 Perfect Discrimination Trees5.1 Perfect Discrimination Trees . 36

5.1.1 Description of the Data Structure5.1.1 Description of the Data Structure 36
5.1.2 E’s Implementation of PDT5.1.2 E’s Implementation of PDT . 38

viii

5.1.3 E Bug5.1.3 E Bug . 39
5.1.4 LFHOL Extension of PDTs5.1.4 LFHOL Extension of PDTs . 40
5.1.5 Implementation of LFHOL PDTs in hoE5.1.5 Implementation of LFHOL PDTs in hoE 42

5.2 Fingerprint Indices5.2 Fingerprint Indices . 43
5.2.1 Description of the Data Structure5.2.1 Description of the Data Structure 43
5.2.2 E Implementation of Fingerprint Indexing5.2.2 E Implementation of Fingerprint Indexing 46
5.2.3 Extension of Fingerprint Indexing for LFHOL5.2.3 Extension of Fingerprint Indexing for LFHOL 46
5.2.4 hoE Implementation of LFHOL Fingerprint Indexing5.2.4 hoE Implementation of LFHOL Fingerprint Indexing 47

5.3 Feature-Vector Indices5.3 Feature-Vector Indices . 47

6 Generalizing the Calculus’ Implementation6 Generalizing the Calculus’ Implementation 51
6.1 Preprocessing6.1 Preprocessing . 51

6.1.1 Definition Unfolding6.1.1 Definition Unfolding . 52
6.1.2 Skolemization6.1.2 Skolemization . 53

6.2 The Generating Inference Rules6.2 The Generating Inference Rules . 53
6.3 The Simplification Rules6.3 The Simplification Rules . 55
6.4 Subsumption6.4 Subsumption . 60

7 Conclusion7 Conclusion 65
7.1 Results7.1 Results . 65
7.2 Related Work7.2 Related Work . 66
7.3 Future Work7.3 Future Work . 67

BibliographyBibliography 69

Declaration of AuthorshipDeclaration of Authorship 71

1

Chapter 1

Introduction

This thesis solves the problem of extending a first-order theorem prover to a frag-
ment of higher-order logic. When choosing the fragment of higher-order logic there
are many decisions to be made that can influence feasibility of the extension. In this
chapter we motivate our choice and explain why it is useful and reasonable.

1.1 Motivation

In the last decades, first-order logic (FOL) has become a standard language for de-
scribing a large number of mathematical theories. Aside from its expressive power,
numerous proof systems have been developed for first-order logic which facilitate
determining sentences (formulas) that are universally true (valid).

Furthermore, a lot of effort has been put into automatically testing the validity
of first-order logic sentences. This is important since it puts the stress on describing
and formalizing mathematical theories and leverages the power of computer to do
the hard work of proving. A tool that performs this kind of reasoning is called an
automatic theorem prover.

Automatic theorem provers (ATPs) are used in both academic and commercial
environments. In the former, ATPs have been able to solve long-open mathemat-
ical problems [McC97McC97], whereas in the latter they are now routinely used in both
software and hardware verification.

However, ATPs have their limits. They can be slow for many hard problems, and
it is a fundamental result of theoretical computer science that there is no algorithm
that decides formula’s validity in all cases. For the second problem there is no real
remedy, but the first problem has been tackled by using various proof calculi, data
structures and programming languages to speed up ATPs.

Unlike FOL, higher-order logic (HOL) allows one to quantify over functions and
predicates. This gives more expressive power to the mathematician formalizing a
theory. Unfortunately, proof systems for HOL are much more complicated than the
ones for FOL and their mechanization is immature compared to first-order logic.

Furthermore, there is no higher-order ATP that behaves as good as state-of-the-
art first-order ATPs on the first-order problems [SBP13SBP13]. In other words, there might
be translations of higher-order problems to FOL that are too hard for FOL provers
or the original problems are too big for native higher-order provers.

For these reasons, it can be useful to create a theorem prover in which introduc-
tion of new features does not hinder its applicability on the problems that it could
previously solve successfully. In particular, we want to extend first-order reasoners
with higher-order capabilities, preserving their behavior on FOL problems.

To tackle proving theorems of HOL we decided to extend a first-order ATP to
support higher-order reasoning instead of building a prover ground-up. In other
words, the goal of this thesis is to answer a question:

2 Chapter 1. Introduction

Is there a way to extend a state-of-the-art first-order theorem prover to HOL in
a way that its performance on first-order problems remains the same?

Such an extension will be called graceful. Before we tackle full HOL, we focused on
a particular fragment of HOL.

The ATP that we chose is E [Sch02Sch02], state-of-the-art top contender in ATP compe-
titions, that is also open source which enables us to customize it. It is fast for a large
number of problems and carries the nickname of a brainiac theorem prover for its
use of advanced data structures and sophisticated formula simplification schemes.

One of the requirements we had is that E has to perform almost exactly the same
on FOL problems, which means that all of the data structures that E employs to
speed up reasoning must have the same time complexity and all of the simplifica-
tion techniques must be in place. Satisfying this requirement is not a simple task,
since introduction of any feature in a highly-optimized prover may hinder its per-
formance. However, our goal is to approach as little as 2% overhead on FOL prob-
lems. On the other hand, when faced with HOL features like partial application and
applied variables it is unclear if one can gracefully generalize all E reasoning and
simplification engines.

As a first step towards a graceful HOL reasoner we focused on fragment of HOL
devoid of lambda-abstraction. The reason for this decision is that many problems
can be stated without lambdas, and there are numerous translation techniques that
can substitute lambdas with lambda-free formulas. However, this comes at the cost
of losing deductive power, since we are unable to generate lambda terms during
the proof search. Furthermore, lambda-free HOL terms are similar to FOL terms in
many respects which allows us to reuse large parts of the E codebase unchanged.
For the parts that must be generalized, we devised algorithms that gracefully gener-
alize FOL counterparts. In the future, we might include lambdas in either native or
translated form.

1.2 Contributions

To support applied variables and partial application we have generalized E’s term
structure and changed E’s type system to support HOL types (Chapter 33). This gen-
eralization is entirely graceful, since the term structure is exactly the same for FOL
terms and HOL features are supported in an efficient manner. Furthermore, follow-
ing the recent work of Blanchette et al. on lambda-free HOL term orders [Bec+17Bec+17];
[BWW17BWW17] we implemented a lambda-free HOL KBO order that is linear on both FOL
and HOL terms.

Matching and unification are fundamental procedures used in automated theo-
rem proving. In HOL with lambdas, unification is not even decidable and is usually
tackled inside the proof calculus. In Chapter 44 we give a generalization of match-
ing and unification for lambda-free HOL that keeps the same complexity for FOL
terms and is efficient for HOL terms. Namely, even though HOL terms have twice
as many subterms as FOL terms, we devised matching and unification procedures
that consider the same number of subterms as the FOL algorithms by attempting to
match or unify not only entire terms but also prefixes.

E uses advanced indexing techniques to speed up reasoning. These techniques
were designed to be used with FOL terms and must be altered to support HOL fea-
tures. In Section 5.15.1 we show a graceful extension of perfect discrimination trees,
which is one of key data structures used in E. Like perfect discrimination trees, fin-
gerprint indexing is used in various parts of the proof search. We extend it gracefully

1.3. Software 3

to HOL in Section 5.2.15.2.1. Lastly, graceful extension of feature vector indexing is de-
scribed in Section 5.35.3.

One of the reasons E performs so well on first-order problems is the choice of
the superposition calculus and the choice of simplification techniques. In Chapter
66 we gracefully generalize all the core calculus and simplification inferences. Some
of the inferences involve traversing subterms of a term appearing in a formula. We
managed to avoid traversing prefix subterms that appear only in HOL, keeping the
time complexity for HOL inferences the same as in the FOL case.

1.3 Software

The main artefact of this project, next to this thesis, is a theorem prover for lambda-
free HOL – hoE. This prover is based on E 2.1pre005 from October 2017.

hoE is highly experimental and is currently in the proof-of-concept phase. The
code is undergoing constant changes, improvements and bugfixes. A thorough
code review is planned for near future and it is expected that many procedures will
change names or interfaces.

The repository in which E is kept is available for read-only access at
https://petarvukmirovic@bitbucket.org/petarvukmirovic/hoe.githttps://petarvukmirovic@bitbucket.org/petarvukmirovic/hoe.git.

https://petarvukmirovic@bitbucket.org/petarvukmirovic/hoe.git

5

Chapter 2

Background

Even though first-order logic has become a standard when it comes to formalizing
mathematical theories, there is still some non-standard notation that circulates in the
literature. Furthermore, there are many interpretations of higher-order logic and it
is very important to state clearly which stand we take in this thesis. To that end, in
this chapter we define the notation that we are going to use thoughout the thesis and
describe the assumed interpretations.

2.1 First-Order Logic

First order logic (FOL) is a language that is commonly used to model objects and
their relations. It is an expressive language with well developed theory that makes
it possible to reason about wide variety of objects – from everyday reasoning about
family relations, over puzzle solving up to reasoning about complex mathematical
structures and software verification.

Since it provides more expressiveness and it is commonly used in modern theo-
rem provers, we will be concerned with many-sorted first-order logic with equality.
In what follows, we will formally define the syntax and the semantics of such a lan-
guage.

FOL is used as a meta-language in which we can describe a large number of
theories. It consists of a logic part that includes connectives and quantifiers and
a non-logic part that enables us to model different kinds of theories. We will as-
sume that non-logic symbols are defined over the signature S, S = (F, P, T). Signa-
ture defines the function symbols (F) and predicate symbols (P) and the structure
T = (A, rankF, rankP) that gives information about the types and arities of function
symbols. A contains elementary types, whereas rankF : F → A∗ × A declares func-
tion’s type (and implicitly, arity) and rankP : P → A∗ declares predicate’s type (and
implicitly, arity). Lastly, for each atomic type a there is a countably infinite set of
variables Va.

Definition 1. Terms are defined inductively as follows:

1. A variable xa ∈ Va is a term of type a.

2. If t1, . . . , tn are terms of types a1, . . . , an respectively and f ∈ F, rankF(f) =
(a1 an, b), then f (t1, . . . , tn) is a term of type b.

If function symbol f has arity 0, we call it a constant, and drop the parentheses.
Related to the notion of term is the notion of subterm. The set of subterms for term
t ≡ f (t1, t2, . . . , tn) consists of t itself, and all subterms of t1, t2, . . . , tn. A term is
called ground if it is variable-free.

6 Chapter 2. Background

Definition 2. Term position is a (posibly empty) string of integers. Given a position
p and a term t, we define term t|p, that is subterm of t at position p recursively as
follows:

t|p =

{
t if p is the empty string
ti|p′ if t ≡ f (t1, . . . , tn), p = i.p′, i ≥ 1, i ≤ n

Similarly, we define changing subterm of t at position p for a term s (t[p ← s]) as
follows:

t[p← s] =

{
s if p is the empty string
f (t1, . . . , ti[p′ ← s], . . . , tn) if t ≡ f (t1, . . . , tn), p = i.p′, i ≥ 1, i ≤ n

Definition 3. Atomic formulas (or atoms) are defined using the following two rules:

1. If p ∈ P, rankP(p) = a1 an and t1, . . . , tn are terms of types a1, . . . , an
respectively then p(t1, . . . , tn) is an atom.

2. If s and t are two terms of the same type a, then s ≈ t is an atom.

Definition 4. Formulas are defined inductively as follows:

1. > and ⊥ are formulas.

2. An atom is a formula.

3. If A is a formula, then ¬A is a formula.

4. If A and B are formulas, then A ∧ B , A ∨ B, A −→ B, A←→ B are formulas.

5. If xa ∈ Va and A is formula then ∀xa. A is a formula.

6. If xa ∈ Va and A is formula then ∃xa. A is a formula.

Example 1. Now that we have formally defined the syntax of the first order logic
with equality, we can introduce an involved example that highlights most of the
features of the defined language. The signature we will use is defined as S =
({j, p, a}, {sibling, parent}, T), where T = ({i}, rankF, rankP) and rankF(j) = rankF(p) =
rankF(a) = (ε, i), rankP(parent) = rankP(sibling) = (i, i).

Suppose we want to model simple family relation: P and J are A’s children. Does
J have a sibling? One possible modeling is as follows:

((parent(a, p) ∧ parent(a, j) ∧ ¬(p ≈ j))
∧ (∀xi.∀yi.∀zi. (parent(xi, yi) ∧ parent(xi, zi) ∧ ¬(yi ≈ zi)) −→ sibling(yi, zi))

∧ (∀xi.∀yi. sibling(xi, yi) −→ sibling(yi, xi)))

−→ ∃xi. sibling(j, xi).

In the following sections we will describe how we can prove formulas such as
the one from the above example, and even give answers to existential questions.

So far, we have been concerned with only well-formed formulas of FOL. We
haven’t discussed their meaning. There are several approaches to interpreting for-
mulas of FOL, but we focus on standard one (given for example in book by Chang
and Lee [CL73CL73]), adapting it for many-sorted FOL.

2.1. First-Order Logic 7

An interpretation I = (D, ID, ν) for signature S = (F, P, T), T = (A, rankF, rankP)
is defined as follows. Let D be a family of non-empty disjoint sets indexed by a ∈ A
(called domains). ID is a mapping from function and predicate symbols to functions
and predicates and it is defined as follows: If f ∈ F, with rankF(f) = (a1 an , b),
then ID(f) = f, where f : Da1 × . . . × Dan → Db. If p ∈ P, with rankP(f) =
(a1 an), then ID(p) = p, where p : Da1 × . . . × Dan → {T, F}, where T and
F are designated constants interpreted as true and false. ν is a family of variable
valuations indexed by a ∈ A. Each νa maps set of variables Va to domain Da. With
νa[xa := ca] we label the valuation that is exactly the same as νa with the only (pos-
sible) difference that mapping of variable xa is forced to be ca ∈ Da. In the following
definitions we will assume an interpretation I, for signature S.

Definition 5. Interpretation of FOL terms is defined as mapping IT from terms to
domain corresponding to the type of the term, based on an interpretation I. IT is
defined recursively using the following rules:

1. If xa is a variable of atomic type a, then IT(xa) = νa(xa).

2. If c is a constant, then IT(c) = ID(c)

3. If t1, . . . , tn are terms, with interpretations (t1, . . . , tn) = (IT(t1), . . . , IT(tn)),
then I(f (t1, . . . , tn)) is ID(f)(t1, . . . , tn).

Definition 6. Interpretation of formulas of FOL is defined as mapping IF from for-
mulas to {T, F}, based on an interpretation I. This mapping is defined recursively
using the following rules:

1. If t1, . . . , tn are terms with interpretation (t1, . . . , tn) = (IT(t1), . . . , IT(tn)) and
p ∈ P, then IF(p(t1, . . . , tn)) is ID(p)(t1, . . . , tn).

2. If s and t are terms, then IF(s ≈ t) = T if and only if IT(s) = IT(t) Otherwise
IF(s ≈ t) = F.

3. The logical connectives ¬,∧,∨,−→,←→, are interpreted the same way as in
propositional logic (for truth tables, consult [CL73CL73]).

4. If xa is of atomic type a, IF(∀xa.A) = T if and only if for each da ∈ Da, and
interpretation I′ = (D, ID, ν[xa := da]), I′F(A) = T.

5. If xa is of atomic type a, IF(∃xa.A) = T if and only if for some da ∈ Da, and
interpretation I′ = (D, ID, ν[xa := da]), I′F(A) = T.

One can ask many interesting questions about a formula. For example, one could
wonder if there is an interpretation in which a given formula is true. Furthermore, an
interesting question is whether a formula is true in every interpretation. To be able to
formally answer those questions we introduce the following definitions (following
[CL73CL73] closely):

Definition 7. Formula A is called satisfiable if there is an interpretation I such that
IF(A) = T. In that case we call I a model for A and we say I satisfies A.

Definition 8. Formula A is called unsatisfiable if there is no interpretation I such that
IF(A) = T.

Definition 9. Formula A is valid if for each interpretation I, IF(A) = T.

8 Chapter 2. Background

Definition 10. Formula A is a logical consequence of formulas {B1, . . . , Bn} if every
interpretation I that is a model of all formulas {B1, . . . , Bn} is a model of A. If A is a
logical consequence of {B1, . . . , Bn} we write {B1, . . . , Bn} � A

Definition 11. Formula A is logically equivalent to formula B if and only if under
every interpretation, the truth values for A and B are the same.

In automated theorem proving, we will be usually interested with the question
as to whether a given formula A (called conjecture) is a logical consequence of set
of formulas S (called axioms). However, the method for proving that a formula is
valid that we will be concerned with takes formulas in clause normal form (CNF).
In what follows, we will define CNF and state basic results about it. The algorithm
that transforms a formula to the CNF is out of the scope of this thesis, but is a very
interesting topic on its own [RV01RV01].

Definition 12. A formula A is in prenex normal form if and only if it is of the shape
Q1x1a1

. Q2x2a2
. Qnxnan

. F where Q1, Q2, . . . , Qn are quantifiers and F is a quantifier-
free formula. The sequence of quantifiers Qi is called the prefix and formula F is
called the matrix of formula A.

Definition 13. A literal l is an atomic formula or a negation of an atomic formula.

Definition 14. A formula A without quantifiers is in conjunctive normal form if and
only if it is of the it is of shape B1 ∧ B2 ∧ . . . ∧ Bn where each Bi is a disjunction of
literals (or a clause).

Theorem 1. For each formula A there is a formula A′ such that A is equivalent to A′

and A′ is in prenex normal form where matrix of A′ is in conjunctive normal form.

Definition 15. Formula A is in clause normal form (CNF) if and only if it is of the shape
∀x1a1

. ∀x2a2
. ∀xnan

. F where F is without quantifiers and in conjunctive normal
form.

Alternatively, many proof procedures accept formulas in CNF as multiset of
clauses, where each variable in a clause is implicitly universally quantified. It is
clear that those two representation are equivalent since both ∧ and ∨ are commuta-
tive and associative and the only quantifiers present are universal quantifiers.

We will not explain computing formula A′ from Theorem 11 completely, but we
will just hint that it is obtained by substituting subformulas of A for equivalent for-
mulas that either take the quantifiers as much as possible to the left or that convert
the matrix to conjunctive normal form.

Superposition works with sets of universally quantified clauses, that are inter-
preted as conjunction of their elements. With Theorem 11 we have approached this
form very closely, but in the prefix of the formula we still might have existential
quantifiers. A process called Skolemization creates a formula that is in the form
needed by many automated theorem proving techniques.

A simple approach to Skolemization is removing the quantifiers from the left. Let
the first existential quantifier in the prefix of formula A that is already in the prenex
form with matrix in conjunctive normal form be Qixiai

and Q1x1a1
. Qi−1xi−1ai−1

universal quantifiers that appear before it. We substitute xiai
with a new term

ski(x1a1
, . . . , xi−1ai−1

) where ski is a new function symbol of rank (a1 ai−1, ai)

and remove the quantifier Qixi. We repeat this process until there is no existential
quantifier left.

2.2. Refutational Theorem Proving 9

If we apply Skolemization to prenex formula A we indeed get the formula A′

that is in CNF. But since we changed the signature and no longer apply equivalence-
preserving transformations it is unclear what is the relation between original for-
mula A and A′ in terms of their models. Theorem 22 gives an answer to this question.

Theorem 2. For each formula A there is a formula A′ in CNF that is satisfiable if and
only if A is satisfiable.

In conclusion, after applying Skolemization we no longer have the formula that
is equivalent to original one, but we do have the one that preserves satisfiability
(and thanks to the fact that Theorem 22 is valid in both directions – unsatisfiability)
of formula. This will be enough for proving the validity of a formula.

2.2 Refutational Theorem Proving

We will mostly be interested in the question as to whether a formula A logically
follows from the set of formulas {B1, B2, . . . , Bn}. However, thanks to duality in
first-order logic a formula is valid if and only if its negation is unsatisfiable. This
gives us a new way to approach the original question.

Moreover, we covered syntactic and semantic aspects of FOL, but we haven’t
touched upon deductive aspects, that is proof systems. To define proof systems, we
need the notion of inference rules.

Definition 16. An inference rule is an (n+ 1)-ary relation between formulas A1, . . . , An
and A. Formulas A1 up to An are called premises of the inference rule and formula A
is called the conclusion of the rule. An inference rule is usually stated as:

A1 . . . An
A

The set of all conclusions where all of the premises belong to the set β is denoted as
C(β). A proof system is a set of inference rules.

The question as to whether a formula A (called conjecture) is a logical conse-
quence of set of formulas β (called axioms) corresponds to the question whether it
can be proven from a set of formulas β.

Definition 17. A proof of a formula A from a set of formulas β is a sequence P1, . . . , Pn
where each Pi is either a formula from β or a conclusion of an inference rule whose
premises belong to the set {Pj | j < i}. If there is a proof of A from β we write β ` A.

Definition 18. If there is a proof of a formula A from an empty set of axioms, then
A is called theorem.

Validity of a formula is purely semantic notion – it is defined in terms of all pos-
sible interpretations of the formula. It is intuitively clear that exploring all possible
interpretations is not feasible. Thus, one could wonder if it is possible to create a pro-
cedure that operates on a formula on a syntactic (deductive) level and still answers
the interesting question as to whether a formula is true in all possible interpretations.

In refutational theorem proving, instead of proving that formula A is a valid,
we show that A’s negation is unsatisfiable. Similarly, instead of showing that A
logically follows from {B1, . . . , Bn} we show that set of formulas {B1, . . . , Bn,¬A} is
unsatisfiable.

10 Chapter 2. Background

Definition 19. A proof system is sound if for every inference rule
A1 . . . An

A ,
A1 ∧ . . . ∧ An � A. Similarly, a proof system is satisfiability preserving if for all sets of
formulas β, β ∪C(β) is satisfiable if β is satisfiable.

Definition 20. A proof system is refutationally complete if ⊥ can be proven from any
unsatisfiable set of formulas β.

Definition 21. A set of formulas β is saturated with respect to a proof system if and
only if all possible conclusions of all possible inferences with premises from β are in
β.

Intuitively, one would expect that for proof systems the minimal requirement is
that they are sound. Relaxing this requirement to satisfiability preserving allows
usage of useful techniques such as Skolemization. For refutational theorem proving
it is enough that the system is satisfiability preserving. If the system is satisfiability
preserving ⊥ can be proven if and only if original set of formulas was inconsistent,
which was our original goal.

The proof system that we will consider in this thesis (and many others) works
with formulas in CNF and actually considers a formula as a (multi)set of clauses.
Thus, it is important to have a way to transform original formula to multiset of
clauses. Figure 2.12.1 shows how refutational theorem provers show that a formula is
a theorem:

FIGURE 2.1: Summary of refutational theorem proving

2.3 The Superposition Calculus

Superposition is a refutationally complete proof system developed for first-order
logic with equality. It has been developed in early 1990s, by Bachmair and Ganzinger
[BG90BG90] and Nieuwenhuis and Rubio [NR92NR92].

In this thesis, the version of superposition used by E theorem prover [Sch02Sch02] will
be described. Before we treat superposition in more detail, we need to establish
some notation and define notions like substitution, most general unifier and term
orders. Notation will closely resemble the one in the original E paper [Sch02Sch02].

2.3. The Superposition Calculus 11

Without loss of generality we assume all literals are equational (i.e. of the form
s ≈ t). If that is not the case, then we can introduce (fresh) symbol of type bool, T,
and turn every atom p(t1, t2, . . . , tn) to p(t1, t2, . . . , tn) ≈ T. Clauses are defined to
be multisets of equational literals, where multiset is a mapping from a set S to set of
integers. Intuitively, if N is a multiset then N(x) is the number of copies of element
x in N. We write x ∈ M if M(x) > 0. Positive literals in a clause C are denoted as
C+, and will be written as s ≈ t, whereas negative literals in a clause are written as
C− and referred to as s 6≈ t.

Definition 22. A substitution σ is a mapping from Va to set of terms with type a, such
that the set {x | σ(x) 6= x} is finite. A substitution is called renaming if all terms in
the codomain of σ are variables. Substitutions are lifted to terms and clauses in an
intuitive manner (i.e. by mapping the variables that appear in a term or a clause).

Definition 23. A ground simplification order > is a well-founded partial order on a set
of terms that is stable under contexts and substitutions, total on variable-free terms
and has subterm property.

In Definition 2323, stability under context means that if l > r then for any term t and
position p, t[p ← l] > t[p ← r]. Similarly, stability (or closure) under substitution
means that for any substitution σ and terms l, r if l > r then σ(l) > σ(r). Order >
has subterm property if t > s for every subterm s of t, s 6≡ t.

The order from Definition 2323 is lifted to clauses using multiset extension. This
extension is defined for any two finite multisets as follows:

Definition 24. Order > is extended to finite multisets as an order >mul for which
N >mul M if (1) M 6= N and (2) for every x, if M(x) >N N(x) then there exists
y, N(y) >N M(y) and y > x (>N is relation greater-than on the set of integers).

Definition 25. x is maximal with repsect to M if there is no element y ∈ M such that
y > x. x is strictly maximal with repsect to M if there is no element y ∈ M such that
y ≥ x.

The way clauses are compared depends on how the equations are represented.
Positive equations s ≈ t are represented as {{s}, {t}}, whereas negative equations
s 6≈ t are represented as {{s, t}}. Thus, in general, negative equation s 6≈ t is greater
than positive s ≈ t.

Superposition calculus allows us to select clauses with which we can perform
some inferences. With some constraints imposed on selection function, superposi-
tion calculus can block many unnecessary inferences.

Definition 26. A selection function sel is a function from clause C to multisubset of C
with the property that sel(C) ∩ C− = ∅ −→ sel(C) = ∅. In other words, sel has the
property that if something is selected, then the selection has to contain at least one
negative literal.

With those definitions in place, we can almost define the rules needed for the
superposition calculus. Before that we need to define literals which can be involved
in superposition inference rules and define the most general unifier.

Definition 27. Let C = l ∨ R be a clause and σ a substitution. We say σ(l) is eligible
for resolution if: (1) sel(C) = ∅ and σ(l) is maximal in C or (2) sel(C) 6= ∅ and σ(l) is
maximal in σ(sel(C) ∩ C−) or (3) sel(C) 6= ∅ and σ(l) is maximal in σ(sel(C) ∩ C+).
Similarly, l is eligible for paramodulation if l ∈ C+, sel(C) = ∅ and σ(l) is maximal in
σ(C).

12 Chapter 2. Background

Definition 28. A unifier for terms s and t is a substitution σ such that σ(s) = σ(t).
The most general unifier (mgu) for s and t is a unifier with the property that any other
unifier ρ for s and t can be expressed as ρ = σ ◦ τ for some substitution τ, where ◦ is
function composition.

Now we have all the ingredients we need to state the four rules that comprise
superposition proof system:

Equality resolution (ER)

s 6≈ t ∨ R
σ(R)

where σ is mgu of s and t and σ(s 6≈ t) is
eligible for resolution.

Equality factoring (EF)

s ≈ t ∨ u ≈ v ∨ R
σ(t 6≈ v ∨ u ≈ v ∨ R)

where σ is mgu of s and u, σ(s) 6< σ(t)
and σ(s ≈ t) is eligible for paramodula-
tion.

Superposition into negative literals
(SN)

s ≈ t ∨ S u 6≈ v ∨ R
σ(u[p← t] 6≈ v ∨ S ∨ R)

where σ is mgu of s and u|p, σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s ≈ t) is eligible
for paramodulation, σ(u 6≈ v) is eligible
for resolution and u|p 6∈ Va where a is the
type of u|p.

Superposition into positive literals (SP)

s ≈ t ∨ S u ≈ v ∨ R
σ(u[p← t] ≈ v ∨ S ∨ R)

where σ is mgu of s and u|p, σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s ≈ t) is eligible for
paramodulation, σ(u ≈ v) is eligible for
resolution and u|p 6∈ Va where a is the
type of u|p.

Theorem 3. The superposition proof calculus is sound.

Theorem 4. The set of clauses β that is saturated with respect to the superposition
proof calculus contains ⊥ if and only if β is unsatisfiable.

2.4 The E Theorem Prover

The E theorem prover [Sch02Sch02]; [Sch13bSch13b] is an automatic theorem prover for many-
sorted FOL with equality. It is based on the superposition calculus and if it doesn’t
run out of CPU or memory resources, refutationally complete. Next to implementing
core superposition, E puts strong emphasis on rewriting and on avoiding inferences
that can not contribute to a proof.

For many years E has been a top-contender at The CADE ATP System Competi-
tion (CASC). At the last competition E finished third after two versions of Vampire
in the ”first-order theorems category” [Sut17bSut17b].

E is written in ANSI C in a highly portable manner and has been compiled on
many platforms. It is largely independent of external libraries. For example, it has
its own memory management subsystem with a mark-and-sweep garbage collector
for terms and I/O subsystem.

It is a saturating theorem prover, which means that it will perform inferences
until it either derives the empty clause (that is ⊥) or any new inference is redundant
(redundancy will be defined later on). Its saturation loop is based on a form of the
given-clause algorithm.

2.5. Lambda-Free Higher-Order Logic 13

In short, this algorithm divides the proof state in two sets of clauses – P (pro-
cessed clauses) and U (unprocessed clauses). At the beginning, all clauses are in U
and P is empty. Then, one by one, clauses are chosen from U based on some heuris-
tics. Let C be the clause chosen in one run of the saturation loop. If C is the empty
clause, that shows the unsatisfiability of the original set of clauses. Otherwise, E per-
forms all generating inferences from clauses in P∪ {C} and puts their conclusions D
into U. If U is empty and no C can be chosen then the set of clauses is saturated (up
to redundancy) which means the initial formula has an interpretation that falsifies
it.

This kind of loop is one of the reasons E performs well in practice. E’s author
Stephan Schulz gives some properties of the loop that contribute to its performance
[Sch02Sch02]:

• Clauses in U are truly passive. This means that they will not be part of an infer-
ence unless activated by being chosen in the saturation loop. The consequence
of this property is that there is very little work to be done for clauses in U.

• Throughout the main loop the invariant that clauses in P are saturated is kept.
Furthermore, all clauses in P are maximally simplified with respect to other
clauses in P.

• Since P is maximally simplified and saturated, the choice of a new clause is
very important. Thus, E has a set of advanced heuristics that pick a given
clause. Moreover, the search procedure is is parametrized on a fine-grained
level.

• Since only relatively small sets are involved in costly operations, the through-
put of clauses in the main loop is high.

One of E’s main strengths is fine-grained proof search control. E can choose
clause selection schemes, perform different literal selections and work with different
term orders. An automatic mode that analyses input problem and chooses all of
these parameters is present and performs well in competitions.

2.5 Lambda-Free Higher-Order Logic

The main difference between the higher-order logic (HOL) and first-order logic is
that in HOL quantification over functions and predicates is allowed. From the be-
ginning of automated deduction systems, even though most effort has been put in
dealing with FOL, attempts have been made to tackle higher-order logic [BK98BK98].

The version of HOL that we will consider in this thesis is based on the simply
typed λ-calculus. Benzmüller and Kohlhase [BK98BK98] give pointers to an introduction
to this calculus.

The main goal of our project is extending a real-world FOL theorem prover to
a fragment of HOL. In our HOL fragment, we disallow λ-abstraction, for the rea-
sons given in Chapter 11. Hence, the terms in λ-free higher-order logic (LFHOL) are
similar to the terms in FOL.

Before giving definition of terms, we will assume that non-logical symbols are
defined over the signature S = (F, (T, rank)). Signature defines the function symbols
(F), T contains types (with two special, built-in types o and i), whereas rank : F → T,
declares function’s type (and implicitly, maximal arity). Similarly, for each type A,
we assume infinitely countable set of variables VA.

14 Chapter 2. Background

Definition 29. Higher-order types are defined recursively as follows:

1. An atomic type a is a type.

2. If T1 and T2 are types then T1 → T2 is a type.

Definition 30. LFHOL terms are defined recursively as follows:

1. Variable XA ∈ VA is a LFHOL term of type A.

2. Constant c ∈ F, rank(c) = A is a LFHOL term of type A.

3. If term s is an LFHOL term of type A → B and t is an LFHOL term of type A
then s t is a LFHOL term of type B.

We define set of subterms of term t ≡ s1 s2 similar to the FOL case. The set of
subterms of t contains t and all subterms of s1 and s2.

Example 2. Suppose we are given a function symbol f of type a→ (b→ c), g of type
a→ b, c1 of type a and c2 of type b. In this example and the rest of this thesis we will
use a convention that variables are written in uppercase letters with their type as an
index. Furthermore, for denoting types we will use symbol→ as right-associative.
Lastly, we will use term application as left-associative.

Having those function symbols declared and conventions in place, the following
would be legal LFHOL terms:

(1) f c1 c2, (2) f c1 (g c1), (3) f c1, (4) g
(5) Xa→b c1, (6) Xa→b Ya, (7) F(b→c)→d (f Xa)

FOL interpretation of terms and formulas can be gracefully extended to LFHOL.
As a reference for HOL interpretation we used Andrew’s Introduction to Mathematical
Logic and Type Theory [And86And86].

An interpretation I = (D, ID, ν) for signature S = (F, (T, rankF)) is defined as
follows. Let D be a family of disjoint non-empty sets indexed by higher order types
A, whose elements are called domains. Do has exactly two elements, T (true) and F
(false).

Furthermore, let ID be a mapping from function symbols to objects of the ap-
propriate domain defined as follows: If f ∈ F, with rankF(f) = A, then ID(f) = f,
where f is an element of DA. Type A might be complex (i.e. A ≡ A1 → A2). In that
case, object f can be applied to an object of domain DA1 . Note that we do not sepa-
rate function symbols from predicate symbols in LFHOL. However, we can consider
as a predicate symbol any function symbol whose return type is o.

ν is a family of variable valuations indexed by higher order types A. Each νA
maps set of variables VA to domain DA. With νA[xA := cA] we label the valuation
that is exactly the same as νA with the only difference that mapping of variable xA
is forced to be cA ∈ DA. In the following, we will assume an interpretation I, for
signature S.

Terms are interpreted similarly to FOL:

1. If XA is a variable of type A, then IT(XA) = νA(XA).

2. If c is a constant of type A, then IT(c) = ID(c).

3. If t1 and t2 are terms and type of t1 is A→ B and type of t2 is A, then IT(t1 t2) =
IT(t1)(IT(t2)).

2.5. Lambda-Free Higher-Order Logic 15

With (LF)HOL we have a choice of either fixing the logical connectives like we
did in FOL or we can define them as functions that operate on the type o. We decided
to keep the definitions as close as possible to FOL.

In LFHOL, we keep the same set of logical connectives as in FOL. Furthermore,
we keep the same interpretation of these connectives – the logical formulas are in-
terpreted as member of the domain Do.

In HOL, predicates could be applied to other terms that are of type o. This can
include logical formulas as well. In contrast, LFHOL disallows supplying logical
formulas as arguments of predicates. More precisely, atoms in LFHOL are either
terms of LFHOL that have return type o or equations s ≈ t where neither s nor t are
of type o, but have the same type.

Note that the lack of lambda abstraction makes LFHOL strictly weaker than
many other fragments of HOL. However, by adding appropriate axioms we can
reclaim the power of HOL [Ker91Ker91]. Consider the following examples:

Example 3. Formula

(f x y ≈ g y x) −→ (∃Ht→t→t. Ht→t→t x y ≈ g y x)

is provable in both standard HOL and LFHOL. In LFHOL, we can instantiate H with
f and we would easily get the proof of the formula.

Example 4. Formula
∃Ht→t→t . Ht→t→t x y ≈ g y x

is provable in for standard HOL , but not for LFHOL. In HOL, instantiating H with
λXt Yt. g Yt Xt would lead us to the proof of formula. In LFHOL, there is no function
symbol to instantiate H with, effectively deeming formula unprovable.

HOLs are also differentiated by the axioms they assume. Thus, an exposition of
a HOL fragment (such as LFHOL) would not be complete if we don’t list important
formulas that are (in) valid in LFHOL.

Definition 31. Axiom of Comprehension (AC) states that for every formula A, there is
a term such that it has the same value as the formula. In other words:

∃u ∀v1 . . . ∀vn . u v1 . . . vn ≈ A

where u does not appear in A and v1, . . . , vn are distinct variables.

In HOLs that allow lambdas, we can introduce lambda abstraction (over the vari-
ables v1, . . . , vn) that returns formula A. This would be the witness for the existen-
tially qualified u. Thus, for HOLs with lambdas AC is valid. However, LFHOL does
not allow lambdas, which makes AC not valid.

Definition 32. Axiom of Functional Extensionality (AFE) states that functions whose
results are equal for every argument are the same:

∀ fA→B ∀gA→B (∀XA . f X ≈ g X) −→ f ≈ g

In the models of LFHOL the elements of the set DA→B are function-like objects,
not necessarily (all) total functions from DA to DB. This means that AFE will not be
valid in LFHOL. AFE can be stated in LFHOL and thus it can be made part of the
input problem. It is a well known fact that, in practice, treatment of AE outside the

16 Chapter 2. Background

proof calculus makes the search space grow fast. For that reason, we might imple-
ment a version of the superposition calculus that treats AE using special inference
rules in the future.

Definition 33. Axiom of Choice (ACh) states that there is a function that chooses an
element from every non-empty set:

∃ξ(A→o)→A ∀PA→o (∃XA . P X) −→ P (ξ P)

As a consequence of the fact that domains contain arbitrary function-like objects,
ACh is not valid in LFHOL. We treat ACh in much more detail when we describe
Skolemization in Section 6.16.1.

One can also look at LFHOL from a different perspective – using its isomorphism
with the applicative FOL. More precisely, we can use the same set of connectives
as in FOL and use a special encoding to translate LFHOL terms to FOL terms. In
what follows, we are going to assume, without loss of generality, that all atoms are
equational (i.e. of the form s ≈ t).

We encode the LFHOL terms using applicative encoding. That is, for a given
LFHOL problem with a signature S, we create FOL signature SFO, that contains the
same function symbols as S, but in addition, for each type A → B it contains a spe-
cial binary application symbol @A→B. To define the translation function for LFHOL
terms, we assume that there exists a bijective mapping transτ from the set of higher-
order types T, corresponding to S, to the set of first-order types TFO, corresponding
to SFO. That is, we assume that for each HO type A ∈ T there is type AFO ∈ TFO, and
vice versa. The bijective mapping trans from LFHOL terms to FOL terms is defined
inductively as follows:

1. trans(XA) = Xtransτ(A), where XA is a LFHOL variable of type A, or a LFHOL
constant of type A, and Xtransτ(A) the corresponding FOL variable or constant
of type transτ(A).

2. trans(t1 t2) = @A→B(trans(t1), trans(t2)), assuming that the type of t1 is A→ B,
and the type of t2 is A.

Knowing that the set of logical connectives is the same for LFHOL and FOL, with
the trans function, we have fully embedded LFHOL in FOL. Furthermore, for each
FOL model of the translated LFHOL formula, we can construct a corresponding
LFHOL model.

Let us show how FOL models can be converted to LFHOL models. In FOL mod-
els each @A→B symbol is interpreted as a function from Dtransτ(A→B) × Dtransτ(A) to
Dtransτ(B). In other words, when this function is given arguments f ∈ Dtransτ(A→B)
and a ∈ Dtransτ(A), it returns b ∈ Dtransτ(B). Using this information, we can interpret
LFHOL constants of complex types A → B as function-like objects whose return
values correspond to the values returned by interpretation of @A→B.

17

Chapter 3

Generalizing Types and Terms

Terms are foundational data structure that take central place in many theorem prover
architectures. Throughout the development of theorem provers many representa-
tions of terms have emerged with various benefits and drawbacks.

The main goal of this project is to extend the first-order theorem prover to a part
of higher-order logic in a graceful manner. Making a smooth transition to LFHOL
would be unimaginable if the term representation has to be changed. Thus, we de-
cided to keep the term representation mostly the same, but extended it so that it
supports HO features, without altering the behavior for FOL.

An important decision is how the theorem prover will deal with types. This deci-
sion is far-reaching as well, but one could argue that the changes to the type system
have less impact since the types are not a central part of the theorem prover (some
modern theorem provers do not even feature support for types). Our experience
also showed that changes in types had much less ripple effect on other parts of the
prover. The same is definitely not true for changes in terms.

3.1 Types

3.1.1 Types in the Original E

As of version 2.0 Turzum, E has support for many-sorted FOL11, thanks to an update
by Simon Cruanes. In what follows, we are going to use E’s notation and refer to the
types of constants (and simple types in general) as sorts.

Sorts are internally represented in the original E as an integer that corresponds
to the type throughout the theorem proving process. Additionally, forward (sort to
integer) and backward (integer to sort) indices are kept.

Function types are represented as a structure that has two important fields. The
first field is an array that keeps sorts corresponding to arguments that function takes.
The second field is the return sort of the function. Furthermore, in the signature, for
each function and predicate symbol the type is stored. However, type checking is
performed only during parsing since most of the inferences are type-preserving and
in a few corner-cases type preservation is achieved using defensive programming.

Each term has a field that keeps the term’s sort (type), so with each term only one
integer has to be kept. This makes type comparisons easy and efficient – it amounts
to comparing two integers.

1http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.0/NEWShttp://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.0/NEWS

http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.0/NEWS

18 Chapter 3. Generalizing Types and Terms

3.1.2 Types in hoE

This representation of types is not suitable for higher-order types. In FOL all terms
are fully applied. This means that given a term t with a function symbol f at the
root, the return sort of f will be the type of the term t. This is not true for LFHOL.

For example, consider a function symbol f of type (a→ b)→ b→ c. In LFHOL,
the term f Xa→b is a valid LFHOL term of type b→ c. In the current implementation
of E, f ’s type could not be represented, and the type of term would have to be en-
coded in an unnatural way for (LF)HOL. Thus, a representation that does not make
a strict distinction between argument and return types is suitable.

Since E assumes that the types of terms could be compared in constant time (us-
ing C’s == operator), this invariant had to be preserved in hoE as well. This is a
constraint we kept in mind throughout designing the new type system.

Higher order types can be represented natively, the way they are described in
Chapter 22 (i.e. as → (T1, T2), where T1 or T2 could themselves be complex) or in
flattened representation (e.g.→ (T1, T2, . . . , Tn) where all of the arguments except for
Tn could be complex types). In other words, we use the fact that a type T can be
uniquely decomposed in a number of arguments, with the last one always being a
simple type.

For example, the type (a → b) → c → d can be represented in native repre-
sentation as→ (→ (a, b),→ (c, d)) (where we make implicit assumption that→ is
right-associative, or in flattened representation as→ (→ (a, b), c, d).

The representation that we chose for hoE is the flattened representation. The
main reason is that checking for the type of ith argument that function f can take
would be in O(i) with native representation, whereas we could check that in O(1)
with the flattened representation.

Furthermore, we found it convenient to add support for types that can be en-
coded as sorts, but some users would like to write them more naturally. Namely, we
added support for type constructors other than → (> in TPTP syntax). These type
constructors can be defined using thf type syntax, with the constraint that all of the
arguments are kinds ($tType). For example, if we have a type constructor list that
takes one argument, we can define it in hoE as
thf(listType, type, list: $tType > $tType).

Nonetheless, polymorphism is not supported and those type constructors have
to be provided with non-variable arguments, which justifies our claim that they
could be encoded as sorts (e.g. list_num for list(num)).

Thus, to support higher order types and type constructors we generalized the
type structure and defined it as

typedef struct typecell
{

TypeConsCode f_code;
int arity;
struct typecell** args;
TypeUniqueID type_uid;

} TypeCell, *Type_p;

In this representation, the following invariants are kept:

1. The f_code field will have value 0 if and only if the type is constructed with→

2. If the type constructor takes no arguments, its args field will have a value of
NULL. Otherwise it will point to an array of exactly arity elements.

3.2. Terms 19

Lastly, we had to deal with the fact that previously types have been compared
directly using C’s == operator. However, as stated before, types of terms might not
be simple sorts, so we need to establish some kind of sharing of types that have
exactly the same arguments and use the same type constructor.

To that end we implemented type sharing, in exactly the same way E shares
terms (see Section 3.23.2). Thus, after sharing the types that are structurally the same,
we can again perform type comparisons efficiently using C’s == operator (now com-
paring pointers, not integers).

One could notice that the type structure has fields that one would expect the term
structure to have as well. Thus, it is natural to think that types can be represented
using the facilities that E already has in place for the terms.

For the first few weeks of hoE development we tried exactly that approach. How-
ever, we observed many downsides. The most important one is that it introduces
cyclic dependency in many modules that were nicely layered and largely indepen-
dent before. For example, the signature module has to store types for each function
symbol. If types are represented as terms, suddenly the signature would depend
on types that would depend on the signature to provide function name to function
code mapping. Thus, in terms of code elegance and coupling this solution proved
unfruitful.

3.2 Terms

3.2.1 Terms in the Original E

One of the most consequential choices when implementing a theorem prover is the
way in which the terms are represented. E represents terms as directed acyclic
graphs (DAGs) in which repeated terms are guaranteed to be shared (perfectly shared
terms). This means that the terms that are structurally the same will be the same
object in memory, which has several important consequences.

First, sharing of subterms can save substantial amounts of memory. Experiments
performed by Löchner and Schulz [LS01LS01] are concerned with the sharing factor, which
represents the ratio of the number of terms in the proof state and the number of
unique terms in the proof state. Most of the problems exhibit the sharing factor
that is between 5 and 100, which backs up the intuition that perfect sharing saves
memory.

Second, rewriting of a shared term has as a beneficial side-effect of rewriting
all the terms the shared term represents. By comparing a prover that does not use
shared term representation (Waldmeister) to E, and setting their parameters to work
in a very similar manner Löchner and Schulz observed that the number of rewrite
operations is around the same in both provers for small problems and grows to
around 2.5 times more rewrite operations for Waldmeister.

Last, perfectly shared terms allow for very efficient equality comparison. Namely,
since perfectly shared terms keep the invariant that the terms that are structurally
the same are the same object in memory, it is enough to test if the pointers to the
term objects are the same to test for the term equality.

However, there is a penalty to be paid when using shared terms. Namely, when a
new term is created the term bank is queried to check if the term is already present in
the proof state. If so, the pointer to the already present term is returned. Otherwise,
the query term is placed in the term bank.

The term bank is organized as a large hash table in which collisions are solved
using closed addressing [Cor+09Cor+09]. More precisely, an ad hoc total order on terms is

20 Chapter 3. Generalizing Types and Terms

established and using this order terms that have the same hash value are stored in a
splay tree, as shown in Figure 3.13.1.

This organization has two benefits. On the first level, hashing should decrease
the number of terms E compares by a huge constant (roughly the size of the ta-
ble). On the second level, splay trees have an average O(log n) search (and insert)
complexity and have O(log n) amortized complexity for the same operations. Fur-
thermore, they favor objects that are accessed recently – for example, if a rewrite rule
repeats many variables in the pattern possibly many queries for a subterm will be
issued and answered in O(1) term comparisons.

FIGURE 3.1: Term banks

The individual term cells in E are represented using a relatively complicated
structure that has 11 fields at the moment. Due to the number of fields in the struc-
ture, we will describe them when needed.

The most important fields are f_code, which corresponds to the term’s root func-
tion symbol; arity, which corresponds to the number of arguments; and args, an
array that contains pointers to argument subterms. Note that the arity field is re-
dundant (since arity of each function symbol is fixed in FOL and in E it is stored in
the signature object), but it is stored in term object nevertheless.

3.2.2 Terms in hoE

In LFHOL, function symbols are not as tightly coupled to their arguments as it is the
case for FOL terms. Namely, it can be seen in Definition 3030 that the only way to con-
struct complex terms is using application. However, LFHOL terms can be uniquely
decomposed in ψ s1 s2 . . . sn, where ψ is either a variable or a function symbol (called
head) and s1 s2 . . . sn are arguments that might be applications themselves [Bec+17Bec+17].

We decided to use this decomposition to represent the terms. An alternative
option was to represent the terms using the applicative encoding. In other words, we
could represent each term as an application of one subterm to the other. For example,
the LFHOL term f (Xt1→t2 a) b would be represented as @(@(f , @(Xt1→t2 , a)), b) in
the applicative encoding, where @ is the binary application function symbol.

The decision to represent terms decomposed (i.e. flattened) is tightly linked with
the decision to use the same representation for types. Since we wanted the advan-
tage of tight coupling of term head and arguments, we needed to facilitate efficient
checking of ith argument’s type. This would be considerably more complex with the
non-flattened representation of types.

As explained before, the consequences of choosing a certain term representation
are far-reaching. The main reason for using the decomposition term representation
is that it is very close to native FOL term representation that E works with. For
example, the heuristics that E is known for do not have to be reworked for LFHOL

3.2. Terms 21

terms. Specifically, they will determine the head of the term just by reading the
f_code field of the term. In other words, our extension of the term data structure
is graceful – it keeps all of the useful properties it had for the FOL terms, while
showing benefits for LFHOL. There are many other reasons for using the flattened
representation, but we will explain them in the chapters that follow.

Having the previous description in mind, it is obvious that the term representa-
tion does not have to be changed at all for the terms that have a non-variable head.
However, for terms which have a variable as head symbol, representation has to be
changed. Namely, for the hoE representation of applied variables the f_code field
has a value less than 0, but its arity field is non-zero and its args array holds the
arguments. This breaks the original E invariant that variables have no arguments.

Breaking the invariant that variables have no arguments might seem as a small
and an innocent change, but it has an expressed ripple-effect. In the original E,
variables that appeared multiple times in the same clause are shared (i.e. they are
the same object in memory). With applied variables represented as described above
in hoE this sharing invariant would be broken.

Example 5. Consider the clause f (Xt→t a)Yt ≈ g Yt Xt→t. The subterm Xt→t a would
be represented as an object that has X’s function code and a as an argument. On the
other hand X on the right-hand side of the equation would be a separate object
represented as a (usual, original E) variable.

The failure to preserve variable sharing invariant would have rather subtle ef-
fects. Namely, during matching and unification (see Chapter 44), variables are bound
to terms. The term the variable is bound to is stored in the binding pointer. Once the
variable is bound, it is of crucial importance that all occurrences of the same variable
have the same binding.

With the sharing invariant in place, this will be ensured automatically. However,
hoE breaks the sharing invariant since the variable at the head of the term will be dis-
connected from other occurrences of the variable in the clause (it will be a different
object in memory).

One way to circumvent this problem is to iterate through the clause and fix the
binding field manually. However, this is costly and very inelegant. Furthermore, it
is not in line with E’s spirit, since E carries the nickname of a brainiac theorem prover
for its smart and elegant use of advanced data structures and algorithms [Sch02Sch02].

The solution that we settled for is that whenever we have a variable as the head
of the term and that variable is applied to some arguments, we encode it as a term
with a special function symbol called $@_var with constant function code and put
the head variable as the first argument. In that way, variables can retain all of the
properties they had in original E (including perfect sharing).

However, we kept in mind that $@_var is not a real function symbol and we
have undone this encoding in many places where this would introduce problems
(calculating the weight and the depth of the term, for example).

To conclude how we generalized terms and to better explain the memory layout
of E, we will illustrate it in an object diagram. In Figure 3.23.2, the in-memory repre-
sentation of the term f (g a) (Xt→t→t (g a) b)Yt is depicted.

22 Chapter 3. Generalizing Types and Terms

FIGURE 3.2: Memory layout of the term f (g a) (Xt→t→t (g a) b)Yt

3.3 Knuth-Bendix Order

In Section 2.32.3, we stated that the superposition calculus needs a term order to deter-
mine literals that are eligible to be part of an inference rule. E supports the Knuth-
Bendix order (KBO) and the lexicographical path order (LPO). Becker et al. have
generalized KBO [Bec+17Bec+17] to LFHOL terms and showed the benefits this generaliza-
tion has over first-order KBO on applicative encoding of LFHOL terms. In hoE, we
implemented this generalization of KBO, which will be described in what follows.

3.3.1 First-order Knuth-Bendix Order

The Knuth-Bendix order on first-order terms >KBO−FO is parametrized with a partial
order �F on the set of function symbols F and a weight function ϕ that assigns an
integer (weight) to function symbols and variables. The weight function is extended
to (non-variable and non-constant) terms by ϕ(f (t1, t2, . . . , tn)) = ϕ(f) + ϕ(t1) +
ϕ(t2) + . . . + ϕ(tn). Furthermore, for each function symbol or variable ξ, we denote
the number of occurrences of ξ in s as |s|ξ

Definition 34. Assuming partial order �F on set of function symbols F and weight
function ϕ, >KBO−FO on terms s and t is defined recursively as follows:

1. if s ≡ f (s1, s2, . . . , sn) and t ≡ g(t1, t2, . . . , tm) then s >KBO−FO t if

• |s|x ≥ |t|x, for all variables x (var-check) and

(a) ϕ(s) > ϕ(t) or
(b) ϕ(s) = ϕ(t), f �F g or

3.3. Knuth-Bendix Order 23

(c) ϕ(s) = ϕ(t), f = g and there exists some i, such that
s1 ≡ t1, s2 ≡ t2, . . . , si−1 ≡ ti−1 and si >KBO−FO ti

2. if s ≡ f (s1, s2, . . . , sn), t ≡ x, where x is a variable that appears in s, then
s >KBO−FO t.

If one would implement the first-order KBO naively following the definition,
repeated computations will be performed – the var-check and the weight computa-
tion are performed for subterms possibly many times. This would incur O(N2) time
complexity, where N = |s|+ |t| (| · | is the number of function symbols or variables
in a term).

Löchner has devised an elegant way to compute the result of the KBO compari-
son in O(N) time [Löc06Löc06]. The main idea presented in Löchner’s work is avoiding
repeated work for subterms by using the tupling method. In the tupling method, the
results for independent subcomputations are calculated and returned as a tuple to
the caller function.

Furthermore, even if the weight computation and var-check are performed effi-
ciently, KBO might have to perform lexicographic comparison of the argument tu-
ple. Löchner’s KBO also computes the lexicographical comparison bottom-up, so no
computation will have to be performed twice on any subterm.

In E, KBO comparison is implemented in a function KBO6Compare, which is lo-
cated in file ORDERINGS/cto_kbolin.c. This implementation completely corresponds
to a version of linear KBO from Löchner’s paper.

3.3.2 Knuth-Bendix Order Extended to LFHOL Terms

Becker et al. [Bec+17Bec+17] have gracefully extended KBO to LFHOL terms. Their KBO
extension fully coincides with FOL KBO on FOL terms. We decided to implement
this extension, using the Löchner’s tupling method.

This extension uses another parameter to KBO, a mapping ghd that can be used
to compare even more LFHOL terms. Namely, by extending the precedence on func-
tion symbols �F using ghd, we can compare terms that have variable as a head to
other terms that have other symbols at the head.

In our current implementation of hoE, we give up this ability and if there is a
variable at the head of a term t, we can compare it only to other terms s that have the
same variable at the head. In future versions of hoE, we may reverse this decision
and try to find efficient ways to compare terms that have variables at the head.

Moreover, the extension in Becker et al.’s work allows argument tuples of differ-
ent function symbols to be compared in different ways (e.g. using length-lexicographic
order or multiset order extension). In our implementation we support only length-
lexicographic comparison of argument tuples for all function symbols.

Definition 35. Assuming a partial order �F on a set of function symbols F and a
weight function ϕ, >KBO−HO on terms s and t is defined recursively as follows:

1. if s ≡ ξ1 s1 s2 . . . sn and t ≡ ξ2 t1 t2 , . . . tm, where ξ1 is the head symbol of s
and ξ2 is a head symbol of t, in the sense of unique decomposition discussed
in Section 3.2.23.2.2 then s >KBO−HO t if

• |s|X ≥ |t|X, for all variables X (var-check) and

(a) ϕ(s) > ϕ(t) or
(b) ϕ(s) = ϕ(t), neither ξ1 nor ξ2 are variables and ξ1 �F ξ2 or

24 Chapter 3. Generalizing Types and Terms

(c) ϕ(s) = ϕ(t), ξ1 = ξ2, n > m or n = m and there is some i, such that
s1 ≡ t1, s2 ≡ t2, . . . , si−1 ≡ ti−1 and si >KBO−HO ti

2. if s ≡ ξ s1 s2 . . . sn, t ≡ x, where x is a variable that appears in s, then s >KBO−HO
t.

Even though >KBO−HO could compare FOL terms, our goal was to keep E’s per-
formance the same on FOL terms. Since term comparisons comprise up to 35% of
E’s runtime [Löc06Löc06], we decided to extend Löchner’s linear implementation of KBO
with length-lexicographic comparison and treatment of applied variables in a sepa-
rate function that will be called only when E is supplied with a higher-order prob-
lem.

Extending the linear implementation of KBO to LFHOL incurred immaterial
changes to FOL implementation. Namely, we had to account for length-lexicographical
comparison and for the fact that applied variables can be at the head of the term.

In hoE, KBO comparison is also implemented in the function KBO6Compare, which
is located in the file ORDERINGS/cto_kbolin.c. However, depending on whether the
problem is higher-order or first-order different low-level code will perform compar-
ison.

25

Chapter 4

Generalizing Matching and
Unification

Unification stands as one of the conditions in each of the core inference rules of the
superposition calculus. It is an important algorithm in many fields of computer
science that has been studied for many decades. Furthermore, it is a well known fact
that for HOL with lambdas unifiability of terms is not even decidable.

We give a LFHOL unification algorithm that coincides with FOL unification for
FOL terms. Furthermore, the version of the algorithm that we give in this chapter
preserves the time complexity of FOL unification algorithm. In the worst case, time
complexity of the unification algorithm is exponential.

On the other hand, matching can be seen as a special case of unification, but
efficient treatment of matching in the form of a separate algorithm is preferred. We
gracefully extend the FOL matching to LFHOL, preserving linear time complexity
of the FOL algorithm.

4.1 Matching

Given two terms s and t, the matching problem is finding a substitution σ, such that
σ(s) = t. If such a substitution exists, we will call t an instance of s, and we will call
s more general than t. σ is called a matching substitution. Additionally, if σ exists, we
say s can be matched onto t.

The matching problem is inherently oriented. In other words, the matching finds
a substitution that instantiates variables only in term s, whereas term t is passive.
To avoid confusion and to have a uniform way to refer to arguments of matching
procedure, we will call term s pattern and term t target.

One could solve the problem of LFHOL matching using the isomorphism with
applicatively encoded FOL terms. However, this would be inefficient since we would
need to perform a two-way translation. Thus, we created an algorithm that works
with native LFHOL terms.

4.1.1 First-Order Matching Algorithm

In the spirit of Terese [Bez+03Bez+03], we will present the matching algorithm by trying to
solve a seemingly more general problem – matching of a set of equations.

Let S = {s1 = t1, . . . , sn = tn} be a set of equations. The matching problem
for the set of equations consists of finding the substitution σ such that for each si,
σ(si) = ti. Our initial problem now easily reduces to finding the solution for the set
{s = t}.

One way to solve the matching problem for a set of equations is given in Algo-
rithm 11. In Algorithm 11 we call an equation solved if it is of the form x = t, where x

26 Chapter 4. Generalizing Matching and Unification

Algorithm 1 Matching algorithm for FOL terms
1: procedure MATCH(EquationSet S)
2: while S is not solved do
3: Pick an unsolved equation s = t from S
4: if s ≡ f (s1, . . . , sn) and t ≡ f (t1, . . . , tn) then
5: S← (S \ {s = t}) ∪ {s1 = t1, . . . , sn = tn}
6: else if s ≡ f (s1, . . . , sn) and t ≡ g(t1, . . . , tm) and f 6= g then
7: return MATCHFAILED

8: else if s ≡ f (s1, . . . , sn) and t ≡ x, where x is a variable then
9: return MATCHFAILED

10: else if s ≡ x, where x is a variable and (s = t′) ∈ S, for term t′, t′ 6= t then
11: return MATCHFAILED

12: return MATCHSUCCEEDED

is a variable and x = t′, t′ 6= t does not appear in S. Similarly, a set S is solved, if all
of its equations are solved.

At the end of Algorithm 11, if there is a matching substitution σ, it will be stored
in S, as a set of solved equations xi = ui.

4.1.2 E Implementation of the Matching Algorithm

E implements Algorithm 11 in a C procedure called SubstComputeMatch, located in
the file TERMS/cte_match_mgu_1-1.c. The algorithm’s complexity is linear in the size
of the pattern and the target and it implements a heuristic to return failure for terms
that are obviously not matchable.

Let function ϕSTD be the standard weight function that assigns variable weights
of 1 and function symbols weight of 2. It is lifted to terms recursively by ϕSTD(f (t1,
. . . , tn)) = ϕSTD(f) + ϕSTD(t1) + . . . + ϕSTD(tn).

Theorem 5. Let s be a term and σ a substitution. Then ϕSTD(σ(s)) ≥ ϕSTD(s).

Theorem 6. Let s be a pattern and t a target in matching problem. If ϕSTD(s) >
ϕSTD(t) then there is no substitution σ such that σ(s) = t.

Theorem 66 is a corollary of Theorem 55 (proved by a simple induction on the term
structure). Namely, if s can be matched onto t, σ(s) = t, for a substitution σ. Thus,
ϕSTD(σ(s)) = ϕSTD(t). However, if ϕSTD(s) > ϕSTD(t), then for each σ, ϕSTD(σ(s)) >
ϕSTD(t) by Theorem 55 and transitivity of≥. In the end, we get ϕSTD(σ(s)) > ϕSTD(t),
which contradicts the fact that s can be matched onto t.

For representing the set S, E uses a stack D. The left hand side and the right hand
side of each equation in S are represented as two consecutive stack entries.

At the beginning of the algorithm, the pattern s and target t are pushed (in that
order) to D. This corresponds to initializing the set S with {s = t}.

At the beginning of the algorithm’s main loop two terms ti and si are popped
from D. Having in mind the order in which terms are pushed to the stack, the term
si corresponds to the left-hand side of the corresponding equation si = ti.

Then, all four checks from Algorithm 11 are performed. If the head symbols of
si and ti match then it is an invariant of FOL that they have the same number of
arguments. Thus, the arguments of si and ti can be pushed to D in pairs where si’s
argument is pushed first. If the head symbols differ, failure is reported. This check
also covers the case where si is a complex term and ti is a variable, because the head
symbol of si would have a positive f_code, whereas ti would have a negative f_code.

4.1. Matching 27

Furthermore, if si is a variable its binding pointer is checked. If the binding
pointer is set, this means that this equation is solved and si shouldn’t be bound to
any other term. Thus, if si’s binding pointer points to the term t′i, set S would have
solution if and only if ti = t′i (this corresponds to last check in Algorithm 11). If the
binding pointer of si is not set then si = ti is part of the substitution, so E sets the
binding pointer accordingly and adds si = ti to the substitution object.

If the term s can be matched onto t, at the end of SubstComputeMatch, the binding
fields of variables in s will have the values mandated by σ and they will be recorded
in the substitution object.

To show how E matches terms, we will illustrate it with a Figure 4.14.1 that shows
the matching of s ≡ f (x, g(y)) against t ≡ f (h(a, b), g(c))

FIGURE 4.1: An example of matching FOL terms

4.1.3 Lambda-Free Higher-Order Matching Algorithm

LFHOL terms pose a few new challenges for term matching. The most important
one is that LFHOL terms allow partial application and applied variables. Having
this and the fact that the notion of subterms is quite different in LFHOL case in
mind, it is not entirely clear if Algorithm 11 can be gracefully generalized. Using
a few examples, we give an intuition about what kind of issues can appear when
matching LFHOL terms and then generalize their implementation.

From the definition of subterms for LFHOL, it is obvious that even for a small
term, the set of its subterms is relatively large. Namely, it can be shown that a
LFHOL term f t1 . . . tn has almost twice as much subterms as the first-order term
f (t1, . . . , tn) [BWW17BWW17]. In other words, if we interpret a LFHOL term as a FOL term,
we would observe only about half the subterms a real LFHOL interpretation (with
prefix subterms) would show.

Example 6. The set of subterms for LFHOL term f (g a b) (h c) is { f (g a b) (h c), f (g a b),
f , g a b, g a, g, a, b, h c, h, c}, whereas the set of subterms for FOL term f (g(a, b), h(c))
is { f (g(a, b), h(c)), g(a, b), a, b, h(c), c}.

For a given term s, E finds all subterms of a term t ≡ f (t1, . . . , tn) that s can
be matched onto during some part of the proof search. To that end, E will first try
to match s onto t and then perform the same operation recursively for subterms
t1, . . . , tn (in some cases the order might be subterms-first).

However, LFHOL terms do not only have subterms that are arguments of the
head symbol, but possibly also prefixes of the term. One obvious solution to facil-
itate the support for matching prefixes of terms is to change E’s subterm traversal
loop to explicitly create the prefix of the target and try to match the pattern onto
it. This would not only be substantial change in terms of the amount of code to be
added, but also wasteful. One could prove that at most one prefix of a term t can
be matched by the term s. Thus, this approach would create an order of n prefix
subterms and perform matching for each of those which is linear in the length of the
term – incurring a substantial overhead.

28 Chapter 4. Generalizing Matching and Unification

Algorithm 2 Matching variable to a possible prefix of a term
1: procedure PARTIALMATCH(Term var, Term t, EquationSet S)
2: Declare args_eaten
3: if SUFFIXEQUAL(var.type, t.type) then
4: args_eaten← TYPEARROWARITY(t.type) − TYPEARROWARITY(var.type)
5: else
6: return MATCHFAILED

7: if var is not bound in S or var is bound to t[: args_eaten] in S then
8: return args_eaten
9: else

10: return MATCHFAILED

Example 7. Term s ≡ f a b can be matched onto subterm f a b of t ≡ f a b c. Note
that there is no other prefix of t s can be matched onto.

Thus, we created a matching procedure that given a pattern s and a target t deter-
mines the only prefix of t that s can match onto. As a result, in the case of a successful
matching, the amount of remaining arguments of t (trailing arguments) is returned.

Hence, the matching problem for LFHOL terms has to be stated slightly differ-
ently. To account for the fact that the target term can have trailing arguments, we can
assume that we can concatenate some number of fresh (unused in any of the terms)
variables to the pattern’s argument tuple.

More precisely, the LFHOL matching problem is stated as follows: given terms
s and t, where s has n arguments, and s’s head symbol can be applied to at most k
arguments (k ≥ n), is there a substitution σ, and a tuple of fresh variables a of length
l ≤ k− n, such that σ(s · a) = t, where · represents argument concatenation.

Matching prefixes is not only an optimization, however. It arises as a necessity
when matching applied variables. In what follows, a k-length prefix of t ≡ f s1 . . . sn
(k ≤ n) is denoted as t[: k], where t[: k] = f s1 . . . sk. The prefix which consists of all
arguments except for the last l (l ≤ n) arguments is denoted as t[: −l] = f s1 . . . sn−l .

Example 8. Suppose that we try to match Xt→t→t c d onto the term f a b c d. The
substitution σ = {X 7→ f a b} would be a matching substitution (if f a b has type
t→ t→ t).

Theorem 7. Let s ≡ X s1 . . . sn be a pattern and t be a target in the matching problem.
Additionally, let X have type T1 → . . . → Tn, and the head symbol of t type U1 →
. . . → Um. Then s can be matched onto t if m ≥ n and T1 = Um−n+1, . . . , Tn = Um.
Furthermore, in the matching substitution, X has to be bound to the prefix of length
m− n of the term t.

Calculation of the prefix subterm that variable X from Theorem 77 matches can
be performed using Algorithm 22. This algorithm will be the crucial part of LFHOL
matching procedure.

To the caller, LFHOL matching procedure returns the number of the trailing ar-
guments of the target. On the higher level, the consequence is that E’s subterm
traversal schemes do not have to be changed at all to be able to take into account
new subterms.

Even more importantly, this algorithm has exactly the same worst-case asymp-
totic complexity as the first-order matching algorithm. This is completely in line
with E’s brainiac spirit.

4.1. Matching 29

Algorithm 3 Matching algorithm for LFHOL terms
1: procedure FRESHVARSNUM(Term pattern, Term target)
2: missing_pattern← MAXARITY(pattern.type)− pattern.arity
3: missing_target← MAXARITY(target.type)− target.arity
4: if missing_pattern−missing_target ≥ 0 then
5: return missing_pattern−missing_target
6: else
7: return MATCHFAIL

8: procedure MATCHLFHOLAUX(EquationSet S)
9: Declare remaining_args

10: while S is not solved do
11: Pick an unsolved equation s = t from S
12: if s ≡ f s1 . . . sn and t ≡ f t1 . . . tn then
13: S← (S \ {s = t}) ∪ {s1 = t1, . . . , sn = tn}
14: else if s ≡ f s1 . . . sn and t ≡ g t1 . . . tm and f 6= g then
15: if f is a variable then
16: p← PARTIALMATCH(f , t, S)
17: if p 6= MATCHFAIL and n + p = m then
18: S← (S \ {s = t}) ∪ { f = t[: p], s1 = tp+1, . . . , sn = tp+n}
19: else
20: return MATCHFAIL

21: else
22: return MATCHFAIL

23: else if s ≡ f s1 . . . sn and t ≡ X, where X is a variable then
24: return MATCHFAIL

25: return MATCHSUCCESS

26: procedure MATCHLFHOL(Term pattern, Term target)
27: trailing← FRESHVARSNUM(pattern, target)
28: if trailing 6= MATCHFAIL then
29: Create a copy of pattern, pattern′

30: Append a tuple of fresh variables of length trailing to pattern′

31: return (MATCHLFHOLAUX({pattern′ = target}), trailing)
32: else
33: return (MATCHFAIL, 0)

Lastly, the pseudocode for the LFHOL matching algorithm is given in Algorithm
33. Note that the check that a variable is not bound to multiple terms (i.e. a substitu-
tion maps variable to two different terms) now degenerates to a special case of the
second check performed in Algorithm 33 (when n = 0).

4.1.4 hoE Implementation of LFHOL Matching Algorithm

hoE implements the Algorithm 33 in a C procedure called SubstComputeMatchHO, lo-
cated in the file TERMS/cte_match_mgu_1-1.c. The procedure’s signature is different
from SubstComputeMatchHO because it returns not only a boolean, but a negative
constant NOT_MATCHED if the matching failed, or the number of trailing arguments in
the target if matching succeeded.

30 Chapter 4. Generalizing Matching and Unification

The main difference between Algorithm 11 and Algorithm 33 is that the latter tries
to match not just one instance term, but possibly a prefix of it. This means that some
arguments of the target term might be left as remainder.

At early phase of the development of hoE, we wanted to be able to print more
debug information and have information about arguments remaining in the instance
term. Note that in Algorithm 33, the remaining (trailing) arguments of t are ignored
except for noting their number.

Thus, we represented the set S with two stacks Ds and Dt corresponding to the
pattern s and the target t. When the term’s heads match or applied variable gets
matched to the prefix of term, we push the remaining arguments of a term to the
corresponding stack. Note that if one would push arguments from right to left, then
popping the term si from Ds and the term ti from Dt would give a valid equation
si = ti.

After thorough testing of the LFHOL matching procedure, we have enough as-
surance that the procedure is bug-free and in future versions we will combine two
stacks in one (just like it is done in E).

One more difference from the original E matching implementation is that mak-
ing sure a variable is not bound to two terms is now performed with a more com-
plex TermIsPrefix check (not just simple pointer equality comparison of binding
pointer), since applied variables can match prefixes of terms, as shown in Example
99.

Example 9. Suppose we match the pattern s ≡ Xt→t (Xt→t b) against the target
t ≡ f a b (f a b b). Clearly, σ = {X 7→ f a b} is a matching substitution. After the
first step of the LFHOL matching algorithm, Xt→t would be bound to f a b. Then
Xt→t b would be matched against f a b b. If we would now do the simple X’s binding
pointer comparison against the right-hand side (like it is done in the FOL case) of the
equation we would get a mismatch. Instead (like in Algorithm 33) we should com-
pare what a variable is bound to to the prefix of the right-hand side.

This extension of the first-order algorithm is graceful. This means that if the
LFHOL algorithm would be given first-order terms it would give exactly the same
result as FOL algorithm, with the same worst-case algorithm complexity. However,
since E is highly optimized for FOL, we decided to run the old algorithm whenever
E is ran on a FOL problem. The reason for that is that the applied variable checks and
typing checks are redundant in this case and would add some overhead compared
to the native FOL algorithm.

4.2 Unification

Given two terms s and t, the unification problem is finding a substitution σ, such
that σ(s) = σ(t). If such a substitution exists, we will call terms s and t unifiable and
σ unifier.

Unlike matching, unification is symmetric. In other words, unifier of terms s and
t exists if and only if unifier of terms t and s exists.

The existence of the most general unifier for LFHOL terms is a consequence of
the isomorphism with applicative FOL encoding. Similarly to matching, the most
general unifier could be found by leveraging this isomorphism. Since this approach
is inefficient, we created an algorithm that deals with LFHOL terms represented
natively.

4.2. Unification 31

Algorithm 4 Unification algorithm for FOL terms
1: procedure UNIFY(S)
2: while S is not solved do
3: Pick a violating equation s = t from S
4: if s ≡ f (s1, . . . , sn) and t ≡ f (t1, . . . , tn) then
5: S← (S \ {s = t}) ∪ {s1 = t1, . . . , sn = tn}
6: else if s ≡ f (s1, . . . , sn) and t ≡ g(t1, . . . , tm) and f 6= g then
7: return UNIFICATIONFAILED

8: else if s ≡ x and t ≡ x, where x is a variable then
9: S← S \ {s = t}

10: else if s ≡ f (s1, . . . , sn) and t ≡ x, where x is a variable then
11: S← (S \ {s = t}) ∪ {t = s}
12: else if s ≡ x, where x is a variable and x occurs in t then
13: return UNIFICATIONFAILED

14: else if s ≡ x, where x is a variable then
15: S← {x = t} ∪ [x 7→ t](S \ {s = t})
16: return UNIFICATIONSUCCEEDED

4.2.1 First-order Unification Algorithm

As in the case of matching, following Terese [Bez+03Bez+03], we will solve a seemingly
more general problem – unification of a set of equations S. Before we delve into
giving algorithm for solving the unification problem we define some notation. First,
a substitution σ is applied to a set of equations S = {s1 = t1, . . . , sn = tn} by σ(S) =
{σ(s1) = σ(t1), . . . , σ(sn) = σ(tn)}. Second, we will denote a substitution that maps
a single variable x to a term t by [x 7→ t].

The unification algorithm follows roughly the same scheme as the matching al-
gorithm. It deconstructs terms that have the same head symbols, solves the problem
for the arguments, and binds variables to corresponding terms. However, unifica-
tion is undirected, which means that a variable subterm in the right-hand side of the
equation can match a more complex subterm of the left-hand side of the equation.

Unlike a matching substitution, the unifier σ will be applied to both sides of
the equation. This is why in the unifier σ, no variable x can be bound to a term
containing x. The check that this case does not happen is called occurs-check. This
check can be costly and some unification algorithms (e.g. the one in Prolog) do not
perform it, at the cost of unsoundness.

Example 10. Suppose we want to unify terms s ≡ x and t ≡ f (x). If we would
apply substitution σ = {x 7→ f (x)} to s and t we would get terms σ(s) ≡ f (x) and
σ(t) ≡ f (f (x)). It is clear that since σ(s) 6= σ(t), σ is not unifier (and moreover, it
can be shown that no unifier exists for those two terms). Note that term s can be
matched onto t.

Lastly, when a variable is bound in the unification algorithm, this binding is ap-
plied to the whole remaining set S. The need for this stems from the non-orientation
of unification, since it is necessary to apply the effects of variable binding to both the
left- and the right-hand sides of equations simultaneously.

We present pseudocode for the FOL unification algorithm in Algorithm 44. A set
of equations S is called solved if each equation is of the form {x1 = u1, . . . , xn = un},
where xi does not appear in any right-hand side uj of the equation in set S. Any
equation that causes S not to be solved is called a violating equation.

32 Chapter 4. Generalizing Matching and Unification

FIGURE 4.2: Unification of first order terms

4.2.2 E Implementation of the Unification Algorithm

hoE implements Algorithm 44 in a C procedure called SubstComputeMgu, located in
the file TERMS/cte_match_mgu_1-1.c. The worst-case time complexity of this proce-
dure is exponential. Furthermore, the result of Theorem 66 is no longer applicable to
unification, so SubstComputeMgu cannot use weight-optimization.

E implements the set S as a queue where consecutive elements correspond to
the right-hand side and the left-hand side of the equation. The reason why E uses
a queue instead of a stack in the case of unification is that E tries to delay the appli-
cation of the rule in line 15 of the Algorithm 44 as much as possible. For that reason,
equations of form x = t, where t 6≡ x and x is a variable are put to the back of the
queue and considered last.

Namely, in practice, most of the tries to unify terms will fail, usually because
the top symbols of the equations do not match. Finding this mismatch as early as
possible would speed up the unification procedure.

Variables act as wildcards in unification procedure. In other words, they can
match any term of the same type. Unifying a variable would delay finding possible
mismatches. This would have even further-reaching consequences since a bound
variable would have to be applied to the whole set of equations – incurring another
slowdown (though E handles substitution application rather efficiently). Thus, E
uses delaying binding variables as a heuristic that enables it to find mismatches
faster.

Lastly, we illustrate the process of unifying terms s ≡ f (g(h(x), y), z) and t ≡
f (g(z, w), h(x)) in Figure 4.24.2.

4.2.3 Lambda-Free Higher-Order Unification Algorithm

Most of the extensions that are related to matching prefixes and applied variables
carry over to the unification algorithm. However, the algorithm’s inherent lack of
orientation posed new problems for our prefix match optimization.

Example 11. The term f a Xt is unifiable with a subterm f Yt b of a term f Yt b c. Sim-
ilarly, the subterm g c of a term g c d is unifiable with a term Zt→t→t c.

4.2. Unification 33

As one can see in Example 1111, arguments can remain in either of the parameters
to the unification procedure. Thus, the LFHOL unification procedure does not only
have to determine if a term unified with a prefix, but check possibility of either side
unifying with a prefix of the other side.

Like the matching problem, the unification problem has to be stated differently
in LFHOL. Given terms s ≡ f s1 . . . sn and t ≡ g t1 . . . tm, where f can be applied to
at most k arguments (k ≥ n), g to at most l arguments (l ≥ m) unification problem is
restated for LFHOL as follows: is there a substitution σ, and a tuple of fresh variables
a of length i ≤ k− n, such that σ(s · a) = σ(t) or a substitution ρ and a tuple of fresh
variables b of length j ≤ l − m, such that ρ(s) = ρ(t · b), where · is argument tuple
appending operation.

Furthermore, line 11 of Algorithm 44 reorients an equation in which the right-
hand side is a variable. LFHOL unification has to generalize this reorientation since
it might happen that both on the left-hand side and the right-hand side a variable
appears as a head symbol, and only one orientation of the variable binding leads to
a unifier.

Example 12. The term s ≡ Yt→t→t→t a a b and the term t ≡ Xt→t→t a b are unifiable,
with the unifier σ = {X 7→ Y a}.

In Example 1212, to determine the correct unifier the equation has to be oriented as
t = s. Using the results of Theorem 77 we always reorient equations in a way that an
applied variable that has lower maximal arity is the left-hand side of the equation.
If the maximal arities are the same, the orientation is arbitrary.

The complete pseudocode for the LFHOL unification procedure is given in Al-
gorithm 55. We modified PARTIALMATCH to PARTIALUNIFY to disable checks that
are only applicable to the matching algorithm. FRESHVARSUNIFNUM calculates the
exact number of fresh variables that have to be added to one side for unification to
potentially succeed.

In conclusion, even though the unification algorithm might be considerably more
complex, we managed to preserve several properties that are of major importance to
this project. Firstly, we achieve complete compatibility with FOL unification. This
means that the extension is graceful. Secondly, this algorithm incurs only constant-
time overhead when unifying FOL terms. And lastly, it determines the maximal
prefix matched, which means that no additional subterms other than FOL subterms
will have to be traversed to perform all of the inferences E performs.

4.2.4 hoE Implementation of LFHOL Unification Algorithm

hoE implements the Algorithm 55 in a C procedure called SubstComputeMguHO, lo-
cated in the file TERMS/cte_match_mgu_1-1.c. This procedure is exponential in the
sum of the size of the arguments. It also does not return only boolean as the result,
but a UnificationResult object that plays the role of the tuple in Algorithm 55.

Similar to the LFHOL matching algorithm, we used two stacks to store equa-
tions. Due to the fact that relatively serious complications have arisen with applied
variables, in this version of hoE we did not implement E’s optimization of delaying
binding variables. In the first hoE update, we will unify two stacks and consider the
changes needed to delay binding variables.

In the hoE implementation we manged to combine the procedures PARTIAL-
MATCH and PARTIALUNIFY to achieve even further code sharing. Like matching,
LFHOL unification is ran only when the E’s input problem is higher-order.

34 Chapter 4. Generalizing Matching and Unification

Algorithm 5 Unification algorithm for LFHOL terms
1: procedure FRESHVARSUNIFNUM(Term s, Term t)
2: missing_s← MAXARITY(s . type)− s . arity
3: missing_t← MAXARITY(t . type)− t . arity
4: return missing_s−missing_t
5: procedure PARTIALUNIFY(Term var, Term t)
6: Declare args_eaten
7: if SUFFIXEQUAL(var.type, t.type) then
8: args_eaten← TYPEARROWARITY(t.type) − TYPEARROWARITY(var.type)
9: else

10: return UNIFICATIONFAIL

11: return args_eaten

12: procedure UNIFYLFHOLAUX(EquationSet S)
13: while S is not solved do
14: Pick a violating equation s = t from S
15: if s ≡ ϕ s1 . . . sn and t ≡ ϕ t1 . . . tn then
16: S← (S \ {s = t}) ∪ {s1 = t1, s2 = t2, . . . , sn = tn}
17: else if s ≡ ϕ s1 . . . sn and t ≡ γ t1 . . . tm and ϕ 6= γ then
18: if neither ϕ nor γ are variables then
19: return UNIFICATIONFAILED

20: else if both γ and ϕ are variables and n > m
21: or γ is a variable and ϕ is not then
22: S← (S \ {s = t}) ∪ {t = s}
23: else if ϕ is a variable then
24: p← PARTIALUNIFY(ϕ, t, S)
25: if p 6= UNIFICATIONFAIL and n + p = m then
26: S← (S \ {s = t}) ∪ {ϕ = t[: p], s1 = tp+1, . . . , sn = tp+n}
27: else
28: return UNIFICATIONFAIL

29: else if s ≡ X and t ≡ X, where X is a variable then
30: S← S \ {s = t}
31: else if s ≡ X, where X is a variable and X occurs in t then
32: return UNIFICATIONFAILED

33: else if s ≡ X, where X is a variable then
34: S← {X = t} ∪ [X 7→ t](S \ {s = t})
35: return UNIFICATIONSUCCESS

36: procedure UNIFYLFHOL(Term s, Term t)
37: trailing← FRESHVARSUNIFNUM(pattern, target)
38: Declare trailing_side
39: Create a copy of t, t′ and a copy of s, s′

40: if trailing < 0 then
41: Append a tuple of fresh vars of length |trailing| to t′

42: trailing_side← TRAILINGLEFT

43: else
44: Append a tuple of fresh vars of length trailing to s′

45: trailing_side← TRAILINGRIGHT

46: if UNIFYLFHOLAUX({s′ = t′}) = UNIFICATIONSUCCESS then
47: return (trailing_side, trailing)
48: else
49: return UNIFICATIONFAIL

35

Chapter 5

Generalizing the Indexing Data
Structures

During the proof search a theorem prover has to consider a large number of clauses
as an inference partner to a given clause. The superposition calculus restricts the
possible number of inference partners by using a complex set of constraints for each
inference rule.

The task of the indexing data structures is to filter only those clauses that might
be eligible as an inference partner to a given clause. The main reason for their use is
that by avoiding the naive search through the proof state, we can save a substantial
amount of time and increase the clause throughput. If the indexing data structure
returns exactly those clauses that are eligible for the inference we call that indexing
structure perfect.

One recurring constraint in all of the inference rules of the superposition cal-
culus is that a term in one clause must be unifiable with a term in another clause.
Furthermore, as we will see in Chapter 66, there are other constraints put on terms in
inference and simplification rules. Some of the operations one needs from an index-
ing data structure are

• Finding unifiers: For a query term t, find all terms s such that s and t are
unifiable (σ(s) = σ(t), for some substitution σ).

• Finding instances: For a query term t, return all instances s of t (s = σ(t), for
some substitution σ).

• Finding generalizations: For a query term t, return all generalizations s of t
(σ(s) = t, for some substitution σ).

One could conclude from this list that indexing techniques work only on (sets
of) terms. However, there are structures that index clauses. In other words, those
structures filter only clauses that satisfy some constraint. Even though we cover
subsumption in detail in Chapter 66, for the sake of completeness, we give a list of
operations one needs from an index working on a clause level:

• Finding subsumers: For a query clause C, find all clauses D such that σ(D) ⊆
C for some substitution σ.

• Finding subsumed clauses: For a query clause C, find all clauses D such that
σ(C) ⊆ D for some substitution σ.

36 Chapter 5. Generalizing the Indexing Data Structures

5.1 Perfect Discrimination Trees

5.1.1 Description of the Data Structure

The problem of searching digital text for patterns is one of the fundamental problems
in computer science. Because of its importance it has been researched thoroughly
and many efficient algorithms that solve this problem have been devised.

One way to represent the text as a set of words which supports various querying
operations is to organize words in a tree structure called trie.11 In a trie, characters
of the word are used to find a path to the node that stores some information related
to the word (e.g. the number of occurrences). In other words, each node has a set of
edges that are labeled with characters of the alphabet [Knu98Knu98]. The root of the tree
has edges that are labeled with the first characters of the indexed words, the nodes
on the second level are labeled with the second characters of the indexed words, and
so on. Tries can perform a lot of operations on a set of words efficiently – checking
if the word is present, counting occurrences or finding words with common prefix,
to name a few. Tries can be used to index not only strings, but tuples of any objects
that have a way to be represented as a string.

In FOL, each function symbol is always passed the same number of arguments.
This means that if we know the arity of function symbols, we can unambiguously
represent the term as a string, omitting all of the parentheses and commas. This
string is exactly the string one would get by printing each term symbol in preorder
traversal (depth-first, left-to-right).

Example 13. A term t ≡ f (g(c), h(g(x), g(f (z, y)))) can be represented as f g c h g x g
f z y. Similarly, if we were given a string f g c h g x g f z y and the information about
arities of symbols, we could reconstruct the term f (g(c), h(g(x), g(f (z, y)))) assum-
ing the arities are as in t.

Now that we have the means to represent the terms flattened as strings, we can
reuse data structures (such as tries) that are used to index strings to employ them in
indexing terms.

One of the data structures that are reusing tries is the Discrimination Tree. This
data structure can work in two modes – as a perfect or imperfect index. The im-
perfect version is easier to implement but has worse performance in practice. The
nodes in this tree are labeled with function symbols or variables and each path from
the root to a leaf in this tree corresponds to one preorder traversal flattening of a
term. Since all of the FOL terms have unique flattening, each leaf corresponds to one
and only one term.

Discrimination trees are usually presented in their imperfect form in literature
[McC92McC92]; [RV01RV01]. This means that all the variables are replaced with the wildcard
symbol that matches any term, and the retrieval operations will return a superset of
all the terms that satisfy the query condition. By contrast, E implements the perfect
form of discrimination trees called Perfect Discrimination Trees (PDTs).

E uses PDTs only for finding generalizations. For that reason, we are going to
describe only this algorithm in what follows. We will present the algorithm in the
spirit of the Handbook of Automated Reasoning [RV01RV01], generalizing it to many-sorted
FOL and the perfect form of indexing.

We first need to introduce some notation. The position of the subterm that will
be visited right after t|p for some position p and term t in preorder traversal is called

1Pronounced as ”try”, stemming from retrieval.

5.1. Perfect Discrimination Trees 37

Algorithm 6 Finding generalizations in a PDT
1: procedure GENERALIZATIONSAUX(TreeNode n, Term t, Position p)
2: Res← ∅
3: if n is a leaf then
4: Res← Terms stored in n
5: else
6: if HEAD(t|p) is a function symbol adjacent to n then
7: neighbor← node corresponding to HEAD(t|p), adjacent to n
8: Res← GENERALIZATIONSAUX(neighbor, t, NEXT(t, p))
9: for all variables xa of the same type as t|p that are adjacent to n do

10: neighbor← node corresponding to xa, adjacent to n
11: bound← False
12: if xa is not bound to any term then
13: bound← True
14: Bind xa to t|p
15: if xa is bound to term t|p then
16: Res← Res∪ GENERALIZATIONSAUX(neighbor, t, AFTER(t, p))
17: if bound then
18: Unbind xa

19: procedure GENERALIZATIONS(PDTIndex i, Term query)
20: return GENERALIZATIONSAUX(i.root, query, ε)

next(t, p). The position of the subterm that will be visited right after all subterms of
t|p have been visited is called after(t, p).

The pseudocode for finding generalizations is given in Algorithm 66. This algo-
rithm matches the query term t by following all possible paths in a PDT that might
generalize the query term. At some position p during the search for generalizations,
if the head symbol of the term t|p matches some of the adjacent nodes’ label, we can
follow this link since we have observed no violation of matching compatibility so far
and move to the next symbol of the preorder traversal of t. Similarly, if there is an
adjacent node that is labeled with an unbound variable that matches t|p’s type, we
can bind the variable to t|p and advance to the position p′ that corresponds to the
symbol observed only after all subterms of t|p have been traversed, and follow the
path to the node that corresponds to the variable.

However, there are a few cases where we can’t find a generalization from the
current PDT node. If there is no adjacent node that matches the head symbol of the
query term, there is no substitution that can make the term stored in the PDT match
the query term. Similarly, if there is no variable of the matching type or the variable
is already bound to another term, we can end that part of the search.

Figure 5.15.1 shows the representation of a PDT containing a set of terms { f (x, a),
f (x, i(y)), f (g(x), h(y)), f (g(c), h(d)), g(x)}. Arrows show how this tree is traversed
when finding generalizations of f (g(a), i(a)). A blue arrow means that the matching
succeeded, whereas a red arrow means that the matching failed. The numbers above
the arrow indicate the order in which the subtrees are traversed.

Algorithm 66 returns the generalizations present in the PDT index. However, for
some use cases it might be more convenient to iterate through the resulting terms one
at a time. The way in which results are returned is called mode of retrieval [RV01RV01].
Storing the traversal state explicitly (e.g. using a stack), instead of using recursion,

38 Chapter 5. Generalizing the Indexing Data Structures

FIGURE 5.1: Finding a generalization in PDT

makes it possible to implement one-at-a-time retrieval mode.

5.1.2 E’s Implementation of PDT

E implements an optimized one-at-a-time PDT retrieval mode. It implements a two-
tier architecture where the user observes a high-level index structure, which itself
contains the root of the PDT in which the actual matching happens. The whole PDT
implementation is located in the file CLAUSES/ccl_pdtrees.c

The high-level data structure keeps most of the information related to the state of
the search and the PDT nodes keep the information if we already matched function
symbol and how many variables we have considered so far.

PDTs are used as an iterator – the user is expected to first call PDTreeSearchInit,
after which each call to PDTreeFindNextDemodulator will return generalizations, un-
til it returns NULL. The user is then expected to free the resources used for the search
by calling PDTreeSearchExit.

Each PDT node has two integer maps: f_alternatives and v_alternatives.
The first map maps function symbols to the successor nodes, while the second map
maps variables to the successor nodes.

The query term is flattened on demand. This means that E keeps the stack Dargs
on which it flattens the term as matching happens in the PDT. More precisely, the
abstract next operation of Algorithm 66 corresponds to pushing all the arguments of
the current query term right-to-left to Dargs. In this way the top of the stack always
stores the term that is to be visited in the preorder traversal. In contrast, the abstract
operation after corresponds to popping the term from the Dargs.

After following some path of the PDT it can happen that the matching will fail
on this path. PDT traversal algorithm then backtracks to the first position where the
choice is possible. But backtracking does not only mean that we move upwards in
the PDT, it also means that we consider a different position in the query term – that
is, we have to undo the next or after operation.

5.1. Perfect Discrimination Trees 39

FIGURE 5.2: E’s stack management while finding generalizations of
f (g(a), i(a))

Undoing the following of the PDT node labeled with a function symbol corre-
sponds to moving up the tree and undoing the next operation. When we followed
the edge, we performed next by pushing the arguments tn, . . . , t1 of the term t|p to
Dargs. An example of this operation is labeled with A on Figure 5.25.2 which shows
how E finds generalization of term f (g(a), i(a)) in the tree from Figure 5.15.1.

When we have to undo this operation, we follow the edge in the reverse di-
rection. By reading the edge’s label f we could reconstruct the previous state, by
popping n terms t1, . . . , tn from Dargs where n is f ’s arity. However, this newly con-
structed term, though structurally equivalent to the one from the previous search
state, is not the same object in memory (it is not shared yet). To avoid sharing the
term (i.e. inserting it in the term bank) E stores all of the terms that we deconstructed
by matching their top symbol on the Dprev stack and instead of constructing the term
again, just uses the one from the top of Dprev. This is labeled with B on Figure 5.25.2.

When we have to backtrack matching the variable against a term, we have to
move up the tree and backtrack the operation after. The term the variable is bound
to is stored in the binding field of the term object, and after corresponds to binding
the variable to the top of Dargs and popping the top afterwards (C on Figure 5.25.2)

This operation is easier to backtrack, as label D from Figure 5.25.2 shows. It is
enough to push the term the variable is bound to back to Dargs and move up in the
tree.

As an optimization, E uses Theorem 66 to further reduce the number of nodes it
traverses during the search for generalizations. In each node n, E stores the standard
weight of term that has the maximal standard weight among all the terms reachable
from n. If the query term has the weight higher than this stored value, we can back-
track right away.

E supports two traversal orders of the PDT. If we flipped the order in which
function symbol and variable nodes are visited, we would get the same results in
the end observed as a set. But the order in which we would get them would be
different. If we would first traverse variables, we would get more general terms
first.

5.1.3 E Bug

While working on LFHOL extension of PDTs, we have discovered a serious bug in
E. The presence of the bug was confirmed by E’s author, Stephan Schulz. Fixing the
bug is planned for the near future.

40 Chapter 5. Generalizing the Indexing Data Structures

Namely, E has been built around the assumption that each distinct variable (with
its unique f_code) has only one type. However, with a recent update by Simon
Cruanes that introduced type support, this invariant has been broken. As a result, E
2.0 allows two variables (which are two different objects in memory) with the same
f_code to have different types.

The consequences of breaking this uniqueness invariant are that if E stores mul-
tiple variables with the same f_code, but different types in the PDT, they are going
to overwrite each other after each insertion of the variable to the PDT. Only the last
added variable is going to be bound, but all of the variables stored in this node will
be returned one by one.

This bug manifests itself only if the variables are the root of the PDT. Namely, if
the variables are below the PDT root then their type is mandated by the position in
the term that they occupy. This means that below the root, variable can have one
and only one type, so different variable objects will have different f_codes.

For this bug to be triggered, the input (first-order) problem needs to have mul-
tiple clauses of the form x ≈ ti. Our guess is that the bug has not been discovered
so far since it only influences simplification engine and is unlikely to interfere with
soundness and completeness of the prover. However, we have not investigated the
effects of the bug on first-order problems fully. Thus, we cannot be entirely sure if,
in presence of this bug, E keeps both soundness and completeness.

5.1.4 LFHOL Extension of PDTs

One of the main underlying assumptions for PDTs was that each function symbol is
supplied a constant number of arguments. This obviously does not hold for LFHOL
terms.

Example 14. Consider the terms s ≡ f (g b) and t ≡ f g b. These two terms are both
flattened to f g b. Thus, without further information, the flattening f g b cannot be
unambiguously converted back.

However, all terms of LFHOL are typed. Using the typing information, we can
unambigously convert back and forth the flattened string and the usual representa-
tion of terms. For example, at most one of the terms s and t from Example 1414 can
be correctly typed. Towards a contradiction, suppose both terms can be correctly
typed. Since f is applied, it must have type A → B (it cannot be atom type a). Since
it is applied to g directly, g has to have type A for t to be correctly typed. Using the
same argument A can be deconstructed as A1 → A2 and b must be of type A1. On
the other hand, for s to be correctly typed g b has to have type A. Since g is applied
to b in s, g’s type is of the form A1 → A. However, in our type system no finite type
A can be defined as A := A1 → A.

Even though the flattened string unambiguously represents one and only one
LFHOL term, there are still fundamental differences between standard FOL PDTs
and our extension of PDTs to LFHOL. In FOL PDT, since every function symbol is
applied to the same number of arguments, no string corresponding to a flattening
of a term can be a prefix of another term’s flattening. This means that a node that
stores a term necessarily needed to be a leaf.

Example 15. The flattening of the term h (g b) is h g b. On the other hand, flattening
of the h (g b) a is h g b a (assuming h’s arity is larger than 2). The node that stores
h (g b) in LFHOL PDT will have an adjacent node storing h (g b) a.

5.1. Perfect Discrimination Trees 41

Algorithm 7 Finding generalizations in a LFHOL PDT
1: procedure ARGNUM(Term var, Term t)
2: if SUFFIXEQUAL(var.type, t.type) then
3: return TYPEARROWARITY(t.type) − TYPEARROWARITY(var.type)
4: else
5: return MATCHFAILED

6: procedure GENAUXHO(TreeNode n, Term t, Position p)
7: Res← ∅
8: if n contains terms then
9: for all terms t contained in n do

10: Res← Res∪ {(t, REMAININGARGS(t, p)}
11: if HEAD(t|p) is a function symbol adjacent to n then
12: neighbour← node corresponding to HEAD(t|p), adjacent to n
13: Res← Res∪ GENAUXHO(neighbor, t, NEXT(t, p))
14: for all variables xa that are adjacent to n,
15: for which ARGNUM(xa, t|p) 6= MATCHFAILED do
16: pref _len← ARGNUM(xa, t|p)
17: neighbor← node corresponding to xa, adjacent to n
18: bound← False
19: if xa is not bound to any term then
20: bound← True
21: Bind xa to pref _len-length prefix of t|p
22: if xa is bound to pref _len-length prefix of t|p then
23: Res← Res∪ GENAUXHO(neighbor, t, AFTERHO(t, p, pref _len))
24: if bound then
25: Unbind xa

26: procedure GENERALIZATIONSHO(PDTIndex i, Term query)
27: return GENAUXHO(i.root, query, ε)

Thus, one needs to make sure that the during the traversal, terms are not re-
turned only from leaves but from possibly any intermediate node.

Furthermore, we need to generalize the after operation, because in the LFHOL
case a variable might not match the whole subterm of a query term, but possibly a
prefix. The after(t, p) operation needs to take this into account and move the position
p to the first position after the matched prefix. This generalization of after depends
on the length of the matched prefix, which we have to supply as the argument. We
will denote the after’s generalization as afterHO.

The need for this change stems from the special form of higher-order term con-
text that is not present in FOL. Namely, by equality congruence property from equa-
tion h = g one can conclude h Xt = g Xt and h Xt Yt = g Xt Yt if h’s type is t→ t→ t.

Lastly, like matching (and for the same reasons), we want PDTs to find general-
izations that possibly match the prefix subterm of the query term. For that reason,
the PDT will not only find a generalization, but return the number of arguments
trailing in the query term. This can be fully determined from the position in which
we end the matching.

Example 16. Term f Xt Yt is the generalization of the f (g a) (g b) subterm of f (g a)
(g b) c.

42 Chapter 5. Generalizing the Indexing Data Structures

This generalization of FOL PDTs for LFHOL is entirely graceful. If all the terms
stored in the PDT are FOL terms, querying for generalizations would return the
same terms as before (in the same order). Moreover, the only place in the algorihtm
where time complexity might increase is matching of the prefix of the term (line 16).
Using a simple heuristic that would check if the variable’s type is the same as the
type of term at position p, we can conclude that we have to match the whole term.
This means that we can bind the term in O(1) again. Thus, for FOL terms the time
complexity remains the same as well.

5.1.5 Implementation of LFHOL PDTs in hoE

hoE implements an optimized one-at-a-time PDT retrieval mode. No changes to the
architecture of the PDT module have been performed, only small changes that en-
able all of the higher-order features of Algorithm 77. The whole PDT implementation
is located in the file CLAUSES/ccl_pdtrees.c.

One of the fundamental differences between FOL and LFHOL PDTs is that terms
can be stored in the inner nodes. However, as for the implementation this did not
require a lot of changes in the code. The most notable change is that every node is
queried for terms that it might store and that in a few places in term insertion and
deletion procedure changes were made to lift assumptions that only leaves can store
terms.

Prefix matching procedure from the unification and matching algorithms has
been used again to match prefixes of the term in the case a (applied) variable appears
in PDT. Furthermore, the same architecture with the two stacks used to traverse the
term is used in LFHOL implementation of PDTs, with some specializations needed
for applied variables and prefix matching.

Namely, when we match the prefix of the term, afterHO should move the position
p right after the last prefix element. This corresponds to pushing the arguments
of the term whose prefix is matched right-to-left to stack Dargs, until we reach the
argument that is element of prefix.

Example 17. Suppose that a variable Xt→t→t has to be matched against f a b c (where
f has type t→ t→ t→ t). Then, it would be bound to f a and the arguments c and b
would be pushed to Dargs (in that order). On top of Dargs is the argument b, which is
exactly the one that should be visited in preorder traversal after prefix matching. In
other words, the operation of pushing the arguments to Dargs in described manner
corresponds to moving the term position using afterHO.

The slight complication arises when we have to backtrack the choice to bind an
applied variable. Namely, the prefix of the term would be in binding, and the rest of
the term would be in some number of arguments on stack Dargs. Without knowing
how many arguments the original term had, there is no way to determine how many
arguments we need to take from the stack Dargs to undo the binding.

Example 18. Continuing the previous example, suppose that the variable Xt→t→t has
to be matched against f a b (where f has the same type as before). Then, it would
be bound to f a and only the argument b would be pushed to Dargs. Since Xt→t→t
is bound to exactly the same term as in the previous example, there is no obvious
choice how many arguments to take from Dargs to get the original term back.

We solved this problem by reusing the stack Dprev to hold the original term ap-
plied variable was matched against. This way, we can recalculate how many argu-
ments we pushed to Dargs initially and bring back both stacks to the original state –
the state before binding the variable.

5.2. Fingerprint Indices 43

The bug that we briefly described in Section 5.1.35.1.3 has a major impact on hoE.
In FOL variables appeared at the top of the PDT only if we had clauses of type
x ≈ ti. Arguably, these clauses are fairly rare and would appear when one would
like to describe a type that has only one inhabitant, for example. In LFHOL, the
variable can appear as the head symbol, and incurs issues not only in the clauses of
the previously described shape, but also whenever applied variable appears as the
subterm.

Example 19. Suppose that f has the type t→ t→ t. Furthermore, suppose that both
t ≡ f a Xt and s ≡ f a (Xt→t a) are stored in the PDT. The term t is flattened to f a Xt
and s is flattened to f a Xt→t a. When storing t in the PDT, the node corresponding to
Xt is going to be created. When s is stored, this node will be rewritten with the one
corresponding to Xt→t, as an effect of the E bug.

Because of the prefix match, we additionally created the structure MatchInfo
to enclose the information about the clause in which matched terms appear (that
was the object returned previously) with the number of arguments trailing from the
query term.

Lastly, generalizing this data structure was the most time-consuming change of
the entire project. We had to thoroughly investigate the architecture of PDTs and find
ways to use the existing architecture, while supporting HO operations. In that sense,
this extension of LFHOL is entirely graceful. It maintains the same architecture and
all the properties it had for FOL terms (e.g. the time complexity and the order in
which terms are returned). The LFHOL extension also supports prefix matching as
an important feature, but currently supports only shorter-first prefix match order.
In the future versions of hoE we will try to make the prefix match order a choice,
in the same way the generality order of the returned terms is a choice in current
E implementation. This can be useful for term traversal schemes that are not only
left-most innermost (see Chapter 66).

5.2 Fingerprint Indices

5.2.1 Description of the Data Structure

PDTs use the flattening of a term that can be arbitrarily long as the key. This may
leave a heavy memory footprint if many long terms are stored in the proof state.
Furthermore, implementing operations such as finding unifiable terms can be hard if
efficiency is a consideration. Fingerprint indices try to solve this problem by having
a fixed-size key for each term, with easy to implement query operations. However,
fingerprint indices lose the perfect index property – they just return a superset of the
terms that satisfy the query property.

The basic idea behind fingerprint indexing is that when a substitution is applied
to a term, it can only add new function symbols to a term. Furthermore, any posi-
tion that was valid in a term before applying substitution is valid after applying it
[Sch12Sch12]. More precisely, considering a term t and a position p, only four cases are
possible:

1. t|p is a variable;

2. t|p is a non-variable term;

3. p is not a valid position in t, but for some substitution σ, p is a valid position
in σ(t);

44 Chapter 5. Generalizing the Indexing Data Structures

4. p is not a valid position in t and no substitution σ can make it a valid position.

Example 20. Let t ≡ f (a, h(y)). Then, t|2.1 is an example of case 1. Terms t|1 and
t|2 exhibit case 2. Position 2.1.1.2 is an example for case 3. Lastly, t|3 and t|1.2 are
examples for case 4.

The above case distinction is useful for determining if terms are matching or uni-
fication compatible. If for a given position p and a term t, the head symbol of t|p is
a function symbol f1, for some other term s, p might not even be a valid position of
σ(s), for any substitution σ. This tells us that those two terms cannot be unified or
matched (in any direction). Thus, for a carefully chosen set of positions one could
efficiently determine if any violation of unification or matching compatibility condi-
tions is observed.

Definition 36. Let Σ = (F, P, T) be a signature and let A, B and N be distinguished
symbols not appearing in F ∪ P. Let Φ = F ∪ P ∪ {A, B, N}. A generic fingerprint
function gff that maps terms to the set Φ, based on a position p is defined as follows:

gff (t, p) =


A if t|p is a variable
f if the head of t|p is the function symbol f
B if p = p1.p2, for some p1 and p2 6= ε and t|p1 is a variable
N otherwise

Based on a fixed tuple of positions p = (p1, . . . , pn), we define the fingerprint func-
tion fp(t) = (gff (t, p1), . . . , gff (t, pn)). fp(t) is called the fingerprint.

Intuitively, for a given position p, gff samples the property of term t that is ex-
hibited on a position p and that could give us useful information about matching or
unification. Similarly, fp gives a tuple of such properties increasing the amount of
information that we can use to find possible matching and unification failures.

Using the formal definition of fingerprints we can speed up unification and match-
ing. Assume that we want to sample the position p in terms s and t. Term s is
compatible for matching onto term t if the value in intersection of row indexed by
gff (s, p) and column indexed by gff (t, p) is marked with Xin Table 5.15.1. Similarly, if
in the intersection of row and column (indexed the same way) of Table 5.25.2 reads X,
s is unification compatible with t. We lift the definition of matching and unification
compatibility to fingerprints componentwise.

target
f1 f2 A B N

pa
tt

er
n

f1 X
f2 X
A X X X
B X X X X X
N X

TABLE 5.1: Matching
compatibility matrix

f1 f2 A B N
f1 X X X
f2 X X X
A X X X X
B X X X X X
N X X

TABLE 5.2: Unification
compatibility matrix

The key property of the fingerprints is that if s’s and t’s fingerprints are not
matching-compatible then s cannot be matched onto t. Similarly, if s and t have
fingerprints that are not unification-compatible, then they are not unifiable.

5.2. Fingerprint Indices 45

FIGURE 5.3: An example of a fingerprint index

Algorithm 8 Finding generalizations in a PDT
1: procedure FINDFP(FPNode n, FPVector fp, Num component, SearchMode mode)
2: Res← ∅
3: if n is a leaf then
4: Res← Terms stored in n
5: else
6: for all nodes next adjacent to n and
7: for which COMPATIBLE(next . label, fp[component], mode) do
8: Res← Res∪ FINDFP(n, fp, component + 1, mode)
9: return Res

10: procedure UNIFICATIONFP(FPIndex i, Term query)
11: return FINDFP(i . root, query, 1, UNIFICATION)

12: procedure GENERALIZATIONFP(FPIndex i, Term query)
13: return FINDFP(i . root, query, 1, GENERALIZATION)

14: procedure INSTANCEFP(FPIndex i, Term query)
15: return FINDFP(i . root, query, 1, INSTANCE)

We can use fingerprints directly as a heuristic. Before calling the matching or
unification procedure, we can compare fingerprints componentwise and report fail-
ure if any component of the fingerprints is not compatible. By organizing fingerprint
tuples in a trie-structure, fingerprints can be used in a one-against-many manner to
return a superset of terms in the proof state that are matching or unification compat-
ible.

Terms that can be matched or unified are found by following the paths in the
fingerprint trie that are compatible. Since each term has a unique fingerprint, each
indexed term will be stored at exactly one node. A single node can store multiple
terms.

Algorithm 88 shows how fingerprint indices find terms that are compatible for a
given operation. Fingerprinting allows for very modular code, since the core trie
traversal procedure is the same except for using different compatibility criterion.
The function COMPATIBLE queries the appropriate table based on the mode – that is,
the query condition. The UNIFICATION mode finds unification compatible terms,
which corresponds to querying Table 5.25.2. The GENERALIZATION mode finds terms

46 Chapter 5. Generalizing the Indexing Data Structures

that can be matched onto the query term, which corresponds to using the query
term as a column index into Table 5.15.1. The INSTANCE mode finds terms that the
query term can be matched onto, which means that the query term should be used
as the row index into Table 5.15.1.

Figure 5.35.3 shows an example of a fingerprint index constructed with the position
tuple (ε, 1.1, 2.1). This index stores terms { f (x, h(y)), g(g(x, y), a), x, f (a, y)}. With
green boxes we labeled the terms that are unification compatible with f (b, h(z)),
whereas with red boxes we labeled the terms that are not unification compatible.

5.2.2 E Implementation of Fingerprint Indexing

Fingerprint tries are implemented in E in the file TERMS/cte_fp_index.c and the
functions that obtain term’s fingerprint in TERMS/cte_idx_fp.c.

E predefines 16 position tuples for constructing the fingerprint trie. Different
position tuples offer different tradeoffs between the time needed to calculate the
fingerprint and maintain the fingerprint index and the amount of matching and uni-
fication failures that can be observed. Schulz gives detailed experimental results for
several position tuples [Sch12Sch12].

The operations supported by E’s implementation of fingerprint indexing are find-
ing unification compatible terms and finding terms that are possible instances of a
given term. In Section 5.2.35.2.3, we describe in which parts of the proof search each
operation is used in detail.

Operations are implemented using separate procedures for each operation. They
closely follow the Algorithm 88, with inlining the COMPATIBLE check.

5.2.3 Extension of Fingerprint Indexing for LFHOL

The fundamental case distinction related to the term positions from Section 5.2.15.2.1
carries over to the LFHOL terms. However, with our prefix matching and unification
optimizations in place, we must be careful how to use the information to filter out
the terms that are not compatible.

Example 21. Suppose we sample position 1. Then for the term s ≡ Xt→t→t c d, gff (s, 1) =
c, whereas for the term t ≡ f a b c d, gff (s, 1) = a. According to Table 5.15.1 and Table
5.25.2, their samples are neither matching, nor unification compatible. Yet, {X 7→ f a b}
is a unifier (and a matching substitution from s onto t).

Thus, applied variables call for an altered generic fingerprint function. Coming
with Example 2121, we can see that the difference stems from the fact that for some
substitution σ, σ(s)|1 can be any term, not only c as FOL gff function would report.
This fully coincides with the semantics of case 3 from Section 5.2.15.2.1.

Another type of issue emerges with prefix matching and unification optimiza-
tions in place. Term s from Example 2222 matched onto (and unified with) a prefix of
t, but FOL fingerprint compatibility matrix failed to capture this matching (unifica-
tion).

Example 22. Suppose we sample position 1. Then for the term s ≡ f , gff(s, 1) = N,
whereas for the term t ≡ f a, gff(t, 1) = a. According to Table 5.15.1 and Table 5.25.2, their
samples are neither matching, nor unification compatible. However, term identity is
a unifier of s and t[: 0], as well as matching substitution from s to t[: 0].

The key observation is that in the matching (and unification) problem in LFHOL
we allow a tuple of fresh variables of a certain (maximum) size to be appended to
the arguments tuple. The gff function has to be altered to capture this as well.

5.3. Feature-Vector Indices 47

Definition 37. We extend the FOL gff function to LFHOL gff HO as follows:

gff HO(t, p) =



gff HO(t · x, p) if t is not fully applied, and x is a tuple
of fresh variables that makes it fully applied

A if t|p is a variable
f if the head of t|p is a function symbol f
B if p = p1.p2 where the head of t|p1 is a

variable for some p1 and p2 6= ε

N otherwise

Based on a fixed tuple of positions p = (p1, . . . , pn), we extend the fingerprint func-
tion fp(t) to fpHO(t) = (gff HO(t, p1), . . . , gff HO(t, pn)). fpHO(t) is called LFHOL finger-
print.

Example 23. Returning to Example 2121, the LFHOL fingerprint sample of position 1
for the term s is A, whereas it stays a for t. The gff HO function now reports that both
are matching and unification compatible.

Example 24. Returning to Example 2222, the LFHOL fingerprint sample of position 1
for the term s is B, whereas it stays a for t. The gff HO function now reports that both
are matching and unification compatible.

Our main goal with the generalization of fingerprint indexing to LFHOL was to
make sure we keep the same level of precision that fingerprints give for FOL. This is
challenging because another constraint is that no changes should be made to Tables
5.15.1 and 5.25.2, that is to the way fingerprint compatibility is checked. Thus, we could
use only the fingerprint values that are available for FOL terms and make sure that
they have the right semantics for LFHOL matching and unification without being
too coarse-grained.

We managed to keep the compatibility matrices intact by repurposing some fin-
gerprint symbols, without changing their semantics. Note that this extension is
graceful since the only notion altered in LFHOL extension, gff HO function, will give
the same results on FOL terms that gff function gave. Namely, in FOL case tuple
x will always have the length of 0 and since variables are not applied in FOL, the
condition head is a variable degenerates to term is a variable. This behavior coincides
with FOL gff.

5.2.4 hoE Implementation of LFHOL Fingerprint Indexing

In hoE, no changes are performed to compatibility checks nor fingerprint trie traver-
sal. However, the way fingerprints are obtained has changed and the changes are
located in the file TERMS/cte_idx_fp.c.

Even though we claim that the LFHOL generalization is graceful, we decided to
implement LFHOL fingerprinting in a separate procedure from FOL fingerprinting.
We think that the overhead that LFHOL generalization incurs is negligible, and will
likely replace the old implementation with the new one to keep the code base more
manageable.

5.3 Feature-Vector Indices

Most of the indexing techniques work by organizing terms in some kind of struc-
ture that efficiently performs an operation between a query term and set of terms.

48 Chapter 5. Generalizing the Indexing Data Structures

Algorithm 9 Backward and forward subsumption using Feature Vector indexing
1: procedure FINDSUBSUMING(FVIndexNode n, Num component, Clause C)
2: if n is a leaf then
3: if any clause in n subsumes C then
4: return True
5: else
6: return False
7: else
8: for all i in RANGE(0, C . feature_vector[component])
9: where node i-labeled node is adjacent do

10: neighbor← i-labeled node adjacent to n
11: if FINDSUBSUMING(neighbor, component + 1, C) then
12: return True
13: return False

14: procedure ISSUBSUMED(ClauseSet I, Clause C)
15: return FINDSUBSUMING(I . root, 1, C)

16: procedure FINDSUBSUMED(FVIndexNode n, Num component, Clause C)
17: Res← ∅
18: if n is a leaf then
19: return {T | C subsumes a clause T in n}
20: else
21: for all i in RANGE(C . feature_vector[component], MAXADJACENT)
22: where i-labeled node is adjacent to n do
23: neighbor← i-labeled node adjacent to n
24: Res← Res∪ FINDSUBSUMED(neighbor, component + 1, C)
25: return Res
26: procedure RETRIEVESUBSUMED(ClauseSet I, Clause C)
27: return FINDSUBSUMED(I . root, 1, C)

However, for some parts of the proof search, indexing techniques that work on sets
of clauses are more useful.

One of the most useful simplification inferences is subsumption. Clause C sub-
sumes clause D if there exists an instance of C such that it is a multisubset of D. Put
differently, we want to find a substitution σ, such that σ(C) ⊆ D.

In the main saturation loop of E subsumption is checked in two directions. For-
ward subsumption checks whether any clause in the proof state subsumes the given
clause. Backward subsumption determines which clauses a given clause subsumes.

The subsumption problem is NP-complete, but Schulz notes that with careful
implementation, the worst case is rarely observed [Sch13aSch13a]. But the optimized sub-
sumption check implementation only solves the clause-clause subsumption prob-
lem, not the clause-against-the-set subsumption problem. One idea, similar to fin-
gerprint indexing, is to collect features of a clause that give us information about
subsumption and organize them in a trie structure to provide fast retrieval of com-
patible clauses. In that way, we could create an imperfect index that will substan-
tially decrease the number of clauses we are going to test for subsumption.

Definition 38. A clause feature function cff assigns an integer to a clause. A clause
feature function is compatible with subsumption if cff (C) ≤ cff (D) whenever clause C
subsumes clause D.

5.3. Feature-Vector Indices 49

Definition 39. With |C| we denote the number of literals in a clause C. With |C| f
we denote the number of occurrences of a function symbol f in C. The depth of the
deepest occurrence of function symbol f is denoted with d f and defined recursively:

d f (t) =


0 f does not appear in t
max{1, d f (t1) + 1, . . . , d f (tn) + 1} if t ≡ f (t1, . . . , tn)

max{d f (t1) + 1, . . . , d f (tm) + 1} if t ≡ g(t1, . . . , tn) and f 6= g

d f is lifted to literals and clauses by taking the maximum of depths in terms that
appear in literal and clauses.

Theorem 8. The clause feature functions |C+|, |C−|, |C+| f , |C−| f , d f (C+), d f (C−), for
all function symbols f are compatible with subsumption.

Definition 40. A feature vector function fvf for the fixed tuple cff = (cff 1, . . . , cff n)
of clause feature functions is defined as fvf (C) = (cff 1(C), . . . , cff n(C)). The result of
a feature vector function is called the feature vector.

The feature vector for a clause is a vector of integers. By using those vectors as
keys in a trie, both forward and backward subsumption compatible clauses can be
retrieved efficiently. Namely, if we want to find clauses that might subsume a given
clause, we are interested in clauses whose feature vectors are componentwise less
than or equal. Similarly, when we want to find clauses that are subsumed by a given
clause we are interested in clauses that have feature vectors componentwise greater
than or equal to a given clause’s feature vector.

In the case of forward subsumption, we are only interested in the existence of a
single clause that subsumes a given clause. On the other hand, we want to find all
clauses that are subsumed by a given clause. Algorithm 99 determines if a clause is
subsumed and if the clause subsumes another clause.

Feature vector tries are implemented in the file CLAUSES/ccl_fcvindexing.c in
E. The trie implementation is similar to the one for fingerprint indices. E supports
different sets of features that show different performance results. Schulz also notes
that the order in which we choose features improves performance [Sch13aSch13a], which E
takes into consideration as well.

Unlike the other two data structures, there were barely any changes that we had
to perform to extend the feature vector indices to LFHOL. The only change came
from the fact that the depth of LFHOL terms that had variable as head symbol would
be calculated wrongly because of the specific encoding we had in place for those
terms (see Chapter 33). Furthermore, the artificial @_var symbol had to be ignored
when counting the number of times each function symbol appears in a clause.

The reason why feature vector index generalizes so gracefully is that it does not
compare clauses on the level of the terms they contain. Instead it does a very su-
perficial, yet very efficient, collection of clause aggregates of the function symbol
occurrences, depths of symbols and similar. The key observation is that neither for
FOL nor for LFHOL applying substitution to a clause can make those aggregates
lower. Thus, on the level of the data structure no changes are needed.

51

Chapter 6

Generalizing the Calculus’
Implementation

The performance of a theorem prover both in the competitions and on real-world
problems depends on many factors. The choice of the calculus, programming lan-
guage used, details of the implementation and the data structures interact in subtle
ways. In this chapter we are concerned with E’s inference rules, how they are imple-
mented and what we had to change to make inferences work in LFHOL setting.

The four core rules of the superposition calculus that are needed to achieve
soundness and completeness are called generating inference rules. Even though those
rules are constrained by the side conditions, they are prolific and generate a large
number of clauses. Thus, modern theorem provers spend substantial amounts of
time to remove clauses that cannot contribute to the proof – redundant clauses.

A clause C is redundant with respect to a clause set S if it logically follows from
the ground instances of clauses in S that are smaller than C [Sch02Sch02]. A redundant
clause can be deleted without affecting the completeness of the core calculus. The
inferences that remove redundant clauses are called simplification rules. Those in-
ferences will be shown with a double horizontal line. Unlike generating inference
rules that add conclusions to the proof state, simplification rules replace the premises
with conclusions in the proof state. If there are no conclusions, premises are simply
deleted from the proof state.

Furthermore, some inferences can infer a clause Cm that makes C redundant. This
is a two step process of C’s removal and without loss of generality we will present
only the end results.

Table 6.16.1 summarizes the changes that we performed and what are the main files
in which the changes occurred. It can be used as a roadmap of the following sections.

6.1 Preprocessing

E reads the input in the TPTP format [Sut17aSut17a] which allows describing typed first-
order formulas (TFF syntax). hoE extends E’s input/output module with the sup-
port for the HOL THF syntax. As we mentioned in Chapter 22, before we can apply
the calculus rules, we have to Skolemize the input problem and convert it to CNF,
since the input format allows unrestricted formulas, not just the clauses.

Besides this necessary step, E performs many other optional preprocessing steps
that are performed to simplify the problems, while preserving its validity. For ex-
ample, it removes clauses that can easily be shown tautological.

Most of the preprocessing steps generalize gracefully for LFHOL and there are
no changes to be made in terms of the code. However, there are a few exceptions. In
this section, we describe the changes we had to make to generalize preprocessing.

52 Chapter 6. Generalizing the Calculus’ Implementation

Inference E source file LFHOL generalization changes

ER CLAUSES/ccl_eqnresolution.c Complete LFHOL unification

EF CLAUSES/ccl_factor.c Complete LFHOL unification

SN/SR CLAUSES/ccl_paramod.c LFHOL fingerprint indices
Prefix LFHOL unification

DR CONTROL/cco_eqnresolving.c Complete LFHOL unification

RP/RN CLAUSES/ccl_rewrite.c LFHOL PDTs
LFHOL fingerprint indices
Prefix LFHOL matching
Prefix subterm rewriting

PS/NS/ES CLAUSES/ccl_subsumption.c LFHOL PDTs
Prefix LFHOL matching

Subsumption CLAUSES/ccl_subsumption.c Complete LFHOL matching
LFHOL feature vector indexing
LFHOL subsumption order

TABLE 6.1: Summary of inference rules and changes needed for
LFHOL

6.1.1 Definition Unfolding

To simplify the proof state before going into the saturation loop, E removes some
unit clauses by eagerly applying them wherever possible. In particular, E searches
for the unit clauses of the form f (x1, . . . , xn) = t where f does not appear in t and
variables that appear in t are from the set {x1, . . . , xn}, called definitional clauses. Af-
ter finding a definitional clause, E unfolds it by matching the left-hand side of the
definitional clause onto any subterm that has f as the head symbol, and replaces
that subterm with accordingly instantiated term t. It can be proven that eagerly un-
folding the definitional clauses does not change the validity of the formula. Thus,
it can be used as a nice way to remove certain clauses, and subsequently function
symbols, from the proof state.

Unfortunately, definition unfolding makes hoE uncomplete for LFHOL. Intu-
itively, in FOL definitional clauses can be unfolded and subsequently removed from
the proof state because unfolding them is equivalent to performing all of the infer-
ences we could perform with the definitional clause as one of the inference partners.
However, this is not true for LFHOL.

When there are applied variables in some of the clauses, applied variables can
be unified with the left-hand side of the definitional clause. This means that those
clauses can be inference partners with the definitional clause. In addition, unfolding
the definitional clause would not unfold the clause onto the applied variable. When
the definitional clause is removed from the proof state, unifying the applied variable
with the left hand side of the definitional clause will never be tried, yielding the
further proof search incomplete.

To resolve this issue, in this version of hoE we disabled the definition unfold-
ing. However, in future we plan to investigate higher-order definition unfolding in
greater detail and generalize it gracefully.

6.2. The Generating Inference Rules 53

6.1.2 Skolemization

Integral part of converting the formula to CNF is Skolemization. For FOL, Skolem-
ization preserves the satisfiability of the formula. For HOL, Skolemization is a more
subtle issue.

Namely, one of the most important axioms in HOL is the Axiom of Choice. Intu-
itively, it states that there is a function that chooses an element from every non-empty
set. It can be stated as

∃ξ(t→o)→t . ∀Pt→o . (∃Xt . P X) −→ P (ξ P)

The ξ function is called the choice operator.
It is thought that the Axiom of Choice is valid in most of the standard HOL

models [RV01RV01, Chapter 15]. It is not built into LFHOL and it usually needs special
treatment in other higher-order logics.

Skolemization interferes with the Axiom of Choice in subtle ways in HOL. Namely,
if we perform the Skolemization from the Chapter 22, the Skolem function symbols
we add to the signature might play the role of the choice function. Thus, Skolemiza-
tion can make formulas that are unprovable without the Axiom of Choice provable.
In other words, Skolemization is unsound for LFHOL without the Axiom of Choice.

Example 25. Consider the following formula (stemming from a TPTP problem):

(∀Yt . ∃Xt . f X ≈ Y) −→ (∃Gt→t . ∀Xt . f (G X) ≈ X)

After converting the negation of the formula to CNF we would get the following set
of clauses (that should be equisatisfiable with the original formula):

{{ f (s1 X1) ≈ X1}, { f (X2 (s2 X2)) 6≈ s2 X2}}

where s1 and s2 are fresh Skolem function symbols.
After unifying X2 with s1 and X1 with s2 s1 and performing the superposition

(followed by equality resolution) we would get an empty clause, proving the orig-
inal formula. The problem that arose here is that variable X2 was bound to the
Skolem function symbol s1 that was partially applied. Thus, by using Skolemization
we forced the existence of function ID(s1) (interpretation of s1), which did not exist
in the original problem.

A solution to this problem is to make each Skolem function symbol applied to
a number of necessary arguments [RV01RV01].In FOL, the Axiom of Choice cannot even
be stated, so unrestricted Skolemization is sound for FOL. To restrict the Skolemiza-
tion, we need to change E in a lot of places including the Skolemization procedure,
matching, unification and others.

However, our ultimate goal is to support HOL with the Axiom of Choice which
makes making this complicated change unreasonable, since it will be undone in the
near future. Thus, we perform unrestricted Skolemization knowing that is unsound
for LFHOL without the Axiom of Choice.

6.2 The Generating Inference Rules

Equality resolution (ER)
s 6≈ t ∨ R

σ(R)

54 Chapter 6. Generalizing the Calculus’ Implementation

where σ is the mgu of s and t and σ(s 6≈ t) is eligible for resolution.
This inference is relatively simple since it is performed on only one premise.

Thus, E goes through each maximal negative literal in the clause and tries to unify
the left-hand with the right-hand side. If it finds a literal for which this unification
succeeds, it creates a new clause without the literal, and with the unifier applied to
the rest of the clause.

In hoE, we changed this implementation by running LFHOL unification when-
ever E is supplied with a higher-order problem. However, in this inference both s
and t have to unify the entire terms, not subterms of either term. Thus, the result
of the unification cannot have trailing arguments on either side. This is a recurring
theme throughout all generating inferences.

Thus, to avoid calling repeatedly first-order unification (SubstComputeMgu E func-
tion) on FOL problems and higher-order unification (SubstComputeMguHO hoE func-
tion) on HOL problems and making sure that there are no trailing arguments in all of
the places with this constraint, we hid this operation using the function SubstMguComplete.
This function will report success only when the terms are unified with no trailing ar-
guments. Furthermore, depending on the the type of the problem it will call first- or
higher-order unification.

With this interface in place, the differences that we had to make to E were simple.
We only had to change the call to SubstComputeMgu to SubstMguComplete.

Equality factoring (EF)
s ≈ t ∨ u ≈ v ∨ R

σ(t 6≈ v ∨ u ≈ v ∨ R)

where σ is the mgu of s and t, σ(s) 6< σ(t) and σ(s ≈ t) is eligible for paramodula-
tion.

This single-premise inference is more complicated than ER, because it involves
two literals. E handles this by fixing a maximal literal and tries unifying against all
other positive literals. After trying all other positive literals, the next maximal literal
is fixed and the process is repeated until no unconsidered maximal literals remain.
Like for ER, the only difference we made is making sure that only the entire terms
are unified. We hid this operation behind the SubstMguComplete function, which
means we had to change only the call to the unification in EF.

Superposition into negative literals (SN)

s ≈ t ∨ S u 6≈ v ∨ R
σ(u[p← t] 6≈ v ∨ S ∨ R)

where σ is the mgu of s and u|p, σ(s) 6< σ(t), σ(u) 6< σ(v), σ(s ≈ t) is eligible for
paramodulation, σ(u 6≈ v) is eligible for resolution and u|p 6∈ Va where a is the type
of u|p. s is called the from-term, whereas u|p is called the to-term. The literal where
s appears is called the from-literal and the clause where the from-literal appears is
called the from-clause. The literal where u|p appears is called the to-literal and the
clause where the to-literal appears is called the to-clause.

Superposition into positive literals (SP)

s ≈ t ∨ S u ≈ v ∨ R
σ(u[p← t] ≈ v ∨ S ∨ R)

6.3. The Simplification Rules 55

where σ is the mgu of s and u|p, σ(s) 6< σ(t), σ(u) 6< σ(v), σ(s ≈ t) is eligible for
paramodulation, σ(u ≈ v) is eligible for resolution and u|p 6∈ Va where a is the type
of u|p. s is called the from-term, whereas u|p is called the to-term. The literal where
s appears is called the from-literal and the clause where the from-literal appears is
called the from-clause. The literal where u|p appears is called the to-literal and the
clause where the to-literal appears is called the to-clause.

Superposition inferences are the core inferences of the calculus. From the form
of the rules one can see that they are substantially more complex than the rules EF
and ER, since they have two premises.

When E chooses a given clause, it puts it in both the role of the from-clause
and the to-clause. In both roles the clause should be compared to all the processed
clauses in the proof state. Comparing a clause against all the processed clauses can
be very time-consuming, especially when we know that only a handful of clauses
will be eligible partners for the superposition inference.

To speed up superposition inferences, E uses the fingerprint indexing. Namely, if
a given clause is used as a from-clause, E queries the fingerprint index for subterms
in the proof state that are unifiable with all the from terms in the given clause. Fur-
thermore, if a given clause is used as a to-clause, E finds all terms in the proof state
that are unifiable with any possible to-subterm.

Superposition inferences posed more challenges in terms of extending the infer-
ence rules to LFHOL. A from-term has to be fully unified , whereas the to-term is
possibly a subterm of one side of the literal it appears in. Thus, when we call the
LFHOL unification procedure, we allow unification of prefixes only in the to-term.

To support this behavior we created the SubstMguPossiblyPartial function that
does not only return a boolean, but an object of the type UnificationResult that has
the information about the number of trailing arguments and the term that has trail-
ing arguments. We made sure that upon a successful unification arguments are not
remaining on the wrong side – that is in the from-term. Similarly to SubstMguComplete,
SubstMguPossiblyPartial invokes the FOL version of the algorithm if E is run on
the FOL problem and makes UnificationResult object out of the result of FOL uni-
fication.

Note that with the usage of prefix unification we managed to completely avoid
creating prefixes of terms and many (possibly expensive) queries to the fingerprint
index. The changes that were necessary were running partial unification and making
sure the resulting to-term has been constructed properly. By proper construction of
the resulting to-term we assume rewriting only the prefix of the to-term and leaving
the trailing arguments intact.

Including partial unification was straightforward and included only changing
the call to FOL unification to SubstMguPossiblyPartial and storing its result. If the
unification was successful, the result will contain the information about the num-
ber of trailing arguments. This information had to be propagated to the part of the
inference engine that creates the resulting to-term. Lastly, the construction of the
resulting to-term used this information to rewrite only the unified prefix.

6.3 The Simplification Rules

Rewriting of positive literals (RP)

s ≈ t u ≈ v ∨ R
s ≈ t u[p← σ(t)] ≈ v ∨ R

56 Chapter 6. Generalizing the Calculus’ Implementation

where σ(s) = u|p, σ(s) > σ(t) and either u 6> v or u ≈ v is not eligible for resolution
or position p is not empty string (ε) or substitution σ is not a variable renaming. s ≈ t
is called a rewrite rule.

Rewriting of negative literals (RN)

s ≈ t u 6≈ v ∨ R

s ≈ t u[p← σ(t)] 6≈ v ∨ R

where σ(s) = u|p and σ(s) > σ(t). s ≈ t is called a rewrite rule.
Rewriting is one of the most important simplification inferences in E. In E, rewrit-

ing is performed in two stages. The first stage is performed when a given clause is
picked and we want to find all rewrite rules that can rewrite terms in the given
clause. This stage is called forward rewriting. The second stage is performed when a
given clause (possibly after simplifications) is determined to be a unit clause and we
want to find out which clauses in the proof state this clause can rewrite – backward
rewriting.

E supports two levels of forward rewriting, as well as disabling of forward rewrit-
ing altogether. The first level uses only unit equations that can be oriented, whereas
the second level also uses the non-oriented unit equations, for which orientation of
the instantiation is checked upon successful match of either equation side. The intu-
ition behind splitting those two levels is that checking the orientation can be time-
consuming, and since reduction orders are closed under substitution, if the equation
can be oriented (using a reduction order), every of its instances can be oriented.
Thus, for oriented equations the check σ(s) > σ(t) does not have to be performed.
Furthermore, for oriented unit equations only the equations whose larger side is
a generalization of a subterm of the given clause need to be retrieved. For non-
oriented equations we do not know which side of the equation is a generalization
that will give the right orientation beforehand.

Processed oriented unit clauses with a positive literal are represented by the
processed_pos_rules clause set in the proof state. Those clauses are indexed by
the larger side in the equation using PDT. On the other hand, processed non-oriented
unit clauses with a positive literal are represented by the processed_pos_eqns clause
set, which is indexed using both sides of the equation, using a PDT as well.

The process of finding equations that rewrite subterms of a given clause is carried
out in a leftmost-innermost fashion. That is, for a term t ≡ f (t1, . . . , tn), all subterms of
t1 that are rewritable will be rewritten, then all subterms of t2 and so on until tn. Only
then will the entire term t be rewritten. Based on the rewrite level, only oriented or
both oriented and non-oriented unit equations will be used as potential rewrite rules.
This is one of the places where E traverses subterms the way we described it when
introducing the LFHOL extension of PDTs (Section 5.15.1).

On the other hand, when the given clause is (simplified to) a unit clause we want
to find terms that can be rewritten by the given clause. E maintains a fingerprint
index bw_rw_index that stores all rewritable subterms. This index is queried for all
the terms that are possible instances of the bigger side of the given clause if it is
oriented or either of the sides otherwise. Then the checks for all of the constraints of
the rules RP or RN will be performed and if all checks pass, the clause in which the
instance term appears is rewritten and moved from the processed to the unprocessed
clause set.

The LFHOL extension of the rewriting support was complex since it included
dealing with support for prefix matching that indexing structures are now aware

6.3. The Simplification Rules 57

of. This means that the answers to the queries data structures provide are used
differently.

Namely, when querying PDTs for generalizations, it might be the case that some
arguments are trailing in the query term. We had to take care of that and make sure
that we construct the rewritten term correctly.

In hoE, the function that returns matches from PDT had to be altered. It now
returns the MatchInfo object that, alongside the information about the clause that
can be used as a rewrite rule, also gives the information about the number of trailing
arguments. Moreover, construction of the newly rewritten term is depending on
the number of trailing arguments and it is performed in the MakeRewrittenTerm
function.

Furthermore, next to the already described changes to the fingerprint indexing,
since it is a non-perfect indexing technique, we had to run LHFOL matching algo-
rithm after retrieving candidates in the backward-rewriting stage. In this case, the
query term had to be matched fully, but the candidates could have trailing argu-
ments. To allow this behavior we used SubstMatchPossiblyPartial, which allows
trailing arguments in the target. Again, we combined it with MakeRewrittenTerm
to construct the rewritten term respecting the trailing arguments. This is one of the
places where our subterm optimization came in handy – the code changes outside
PDTs were needed only in a few places. Furthermore, terms that are prefixes of other
terms stored in the PDT are traversed in the shortest-first fashion. This corresponds
to the existing leftmost-innermost semantics of E’s rewrite subterm traversal loop.

Destructive equality resolution (DR)

x 6≈ s ∨ R
σ(R)

where σ is the mgu of x and s.
DR inference is one of the simplest inferences in terms of implementation. By

default, E performs DR only if s is a variable, or if strong DR is enabled, it performs
it nonetheless. For the LFHOL generalization, we had to only make sure that upon
successful unification no remaining term is left in the right hand side of the literal
that is involved in the DR.

Positive simplify-reflect (PS)

s ≈ t u[p← σ(s)] 6≈ u[p← σ(t)] ∨ R
s ≈ t R

Negative simplify-reflect (NS)

s 6≈ t σ(s ≈ t) ∨ R
s ≈ t R

Equality subsumption (ES)

s ≈ t u[p← σ(s)] ≈ u[p← σ(t)] ∨ R
s ≈ t

58 Chapter 6. Generalizing the Calculus’ Implementation

Equality subsumption is also called unit subsumption.
In all three inferences we are interested in finding a negative or positive unit

equation (called simplifier) that can be matched onto a literal in the given clause.
However, in case of PS and ES, the simplifier does not have to be matched onto the
entire literal, but possibly to the pair of terms appearing in the same term context in
one literal (called candidate pair).

When performing PS and ES E queries the set of positive unit equations in the
proof state, processed_pos_eqns, for possible simplifiers and chooses terms that ap-
pear in the same context in one literal as candidate pairs. For NS the set of negative
unit equations, processed_neg_eqns, will be queried and only terms appearing at
the top level in the literal will be considered as the candidate pair. In other words,
for NS the term context has to be empty. Both of the sets are indexed by both sides
of the equation using PDTs.

Example 26. Suppose that the literal f (a, c) ≈ f (b, c) is picked as the candidate pair
in the given clause, and we want to test for equality subsumption. If no simplifier
was found for the candidate pair (f (a, c), f (b, c)), we must try subterms that appear
in the same context as the new candidate pair. The terms a and b appear in the same
context, so the next equality subsumption check will be performed for (a, b). If the
original equation was f (a, c) ≈ f (b, d), the terms a and b would not appear in the
same context which means no subterm will be chosen as new candidate pair.

The LFHOL extension of NS was straightforward. In NS, the candidate pair had
to be matched onto completely (without trailing arguments). For that reason, we
had to make sure that no arguments are remaining when the PDT is queried for the
generalization of the first term in the candidate pair. Furthermore, the remaining
term of the simplifier has to be matched onto the second part of the given candi-
date pair. This is done using SubstMatchComplete, that performs the check that no
arguments remain.

The LFHOL extension of PS and ES was more involved. This stems from the
complex subterm traversal scheme that complicates even further when prefix sub-
terms have to be considered as well. However, the support for prefix matching in
PDTs and in the LFHOL matching procedure proved helpful both in terms of the
algorithm complexity and the amount of code we had to change.

The process of finding simplifiers for rules PS and ES is described in Algorithm
1010. It iterates through subterms in the leftmost-outermost fashion.

In LFHOL, each term has prefix subterms which have to be traversed as well.
First-order Algorithm 1010 fails to capture this prefix matching. Furthermore, when
the simplifier for the prefix of the candidate pair is found, the remaining arguments
in both of the elements in the candidate pair have to be equal for prefix to appear in
the same term context, as Example 2727 illustrates.

Example 27. Suppose f a b c ≈ g (h a) c is the candidate pair and the found simplifier
is f Xt Yt ≈ g (h Xt). Then, we can conclude that the candidate pair is subsumed
by the simplifier since the simplifier matches a prefix of the candidate pair and the
trailing arguments of the candidate pair are the same. If the candidate pair was
f a b c ≈ g (h a) d we could not make the same conclusion, since the context in which
prefix subterms occur would not be the same.

One could now wonder what changes are needed to make Algorithm 1010 traverse
prefix subterms and to make sure they appear in the same context. The solution that
would be the easiest from the implementation point of view would be to create prefix
terms explicitly and query the unit clause set for simplifiers. Obvious drawbacks are

6.3. The Simplification Rules 59

Algorithm 10 Finding simplifiers
1: procedure FINDSIMPLIFIER(ClauseSet set, Term s, Term t)
2: for all eq in set whose one side generalizes s with substitution σ do
3: o_side← other side of eq
4: if σ(o_side) can be matched onto t then
5: return True
6: if s ≡ f (s1, . . . , sn) and t ≡ f (t1, . . . , tn) then
7: cand_pair← nil
8: for i = 1 to n do
9: if si 6≡ ti then

10: if cand_pair = nil then
11: cand_pair← (si, ti)
12: else
13: return False
14: if cand_pair ≡ (s′, t′) then
15: return FINDSIMPLIFIER(set, s′, t′)
16: else
17: return False
18: return False

that we can have to create O(n) prefixes where n is the number of term arguments
and query the clause set O(n) times.

First, if s and t have the same type and the same head function symbol, they
have to be applied to the same number of arguments. This means that subterm
traversal limits at line 8 of Algorithm 1010 do not have to be changed. Second, the
LFHOL extension of PDTs allows prefix matching, so we can easily obtain the length
of the only prefix that can be matched by the given simplifier. Third, it is clear that,
since both elements of the candidate pair have the same type, the number of the
remaining arguments in both elements of the pair when simplifier is matched onto
them must be the same. Lastly, after the successful match, we need to make sure that
the remaining arguments in both parts of the given pair are the same to make sure
that inferences operate on subterms that occur in the same term context.

In Algorithm 1111 described changes are put in place to enable support for LFHOL
version of PS and ES. Thanks to prefix LFHOL PDT matching, we avoided creating
prefix subterms altogether.

In conclusion, this made the implementation of the PS and ES entirely graceful.
In particular, due to avoided prefix term creation, the algorithm time complexity re-
mained the same. Additionally, the simplifier retrieval algorithm had to be changed
only in a few places.

In addition, E has the strong version of ES and PS in which the search for match-
ing equation is done for each different argument pair of the literal. However there is
almost no difference in LFHOL generalization of this inference – if any of the trail-
ing arguments are pairwise different, we just have to perform lookup form matching
equation recursively.

For completeness we give the definition of the strong version of ES and PS rules:

60 Chapter 6. Generalizing the Calculus’ Implementation

Algorithm 11 Finding simplifiers in LFHOL
1: procedure FINDSIMPLIFIERHO(ClauseSet set, Term s, Term t)
2: for all eq in set whose one side generalizes s
3: with substitution σ and r trailing arguments do
4: o_side← other side of eq
5: if σ(o_side) can be matched onto t[: −r] then
6: if remaining r arguments in s and t are the same then
7: return True
8: else
9: return False

10: if s ≡ f (s1, . . . , sn) and t ≡ f (t1, . . . , tn) then
11: cand_pair← nil
12: for i = 1 to n do
13: if si 6≡ ti then
14: if cand_pair = nil then
15: cand_pair← (si, ti)
16: else
17: return False
18: if cand_pair ≡ (s′, t′) then
19: return FINDSIMPLIFIERHO(set, s′, t′)
20: else
21: return False
22: return False

Strong positive simplify-reflect (SPS)

s1 ≈ t1 . . . sn ≈ tn

u[p1 ← σ(s1), . . . , pn ← σ(sn)] 6≈u[p1 ← σ(s1), . . . , pn ← σ(sn)] ∨ R
s1 ≈ t1 . . . sn ≈ tn R

Strong equality subsumption (SES)

s1 ≈ t1 . . . sn ≈ tn

u[p1 ← σ(s1), . . . , pn ← σ(sn)] ≈u[p1 ← σ(s1), . . . , pn ← σ(sn)] ∨ R
s1 ≈ t1 . . . sn ≈ tn

In both inferences it is crucial that the positions p1, . . . , pn are non-overlapping
(no position pi is a prefix of different position pj). Strong versions of positive simplify-
reflect and equality subsumption are disabled by default and can be enabled using
E command-line options.

6.4 Subsumption

Subsumption is one of the most important simplifying inferences because it can re-
move from 50% up to 95% of all the clauses in the proof state [Sch13aSch13a]. We briefly
discussed subsumption in Chapter 55, when we discussed feature vector indexing
and in this chapter when we discussed unit subsumption.

The main idea behind the subsumption inference is that if in the proof state one
has a clause C that is more general than the clause D, clause D can be safely removed.
C is more general than D if some instance of C is a multisubset of D, as the following
rule shows:

6.4. Subsumption 61

C σ(C) ∨ σ(R)
C

A superset of the clauses that can be subsumed by a given clause or can subsume a
given clause is returned using the feature vector indexing. We described this process
in Section 5.35.3. In what follows we will delve deeper in the procedure that checks if
one clause subsumes another.

Before E tries to check if a clause (called the subsumer) subsumes another one
(called the (subsumption) candidate) it makes sure that both clauses are subsumption-
ordered. The subsumption order B is an ad hoc order on literals whose purpose is
to make sure we only consider literals in subsumer that can potentially be matched
onto literals in candidate.

l1 B l2 if any of the following conditions is satisfied:

1. l1 is positive and l2 is negative.

2. Both l1 and l2 are of same polarity and l1 is equational, whereas l2 is non-
equational. Non-equational literals are the literals of the form P(t1, . . . , tn) ≈ T
or P(t1, . . . , tn) 6≈ T.

3. l1 and l2 have the same polarity, both are non-equational and function code of
the left-hand side in l1 is larger than the function code of the left-hand side in
l2.

It can be shown that literal l1 can be matched on l2 only if l1 6B l2 and l2 6B l1.
Thus, as soon as we reach a smaller literal in the candidate list we can return a failure.
If no failure is observed, using the Algorithm 1212 E checks whether the subsumer can
indeed subsume the candidate. Before calling the Algorithm 1212 we must sort the
literals in both the subsumer and the candidate using B, from larger to smaller.

Algorithm 1212 has exponential time complexity in the number of literals of both
the subsumer and the candidate. The introduction of the subsumption order B on
literals helps keeping the number of matching tries low, speeding up the algorithm.
Note that as soon as we observe a smaller literal in the candidate list, we can report
the failure, possibly pruning large parts of the search space.

62 Chapter 6. Generalizing the Calculus’ Implementation

Algorithm 12 Subsumption using the subsumption ordering
1: procedure LISTSUBSUME(EqList subsumer, EqList candidate, Set matched)
2: if subsumer = nil then
3: return True
4: else
5: subs_eq← subsumer . val
6: for all cand_eq in candidate do
7: if cand_eq is not in matched then
8: if subs_eq B cand_eq then
9: return False

10: else if cand_eq 6B subs_eq then
11: matched← matched∪ {cand_eq}
12: if cand_eq . lhs matches subs_eq . lhs
13: with matching substitution σ then
14: if σ(cand_eq . rhs) matches subs_eq . rhs
15: with matching substitution τ then
16: if LISTSUBSUME(τ ◦ σ(subsumer . next),
17: τ ◦ σ(candidate), matched) then
18: return True
19: if cand_eq . rhs matches subs_eq . lhs
20: with matching substitution σ then
21: if σ(cand_eq . lhs) matches subs_eq . rhs
22: with matching substitution τ then
23: return LISTSUBSUME(τ ◦ σ(subsumer . next),
24: τ ◦ σ(candidate), matched)
25: matched← matched \ {cand_eq}
26: return False

The LFHOL extension of the ordered subsumption must take into account the
applied variables that act as wildcards in the matching procedure since a variable
can match any term of the same type. Thus, matching a literal that has an applied
variable at the top level must be tried on every literal of the same polarity and kind
(equational or non-equational). Note that in the FOL case, predicate variables could
never appear, so this case was not considered at all. We extend B to BHO by refin-
ing the third condition in the definition of B. In particular, l1 BHO l2 if any of the
following conditions is satisfied:

1. A positive literal is larger than a negative literal.

2. An equational literal is larger than a non-equational literal.

3. l1 and l2 have the same polarity, both are non-equational, neither one has an
(applied) variable as the left-hand side and the function code of the left-hand
side in l1 is larger than the function code of the left-hand side in l2.

The only difference between B and its LFHOL counterpart BHO is the treatment
of variables that appear at the top level in non-equational literals. By using BHO

in Algorithm 1212, matching applied variables is tried against every non-equational
literal of the same polarity. Furthermore, for the non-equational literals that have no
top-level variables only the literals that have the same top-level function code are
tried as possible matching targets. This fully coincides with the FOL solution, which

6.4. Subsumption 63

makes BHO entirely graceful. In other words, if we used BHO on FOL problems, it
would behave exactly like B.

Delaying the matching of applied variables would be a good way to speed up
subsumption procedure. Namely, since applied variables have already described
wildcard behavior it is more likely that a literal that has applied variables at the top
level will match a target. Thus, to prune out the search space we want to try literals
that are not as robust with respect to matching first – that is, we would like to try the
literals with no applied variables as early as possible. To that end, while perform-
ing the subsumption sort, in both the subsumer and the candidate we always put
applied variables at the end of their partition.

This optimization is both graceful and efficient for LFHOL. Since top-level vari-
ables cannot appear in non-equational literals in FOL case, new sorting procedure
does not change FOL subsumption-sort behavior. On the other hand, it is a heuristic
that might improve LFHOL subsumption performance.

65

Chapter 7

Conclusion

Extending a first-order prover to a fragment of HOL means making a set of very
delicate changes to the prover from both theoretical and engineering perspective. A
priori, it is not clear if a prover can be gracefully generalized. In this chapter, we give
an overview of the changes we made and argue that our generalization is entirely
graceful.

7.1 Results

The main question we posed in Chapter 11 is

Is there a way to extend a state-of-the-art first-order theorem prover to HOL in
a way that its performance on first-order problems remains the same?

To answer this question we investigated E from both an engineering perspective
(e.g. representation of terms and types) and a more abstract, theoretical perspective
(e.g. generalization of indexing data structures). In this section, we lay out our main
findings.

Terms and Types We have shown that with some effort, the central data structure
used in an ATP, the term structure, can be generalized so that all the invariants that
previously held for FOL problems are preserved when hoE is supplied with a FOL
problem. However, we observed that there are some corner cases where the invari-
ants E has in place have to be generalized to make E work seamlessly with LFHOL.
In particular, applied variables challenged us to change the term representation so
that the head symbol of an applied variable has a specially designated function code.

Generalization of types was performed by rewriting the type module from the
ground up. We have shown that it is possible to implement an HOL type system in
a first-order prover in a way that keeps the same time complexity. Furthermore, our
type system uses flattened representation that enables efficient treatment of types in
LFHOL as well.

Matching and Unification Faced with the problem of large number of prefixes
LFHOL terms exhibit, we have spent a substantial amounts of time on trying to find
efficient matching and unification algorithms for LFHOL. The algorithms we came
up with are able to determine the only prefix that can be matched onto or unified
with, with no need for the caller to create exact prefixes. Furthermore, the algorithms
keep the same time complexity as in E for both LFHOL and FOL terms. This makes
our implementation of LFHOL matching and unification not only graceful but also
efficient for LFHOL terms.

66 Chapter 7. Conclusion

Indexing Data Structures E employs advanced data structures to speed up search
for the proof. Generalizing the data structures was the most time-consuming part
of this project for many reasons. First, all of those data structures have implicit or
explicit assumption that the terms they operate on are FOL terms. Second, indexing
data structures can be hard to implement and the modules implementing them can
be lengthy and contain complicated and hard-to-understand code. Last, they are
used in many parts of the proof search, which makes locating bugs hard.

Perfect discrimination trees were the most complicated data structure to gener-
alize. We managed to keep the time complexity for retrieving FOL terms the same
as in the original E. Moreover, the order in which terms are retrieved and the way
discrimination tree is traversed remained the same. For LFHOL terms, we imple-
mented our prefix-matching optimizations and kept the same time complexity as
for the FOL terms.

Extension of fingerprint indexing was not hard from the engineering perspective,
but coming up with a graceful extension and reinterpretation of fingerprints was
where the majority of the time spent on fingerprint indexing went. Our LFHOL
fingerprinting is precise for LFHOL terms and keeps exactly the same granularity of
precision for FOL terms.

Extension of feature vector indexing was the easiest generalization we had to
perform. From the theoretical perspective, all the subsumption-compatible aggre-
gate features of FOL clauses carry over to LFHOL clauses. On the other hand, from
the engineering perspective we had to ignore the special applied variable function
code from function code occurrence and depth computations. This change was not
time consuming, but required deep understanding of how E feature vector indexing
works.

Calculus Generalization The biggest concern we had with the superposition cal-
culus and various simplification rules implemented in E was that many of them
work with subterms of a literal. Since the number of subterms in a LFHOL term is
double the number of the subterms of the corresponding FOL term, LFHOL prefix
traversal could become a bottleneck.

Thanks to our prefix-matching and prefix-unification optimizations that are in
place for both the matching and unification procedures and indexing data structures,
we managed to avoid traversing and creating subterms other than the ones for FOL
terms. However, from the engineering perspective there is still work to be done since
every dereferencing of applied variables expands to a new term, which is wasteful.

7.2 Related Work

To the best of our knowledge, hoE is the first ATP that was designed to support ex-
actly LFHOL. However, there is a number of ATPs that support full HOL. Leo-III
[Eit+17Eit+17] and Satallax [GMS12GMS12] are perhaps the most popular fully automatic solu-
tions for HOL ATP.

They are built from the ground up for HOL which means that, for example, Leo-
III’s calculus encodes unification as a clause in an inference which comes as a cost for
FOL reasoning. Thus, Leo-III is substantially slower than E on FOL problems. It tries
to call external first-order reasoners in parallel to speed up proof search whenever
it can, but it is still in infancy compared to the state-of-the-art FOL reasoners. On
the other hand, hoE has first-order reasoning built-in natively and performs some

7.3. Future Work 67

higher-order reasoning when needed. Thus, it has finer granularity of control of
interleaving first-order and higher-order reasoning.

Furthermore, Satallax does not even support stating problems in FOL syntax
(TPTP TFF, FOF or CNF syntax). hoE on the other hand is based on E, first-order
prover and behaves like E on FOL problems, so it allows for a more smooth transi-
tion to LFHOL. However, hoE falls behind Leo-III and Satallax in terms of its deduc-
tion abilities on HOL problems. hoE is not able to generate lambdas at the moment,
meaning that is able to prove a strict subset of formulas Leo-III and Satallax can.

From the more theoretical perspective, Blanchette et al. [Bec+17Bec+17]; [BWW17BWW17] have
tackled the issue of term orders that are suited for LFHOL terms. Namely, they ex-
tended both KBO and LPO to LFHOL gracefully. We are unaware of other theoretical
treatments of LFHOL issues.

7.3 Future Work

The main line in which we are going to continue our work is creating a stable version
of hoE for which we can give reasonable assurance that it contains no critical bugs.

To be able to answer our research question with more evidence than just theoret-
ically same worst-case time complexity boundaries for FOL and LFHOL algorithms
we have to perform experiments on large sets of problems. We haven’t performed
experiments on large problem corpus.

Experiment results will guide us in optimizing the right parts of hoE. Namely,
based on the results from the experimentation phase we can get insight in what are
the bottlenecks in LFHOL reasoning. Then, we can revise some of the current design
decisions and improve hoE further.

So far, we have mostly been interested in generalizing FOL indexing techniques.
Libal and Steen have extended substitution trees, an indexing technique not covered
in this thesis, to full HOL terms [SWB16SWB16]. It might be interesting to see how this data
structure can be specialized for LFHOL terms and whether inclusion of substitution
trees would hinder hoE’s performance on FOL problems.

Lastly, we want to include support for full HOL in future versions of hoE. Cur-
rently, no plan or timeline has been established as to when more HOL features will
be added to hoE. However, support for full HOL and keeping E’s performance on
FOL is our ultimate goal.

69

Bibliography

[And86] Peter B. Andrews. An introduction to mathematical logic and type theory -
to truth through proof. Computer science and applied mathematics. Aca-
demic Press, 1986. ISBN: 978-0-12-058535-9.

[Bec+17] Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann, and Daniel
Wand. “A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order
Terms”. In: Automated Deduction - CADE 26 - 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceed-
ings. 2017, pp. 432–453.

[Bez+03] M. Bezem, J.W. Klop, R. de Vrijer, and Terese. Term Rewriting Systems.
Cambridge Tracts in Theoretica. Cambridge University Press, 2003. ISBN:
9780521391153. URL: https://books.google.nl/books?id=oe3QKzhFEBAChttps://books.google.nl/books?id=oe3QKzhFEBAC.

[BG90] Leo Bachmair and Harald Ganzinger. “On Restrictions of Ordered Paramod-
ulation with Simplification”. In: 10th International Conference on Auto-
mated Deduction, Kaiserslautern, FRG, July 24-27, 1990, Proceedings. 1990,
pp. 427–441. DOI: 10.1007/3-540-52885-7_10510.1007/3-540-52885-7_105. URL: https://doi.org/10.1007/3-540-52885-7_105https://doi.org/10.1007/3-540-52885-7_105.

[BK98] Christoph Benzmüller and Michael Kohlhase. “Extensional Higher-Order
Resolution”. In: Automated Deduction - CADE-15, 15th International Con-
ference on Automated Deduction, Lindau, Germany, July 5-10, 1998, Proceed-
ings. 1998, pp. 56–71.

[BWW17] Jasmin Christian Blanchette, Uwe Waldmann, and Daniel Wand. “A Lambda-
Free Higher-Order Recursive Path Order”. In: Foundations of Software Sci-
ence and Computation Structures - 20th International Conference, FOSSACS
2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
2017, pp. 461–479.

[CL73] Chin-Liang Chang and Richard C. T. Lee. Symbolic logic and mechanical
theorem proving. Computer science classics. Academic Press, 1973. ISBN:
978-0-12-170350-9.

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. ISBN: 978-
0-262-03384-8. URL: http://mitpress.mit.edu/books/introduction-algorithmshttp://mitpress.mit.edu/books/introduction-algorithms.

[Eit+17] Thomas Eiter, David Sands, Geoff Sutcliffe, and Andrei Voronkov, eds.
IWIL@LPAR 2017 Workshop and LPAR-21 Short Presentations, Maun, Botswana,
May 7-12, 2017. Vol. 1. Kalpa Publications in Computing. EasyChair,
2017. URL: https://easychair.org/publications/volume/LPAR-21Shttps://easychair.org/publications/volume/LPAR-21S.

[GMS12] Bernhard Gramlich, Dale Miller, and Uli Sattler, eds. Automated Reason-
ing - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June
26-29, 2012. Proceedings. Vol. 7364. Lecture Notes in Computer Science.
Springer, 2012.

https://books.google.nl/books?id=oe3QKzhFEBAC
http://dx.doi.org/10.1007/3-540-52885-7_105
https://doi.org/10.1007/3-540-52885-7_105
http://mitpress.mit.edu/books/introduction-algorithms
https://easychair.org/publications/volume/LPAR-21S

70 BIBLIOGRAPHY

[Ker91] Manfred Kerber. “How to Prove Higher Order Theorems in First Order
Logic”. In: Proceedings of the 12th International Joint Conference on Artificial
Intelligence. Sydney, Australia, August 24-30, 1991. 1991, pp. 137–142. URL:
http://ijcai.org/Proceedings/91-1/Papers/023.pdfhttp://ijcai.org/Proceedings/91-1/Papers/023.pdf.

[Knu98] Donald Ervin Knuth. The art of computer programming, , Volume III, 2nd
Edition. Addison-Wesley, 1998. ISBN: 0201896850. URL: http://www.worldcat.org/oclc/312994415http://www.worldcat.org/oclc/312994415.

[LS01] Bernd Löchner and Stephan Schulz. “An evaluation of shared rewrit-
ing”. In: Proceedings of the Second International Workshop on Implementation
of Logics, Technical Report MPI-I-2001-2-006. 2001, pp. 33–48.

[Löc06] Bernd Löchner. “Things to Know when Implementing KBO”. In: J. Au-
tom. Reasoning 36.4 (2006), pp. 289–310.

[McC92] William McCune. “Experiments with Discrimination-Tree Indexing and
Path Indexing for Term Retrieval”. In: J. Autom. Reasoning 9.2 (1992),
pp. 147–167.

[McC97] William McCune. “Solution of the Robbins Problem”. In: J. Autom. Rea-
soning 19.3 (1997), pp. 263–276.

[NR92] Robert Nieuwenhuis and Albert Rubio. “Basic superposition is com-
plete”. In: ESOP ’92. Ed. by Bernd Krieg-Brückner. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1992, pp. 371–389. ISBN: 978-3-540-46803-5.

[RV01] Alan Robinson and Andrei Voronkov, eds. Handbook of Automated Rea-
soning. Elsevier Science Publishers B. V., 2001. ISBN: 0-444-50812-0.

[SBP13] Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson. “LEO-
II and Satallax on the Sledgehammer test bench”. In: J. Applied Logic 11.1
(2013), pp. 91–102.

[Sch02] Stephan Schulz. “E - a brainiac theorem prover”. In: AI Commun. 15.2-3
(2002), pp. 111–126. URL: http://content.iospress.com/articles/ai-communications/aic260http://content.iospress.com/articles/ai-communications/aic260.

[Sch12] Stephan Schulz. “Fingerprint Indexing for Paramodulation and Rewrit-
ing”. In: Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings. 2012, pp. 477–483.

[Sch13a] Stephan Schulz. “Simple and Efficient Clause Subsumption with Feature
Vector Indexing”. In: Automated Reasoning and Mathematics - Essays in
Memory of William W. McCune. 2013, pp. 45–67.

[Sch13b] Stephan Schulz. “System Description: E 1.8”. In: Logic for Programming,
Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-
19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings. 2013, pp. 735–
743. DOI: 10.1007/978-3-642-45221-5_4910.1007/978-3-642-45221-5_49. URL: https://doi.org/10.1007/978-3-642-45221-5_49https://doi.org/10.1007/978-3-642-45221-5_49.

[Sut17a] G. Sutcliffe. “The TPTP Problem Library and Associated Infrastructure.
From CNF to TH0, TPTP v6.4.0”. In: Journal of Automated Reasoning 59.4
(2017), pp. 483–502.

[Sut17b] Geoff Sutcliffe. “The CADE-26 automated theorem proving system com-
petition - CASC-26”. In: AI Commun. 30.6 (2017), pp. 419–432. DOI: 10.3233/AIC-17074410.3233/AIC-170744.
URL: https://doi.org/10.3233/AIC-170744https://doi.org/10.3233/AIC-170744.

[SWB16] G.-M. Greuel, T. Koch, P. Paule, and A. Sommese, eds. Agent-Based HOL
Reasoning. Vol. 9725. LNCS. Berlin, Germany: Springer, 2016, pp. 75–
81. ISBN: 978-3-319-42431-6. DOI: 10.1007/978-3-319-42432-3_1010.1007/978-3-319-42432-3_10. URL:
http://christoph-benzmueller.de/papers/C56.pdfhttp://christoph-benzmueller.de/papers/C56.pdf.

http://ijcai.org/Proceedings/91-1/Papers/023.pdf
http://www.worldcat.org/oclc/312994415
http://content.iospress.com/articles/ai-communications/aic260
http://dx.doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.3233/AIC-170744
https://doi.org/10.3233/AIC-170744
http://dx.doi.org/10.1007/978-3-319-42432-3_10
http://christoph-benzmueller.de/papers/C56.pdf

71

Declaration of Authorship
I hereby declare that this master thesis was independently composed and authored
by myself.

All content and ideas drawn directly or indirectly from external sources are indi-
cated as such. All sources and materials that have been used are referred to in this
thesis.

The thesis has not been submitted to any other examining body and has not been
published.

Amsterdam, 29.01.2018.

Signed: Petar Vukmirović

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Software

	Background
	First-Order Logic
	Refutational Theorem Proving
	The Superposition Calculus
	The E Theorem Prover
	Lambda-Free Higher-Order Logic

	Generalizing Types and Terms
	Types
	Types in the Original E
	Types in hoE

	Terms
	Terms in the Original E
	Terms in hoE

	Knuth-Bendix Order
	First-order Knuth-Bendix Order
	Knuth-Bendix Order Extended to LFHOL Terms

	Generalizing Matching and Unification
	Matching
	First-Order Matching Algorithm
	E Implementation of the Matching Algorithm
	Lambda-Free Higher-Order Matching Algorithm
	hoE Implementation of LFHOL Matching Algorithm

	Unification
	First-order Unification Algorithm
	E Implementation of the Unification Algorithm
	Lambda-Free Higher-Order Unification Algorithm
	hoE Implementation of LFHOL Unification Algorithm

	Generalizing the Indexing Data Structures
	Perfect Discrimination Trees
	Description of the Data Structure
	E's Implementation of PDT
	E Bug
	LFHOL Extension of PDTs
	Implementation of LFHOL PDTs in hoE

	Fingerprint Indices
	Description of the Data Structure
	E Implementation of Fingerprint Indexing
	Extension of Fingerprint Indexing for LFHOL
	hoE Implementation of LFHOL Fingerprint Indexing

	Feature-Vector Indices

	Generalizing the Calculus' Implementation
	Preprocessing
	Definition Unfolding
	Skolemization

	The Generating Inference Rules
	The Simplification Rules
	Subsumption

	Conclusion
	Results
	Related Work
	Future Work

	Bibliography
	Declaration of Authorship

