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This extended abstract describes work performed in collaboration with Alexander
Bentkamp, Simon Cruanes, Visa Nummelin, Stephan Schulz, Sophie Tourret,
Petar Vukmirović, and Uwe Waldmann on the design and implementation of
λ-superposition, in the context of the Matroyshka research project.

When I conceived Matroyshka in 2015, my ambition was to develop higher-
order provers that perform well on higher-order proof obligations originating
from Isabelle/HOL [11] and other proof assistants. Lawrence Paulson had noticed
that the performance on truly higher-order goals left much to be desired and
“given the inherent difficulty of performing higher-order reasoning using first-order
theorem provers, the way forward is to integrate Sledgehammer with an actual
higher-order theorem prover, such as LEO-II” [13]. However, the subsequent
integration of LEO-II [4] and Satallax [7] failed to bring the expected benefits [16].
My hypothesis was that most Isabelle problems have a large first-order component
and the existing higher-order provers were not optimized for this kind of reasoning.

To obtain higher-order provers that excel at first-order reasoning, I proposed
to start with a highly successful first-order calculus, superposition, and generalize
it, as much as possible, in a graceful way, culminating with a higher-order calculus
we call λ-superposition. Provers implementing this calculus would combine the
strengths of native higher-order provers and the strengths of the superposition
provers that served as Sledgehammer backends: E [14], SPASS [6], and Vampire [5].

To tackle the challenge of designing λ-superposition, we identified three
milestones that we reached in turn. We first designed a superposition-like calculus
for λ-free, Boolean-free higher-order logic (also called applicative first-order
logic) [1]. This logic supports partial application of function symbols (e.g., f or
f a, where f is binary) and application of variables (e.g., y a). Already at this
stage, the first serious issue arose with the term order that superposition uses to
prune the search space. We were able to work around the issue by introducing a
new inference rule called argument congruence. For this and the other milestones,
much of the work went into ensuring that the calculus is refutationally complete.

For the second milestone, we designed a superposition-like calculus for a logic
that supports λ-abstractions but not interpreted Booleans [3]. One difficulty that
arose is that inferences need to perform higher-order unification. Unfortunately,
higher-order unification is ill-behaved: It is undecidable and can yield a possibly
infinite stream of unifiers. Moreover, due to interactions with the term order, we
need to perform full unification (including flex-flex pairs) [17] and not simply
preunification [10].
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For the third milestone, we added support for interpreted Booleans [2]. This
step was based on ideas by Ganzinger and Stuber [9]. They showed how to support
logical symbols inside a superposition-like calculus, but fell short of including an
interpreted Boolean type. Thus, we extended Ganzinger and Stuber’s work [12]
and used it as the basis of a graceful generalization to higher-order logic.

Whenever we designed a calculus, we also made sure to implement it in the
Zipperposition prover [8]. Zipperposition was originally developed by Cruanes
to explore induction, arithmetic, and deduction modulo. It is written in OCaml
and is highly extensible. He extended it with a pragmatic higher-order mode
with support for λ-abstractions and extensionality, without any completeness
guarantees. This mode formed the basis for our subsequent work. Empirical
evaluations on TPTP and Sledgehammer benchmarks were initially disappointing,
but after some extensive tuning and new ideas for heuristics, Zipperposition
became highly competitive, finishing first in the higher-order theorem division of
the CADE ATP System Competition (CASC) in 2020, 2021, and 2022. Inspired
by a similar integration in Leo-III [15] and Satallax, Zipperposition incorporates
E as a backend to tackle first-order subproblems.

We also implemented λ-superposition in the high-performance prover E [18,19].
The E implementation is pragmatic and sacrifices completeness. For example,
the possibly infinite stream of unifiers is truncated to make it finite, and some
of the most explosive rules of λ-superposition are omitted. Probably because
Zipperposition has a portfolio of modes extensively tuned against the TPTP
library and uses a version of E as a backend, E finished only second in the higher-
order theorem division of CASC 2022. On the other hand, E finished first in the
Sledgehammer division of the same competition. Despite this, the performance
improvement over Sledgehammer’s first-order backends is unimpressive. I suspect
that Isabelle problems are even more first-order than I thought.

We learned a few other lessons in the process:

• The identification of reasonable milestones was invaluable.
• The completeness proofs gave us some useful guidance as we designed the

calculi, even if it turns out that the best empirical modes are incomplete.
• Another useful guide was the design goal of achieving, as much as possi-

ble, a graceful generalization, preserving the features that make standard
superposition successful on first-order problems.

• Disappointing evaluations can simply mean that more fine-tuning and heuris-
tics are needed.

• The presence of many complementary modes in a well-tuned portfolio can be
as important as a highly efficient implementation.
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