
RESEARCH INTERNSHIP REPORT

Meta-programming with the Lean proof assistant

Supervision by Jasmin C. Blanchette, Johannes Hölzl et Robert Y. Lewis

Vrije Universiteit Amsterdam

April - August 2018

Pablo Le Hénaff

Research Internship Report

Abstract

This report expounds work conducted on the Lean proof assistant at the Vrije Universiteit Amsterdam.
We first present a short introduction to Lean, containing some of the necessary background. It is followed
by the presentation of two original examples of how Lean’s meta-programming framework can be used to
define proof automation procedures. The first example assists user who work with algebraic structures such
as commutative groups by simplifying equalities. The second sample uses recursion and user-defined lemmas
to facilitate some proofs using monotonicity of a variety of operators. Finally, we explain our integration
of an external tool into Lean, the Nunchaku model finder. Nunchaku can find witnesses for an existential
quantification or counter-examples to a wrong assertion. It is sometimes useful as an heuristic to check that
a goal can actually be proved, thus saving time not trying to prove a false assertion.

Acknowledgements. I am grateful to Jasmin C. Blanchette, for giving me the opportunity to do this intern-
ship; to Johannes Hölzl and Robert Y. Lewis, for the precious answers they gave to my numerous questions; to
Alex and Petar, to whom I wish a lot of success for the rest of their PhD project; to Wan and Femke for sharing
lunches. This internship was funded by the Matryoshka grant [1], a project led by Jasmin C. Blanchette and
mainly based at the Vrije Universiteit Amsterdam. Matryoshka pursues the goal of delivering very high levels
of automation to users of proof assistants.

Contents

Introduction 2

1 Lean in a nutshell 4
1.1 Type system . 4
1.2 Inductive datatypes, structures and type classes . 4
1.3 Logic and formalization . 5
1.4 Automation and programming in Lean . 6
1.5 Manipulating expressions . 7

2 An algebraic equation simplifier 9
2.1 Motivation and goal . 9
2.2 AC term rewriting in Lean . 9
2.3 Implementation . 10

3 An extendable monotonicity prover 12
3.1 Idea . 12
3.2 Implementation . 12

4 Integration of an external counter-example generator 15
4.1 Introduction and example . 15
4.2 Lean to Nunchaku problem translation . 16
4.3 Inverse translation . 17
4.4 Limits to the translation, related and future work . 18

Bibliography 20

2

Research Internship Report

Figure 1: The Matryoshka project - Fast Interactive Verification through Strong Higher-Order Automation

Introduction
Lean is a disruptive, open-source proof assistant and programming language currently developed at Microsoft
Research and Carnegie Mellon University [2]. It implements the theory of dependent types, like the Coq proof
assistant [3]. The syntax and spirit of Lean are close to Haskell.

Lean makes it possible to develop algorithms, meta-programs and computer-checked proofs in a same,
unified programming language. It is a relatively new research project with few users as compared to other
similar software: its development can hence easily include experimental features and modify the language.

The mathematical library of Lean, called Mathlib [4], contains basic formalization of many of the main
theories of modern mathematics.

A live online Javascript version of Lean is available at leanprover.github.io/live/latest/ for quick
testing.

3

leanprover.github.io/live/latest/

Research Internship Report

1 Lean in a nutshell
This section provides a brief overview of Lean’s features. We assume that the reader has some familiarity with
functional programming, proof assistants and mathematical logic. For further reference, Lean comes with a
detailed tutorial [5] as well as a reference manual [6]. The online dedicated chat room1 proves useful when
looking for information about undocumented features.

1.1 Type system
Lean features like Coq an infinite hierarchy of type universes Sort:

constants (a : Sort 2) (b : Sort 3)
#check a → b -- Sort 3

The expression Type n, where n is a natural number, is syntactic sugar for Sort (n+1). Type and Prop are
other names for Type 0 and Sort 0, respectively. Lean implements the propositions-as-types paradigm, also
called the Curry–Howard correspondence: proving a proposition p : Prop boils down to providing an element
of ”type” p.

Lean has dependent types built-in. Dependent types allow for very expressive types and thus all the so-
phisticated propositions of higher-order logic. The Π operator is used to express the type of a functions whose
return type depends on the input value, that is, the expression Π (a : α), f a is the type of a function which
takes an argument a of type α and outputs an element of type f a.

Π types generalize polymorphism, a feature available in many programming languages, when α is Type n.
For instance, the type of the list.nil (empty list) constructor of the polymorphic list inductive datatype is
Π {T : Type u}, list T.

When a variable that is Π-bound is not used in the body of the Π type (id est the type function is constant),
then Lean’s pretty-printer shortens the Π type into an arrow type, which are more common in other functional
programming languages: F : Π (a : α), β will rather be formatted as F : α → β.

1.2 Inductive datatypes, structures and type classes
Defining a datatype in Lean amounts to giving a type to each of its constructors:

-- Natural numbers
inductive nat
| zero : nat
| succ : nat → nat -- or: ‘| succ (n : nat) : nat‘

Structures, or records, provide a useful way to store ordered and named data. They are implemented as
inductive types with a single constructor (usually named mk) comprising an argument for each of the structure’s
fields. A structure comes with associated projections, i.e. getter functions for each field.

Lean provides syntactic convenience to define structures. Here is an example, taken from Lean’s mathemat-
ical library, of a structure representing a mathematical filter, that is, a nonempty set of sets which is upward
closed and downward directed2:

structure filter (α : Type u) :=
(sets : set (set α))
(exists_mem_sets : ∃x, x ∈ sets)
(upwards_sets : ∀{x y}, x ∈ sets → x ⊆ y → y ∈ sets)
(directed_sets : directed_on (⊆) sets)

1Available at leanprover.zulipchat.com.
2A filter F ⊆ P(E) on a set E satisfies

F 6= ∅ , ∀x ∈ F , ∀y ∈ P(E), x ⊆ y =⇒ y ∈ F and ∀(x, y) ∈ F2, ∃z ∈ F , z ⊆ x ∧ z ⊆ y .

4

leanprover.zulipchat.com

Research Internship Report

Any datatype with a single constructor can be both constructed and destructed via pattern matching using
the handy anonymous constructor notation:

example {p q : Prop} (hp : p) (hq : q) : p ∧ q := 〈 hp, hq 〉

In addition, Lean features type classes, like Haskell. Type class inference allow for automatic retrieval of
data, exempli gratia type properties and proofs, without having to explicitly specify the fetched data. Type
classes are used in the Lean library to define a whole hierarchy of algebraic properties on types, which can be
specified as arguments to a proof using square brackets:

/- the type α is equipped with an associative multiplication operation
and any element at the left of both sides of an equality can be canceled -/

example {α} [has_mul α] [is_associative α (*)] [is_left_cancel α (*)] {a b c : α} :
a * b = a * c → b = c :=

is_left_cancel.left_cancel _ _ _

1.3 Logic and formalization
Mixed with dependent types, datatypes are used to implement inside Lean itself almost any element of logic.
These definitions are very similar to that of Coq’s core [7]. Here are a few examples:

• the false proposition is defined as an inductive type with no constructor:

inductive false : Prop

This implies that the system is sound, i.e. no proof of false can be produced, except in case of a bug.

• the existential quantifier is implemented as a dependent pair:

inductive Exists {α : Sort u} (p : α → Prop) : Prop
| intro (w : α) (h : p w) : Exists

It is then bound to the more convenient ∃ unicode notation.

• disjonction (i.e. the ”or” connective) of two propositions A and B is implemented as a datatype with
two constructors - a proof of A ∨ B can be constructed using a proof of A and the or.inl (”left intro”)
constructor, or with a proof of B with the or.inr (”right intro”) constructor:

inductive or (a b : Prop) : Prop
| inl {} (h : a) : or
| inr {} (h : b) : or

• equality is defined as an inductive family:

inductive eq {α : Sort u} (a : α) : α → Prop
| refl : eq a

Only eq a a is thus inhabited, or provable. Lean will type-check eq.refl c as a proof for a = b only
when a, b and c are definitionally equal, that is, when they reduce to a common term:

example {α} {a : α} {f : α → α} [inhabited α] :
(λx, f x) (list.repeat a 3).head = (prod.fst ◦ id ◦ (λx, prod.mk (f x) x)) a :=

eq.refl (f a)

5

Research Internship Report

Lean’s logic is intuitionistic, e.g. the excluded-middle property ∀ (p : Prop), p ∨ ¬p cannot be derived
from its internal definitions. The classical namespace/library provides such a proof, assuming the axiom of
choice:

class inductive nonempty (α : Sort u) : Prop
| intro (val : α) : nonempty

axiom choice {α : Sort u} : nonempty α → α

1.4 Automation and programming in Lean
Formalizing proofs using a proof assistant is often long and difficult, as compared to the mathematicians’ pen-
and-paper proofs. Proof automation is a very active research field and good progress has been achieved in recent
years. It can refer to fully-automated reasoning systems like Vampire3, but also to integrated proof assistants
like Lean. One goal of Lean is to make easy the use and development of proof automation procedures in an
interactive context, called tactics, taking the pain out of interactive theorem proving.

The interactive tactic mode of Lean is entered within the begin and end keywords and enables users to use
one of the many built-in interactive tactics. The by keyword is mostly used when a single tactic solves the goal.
We show here, as an example, a proof of the so-called drinker’s theorem written in two different ways. With no
automation, the proof in pure term style looks like this:

import logic.basic -- Mathlib contains some extra logic lemmas.
open classical -- We need classical logic for the case distinction and decidability.
local attribute [instance] prop_decidable -- All propositions are decidable.

variables {α : Type} {p : α → Prop} [inhabited α]

lemma drinker : ∃y, (p y → ∀x, p x) :=
have h : ∀y, (p y → ∀ x, p x) ↔ (¬p y ∨ ∀ x, p x) := λy, imp_iff_not_or,
(exists_congr h).mpr $

exists_or_distrib.mpr $
by_cases

(λg : ∀x, p x, or.inr $ (exists_const _).mpr g)
(λng, or.inl $ not_forall.mp ng)

However, this proof can be reduced to a single line when using tactics:

lemma drinker : ∃y, (p y → ∀x, p x) := by simp [not_forall_not.mp, forall_and_distrib]

As mentioned above, Lean already contains a good automation ecosystem. Two of the most fundamental
tactics are the simplification tactic simp and the rewriting tactic rw. Both are implemented in C++ for the sake
of efficiency, but can be heavily tweaked from inside Lean, and used as tools to build other tactics. simp belongs
to the kind of tactics which make use of an extendable set of lemmas to operate on a goal or hypothesis (using
the at keyword in interactive mode). Users and library developers can add their own simplification lemmas by
tagging them with the [simp] attribute.

Lean is, in addition to being a proof assistant, a full-fledged programming language, as one can define all
kinds of algorithms and data structures and efficiently execute those inside Lean’s virtual machine using the
#eval command:

-- Sort a list using Mathlib’s proved sorting procedures.
import data.list.sort
#eval [5, 2, 6, 4, 1, 9, 7, 3, 8, 0, 7].merge_sort (≤)
-- Outputs [0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9].

3Vampire (vprover.org) won 28 titles in the CASC automated theorem proving competition since 1999.

6

Research Internship Report

Lean’s versatility as both a proof and programming language is a key feature when it comes to programming
tactics, or interfacing Lean with external tools. The act of programming one’s own Lean tactics to handle
specific proof situations is referred to as meta-programming, because tactics belong to the meta fragment of
Lean. That means that one can define non-terminating procedures and make reference to some untrusted, fast
and native definitions from the C++ code, e.g. name, which is Lean identifiers’ type, or expr, an inductive
type representing Lean’s expressions abstract syntax tree. This meta-programming framework is thoroughly
described by Ebner et al. [8].

Proofs and definitions which are not tagged with meta cannot make use of any definition from the meta
fragment. However, when inside a meta declaration (e.g. when writing a tactic), developers can use the whole
non-meta Lean formalization library, which means that natural numbers or lists are the same as the ones used
in proofs. In turn, some of those regular datatypes which are used inside a meta declaration can be reflected
into an expr. A use case is shown below.

Lean tactics are implemented as state and alternative monads, where the type of the state is the
tactic_state, which comprises the goal and current local hypotheses. Systematic manipulations of the proof
state are hence encapsulated inside a practical monadic box allowing for failure. The <|> operator implements
backtracking, and the monad framework also brings the handy do notation to represent a series of operations.
We heavily used the combinators <$>, the mapping operation of the functor class, and <*>, the sequence
operation of the applicative class. Many canonical other monad instances are already available in the stan-
dard library, like the option and list monads, as well as the monadic parser that we used for our Nunchaku
integration.

The io monad is used for any action involving interaction with the outside world and having side effects
outside of the tactic state. In this example, we create a tactic that synthesizes a list of random natural numbers
using unsafe_run_io : Π {α : Type}, io α → tactic α, then pass it to the previous sorting function:

import data.list.sort system.io
open tactic
meta def get_random_nat_list (min max length : N) : tactic unit := do

let l’ := list.repeat 0 length,
l ← l’.mmap $ λ_, unsafe_run_io $ io.rand min max,
exact ‘(l) -- ‘(l) is the reflected version of l.

#eval let l := by get_random_nat_list 0 10000 1000 in l.merge_sort (≤)
-- [4, 7, 13, 36, 37, 39, 42, 45, 46, 70, 71, 74, 81, 90, 93, 94, 102, 113, 136, ...

1.5 Manipulating expressions
Lean expressions (typically : a proof goal or a hypothesis type) are represented inside the meta-programming
framework with the expr datatype (reproduced in figure 2), which reflects the internal representation of the
C++ implementation.

Understanding how Lean interprets those different constructors is key to programming tactics. In particular,
the var constructor correspond to a De Bruijn index, which means that it should only be used after a binding
constructor among lam, pi and elet. When traversing an expression and to keep hold of the binding information,
one needs to instantiate every new binded var into a local_const. These store a unique name (usually obtained
with tactic.mk_fresh_name), a pretty-printing name which isn’t necessarily unique, as well as the binding type
(e.g. if the parameter is implicit or retrieved through type class inference) and the type of the local constant.

7

Research Internship Report

meta inductive expr (elaborated : bool := tt)
| var {} : nat → expr
| sort {} : level → expr
| const {} : name → list level → expr
| mvar : name → name → expr → expr
| local_const : name → name → binder_info → expr → expr
| app : expr → expr → expr
| lam : name → binder_info → expr → expr → expr
| pi : name → binder_info → expr → expr → expr
| elet : name → expr → expr → expr → expr
| macro : macro_def → list expr → expr

Figure 2: Lean’s expressions constructors

If lc is a fresh local constant and e an expression, then expr.instantiate_var e lc will traverse e and
perform changes on every var n:

• if n corresponds to a legal De Bruijn index in e, then the var is left unchanged,

• if n equates to the number of binders previously seen during the traversal4, then var n is changed to lc,

• otherwise, var n is decremented and becomes var (n-1).

The const constructor refers to a name from the current global environment. The environment is accessed
in tactic mode with get_env and declarations can then be retreived with environment.get. Lean provides a
handful of tools to work with such declarations, for instance to know whether a given declaration refers to a
function or datatype, and in the latter case to obtain the name of its constructors.

Many utility functions operating on expressions are available in the default Lean library, both inside and
outside the tactic monad. We used them extensively; reading Lean’s core library code is the best way to know
their use cases.

An original example of another handy use of monads for working with expressions in Lean is the con-
verter conv, also available as a monad transformer. A converter can be fed a transitive binary relation
R : α → α → Prop on a type α and an element a : α. It then attempts at producing an element b : α and
a proof of R a b. The bind, map and pure operations are defined so that one can combine converters together.
For instance, if c1 and c2 are converters, c1 >> c2 will conjugate the effects of c1 and c2 so that an element is
converted with both sequentially, the resulting proof being obtained by transitivity of the binary relation.

4Lean’s De Bruijn indices are zero-based.

8

Research Internship Report

2 An algebraic equation simplifier

2.1 Motivation and goal
Despite being a powerful tool, Lean’s simplifier does not systematically perform cancellations in algebraic
structures that allow it, such as groups or rings, as illustrated by the following piece of code:

example {α} [group α] (a b c : α) (h : a * b * c = a * c) : b = 1 :=
begin

-- simp at h, exact h -- doesn’t work
-- Instead, we have to use the rewriter with special settings:
rw [←mul_one a] at h {occs := occurrences.pos [2]},
exact (mul_left_cancel (mul_right_cancel h))

end

Here, we would like h to be simplified into b = 1 so that we can use it to prove the goal. Here is the same
proof without tactics:

example {α} [group α] (a b c : α) (h : a * b * c = a * c) : b = 1 :=
mul_left_cancel $ mul_right_cancel $ eq.trans h $ congr_arg (*c) $ eq.symm $ mul_one a

One can notice how cumbersome such a simplification proof can be, especially when facing equations with
many variables. Our goal is to define a procedure which can perform better than the integrated simplifier or
rewriter in those cases.

Here is how such a process could be systematized:

1. detect an equality hypothesis h : lhs = rhs where the two expressions lhs and rhs are built upon a
common associative commutative5 binary operation,

2. possibly retrieve a common element a in the tree structures describing the operation’s applications of lhs
and rhs, failing if there is none,

3. provide an auxiliary lhs’ with a proof that a + lhs’ = lhs and an auxiliary rhs’ such that
a + rhs’ = rhs, a being ”pulled left” of the tree structure using associativity and commutativity (or
”pulled right” depending on the available cancelation property),

4. associate the proofs using eq.trans (transitivity of equality) to obtain a proof of the assertion:
lhs = rhs → a + lhs’ = a + rhs’,

5. use is_left_cancel.left_cancel with adequate parameters to obtain an expression with type:
a + lhs’ = a + rhs’ → lhs’ = rhs’,

6. combine, and replace the hypothesis h : lhs = rhs with h’ : lhs’ = rhs’,

7. repeat the procedure until it fails, so that it is guaranteed that no term common to both sides is left.

2.2 AC term rewriting in Lean
Our implementation could rely on already existing Lean tools. Lean indeed features a powerful native congruence
closure algorithm [9] that can handle AC (associativity-commutativity) theories. It also features a pair of useful
AC metaconstant tactics implemented in C++:

meta constant flat_assoc : expr → expr → expr → tactic (expr × expr)
meta constant perm_ac : expr → expr → expr → expr → expr → tactic expr

5Such a procedure could also be extended to a non-commutative context, but the description is of little interest, with many
corner cases and boilerplate manipulations.

9

Research Internship Report

Given the following expressions6:

α : Type
op : α → α → α
assoc : ∀ (a b c : α), a * b * c = a * (b * c)
comm : ∀ (a b : α), a * b = b * a
e1 : α
e2 : α

flat_assoc op assoc e1 produces a pair of expressions 〈e1’, pr〉 where e1’ is e1 rewritten with a flattened
parenthesis structure7 and pr is a proof that e1 = e1’. On the other hand, perm_ac op assoc comm e1 e2
produces a proof of e1 = e2 if the two expressions are equal modulo AC.

Here is a simple example where perm_ac is used to generate an equality proof, in a very specific setting:

example {α : Type} [comm_group α] {a b c : α} :
a * b * c = c * b * a := by do

α ← get_local ‘α,
mul ← mk_mapp ‘has_mul.mul [α, none],
assoc ← mk_mapp ‘is_associative.assoc [α, mul, none],
comm ← mk_mapp ‘is_commutative.comm [α, mul, none],
(lhs, rhs) ← target >>= match_eq,
perm_ac mul assoc comm lhs rhs >>= exact

The mk_mapp tactic handles function application with implicit parameters. We could use this perm_ac tactic
at step n◦3 of our procedure scheme.

2.3 Implementation
In our didactic implementation however, we use a custom auxiliary recursive function producing individual
proofs for the ”pull left” conversion. Both sides of the equality hypothesis are cast into a binary operation
structure:

meta inductive binop_tree
| node (left_child : binop_tree) (right_child : binop_tree) : binop_tree
| leaf (value : expr) : binop_tree

/- Parses only the given binary operation ‘op‘.
This is in case multiple operations are mixed (+, *, ...). -/

meta def get_tree_op (op : expr) : expr → tactic binop_tree
| e@(app (app op_ a) b) := -- Pattern match against the ‘expr.app‘ constructor.

(unify op_ op >> binop_tree.node <$> get_tree_op a <*> get_tree_op b)
<|> (pure $ binop_tree.leaf e) -- If unification fails, we just create a leaf.

| e := pure $ binop_tree.leaf e

Once we have a binary tree representing both the left and right-hand side of our equality hypothesis, we
can easily deduce a term elim_term to be canceled from both sides. The following function provides a list of
booleans for easy and efficient recursion:

/- Produces a list of booleans representing the path from the root of the tree
to the first occurence (from the left) of e among the leaves. -/

meta def get_position (e : expr) : binop_tree → tactic (list bool)
| (leaf v) := unify v e >> pure []
| (node l r) := (list.cons ff <$> get_position l) <|> (list.cons tt <$> get_position r)

6The types correspond to the output of the infer_type tactic. These variables have type expr.
7e.g. a ∗ (b ∗ (c ∗ d) ∗ e) becomes a ∗ b ∗ c ∗ d ∗ e, i.e. (((a ∗ b) ∗ c) ∗ d) ∗ e.

10

Research Internship Report

The obtained boolean list is then passed to a function producing a converter that ”pulls left” the given
elim_term:

/- Converts e.g. (a + (e + b)) to (e + (a + b)).
Only works with the equality relation. -/

meta def pull_core (elim_term : expr) : list bool → conv unit
| [] := skip
| [ff] := skip
| [tt] := apply_const ‘‘is_commutative.comm
| (ff::l) :=
/- Case where the expression has the shape A+B

with elim_term present in A.
1st step: convert to (elim_term + A’) + B
2nd step: convert to elim_term + (A’ + B) -/

congr_core (congr_core skip (pull_core l)) skip
>> apply_const ‘‘is_associative.assoc

| (tt::l) :=
/- Here, elim_term is in B.

1st step: convert to A + (elim_term + B’)
2nd step: apply custom lemma to get elim_term + (A + B’) -/

congr_core skip (pull_core l)
>> apply_const ‘‘op_left_comm

In this code:

• skip : conv unit is the identity monadic converter,

• congr_core : Π {α β : Type}, conv_t m α → conv_t m β → conv_t m (α × β)8 is a converter
combinator which converts both a function and its argument with the given pair of converters,

• apply_const : name → conv_t m unit converts using the given lemma or theorem name.

We also developped special modules to handle units (e.g. 1 and 0) when necessary. Here are a few examples
of the final converter cancel_conv in action:

example {a b c : Z} : b + (a + (c + a)) = c + a + b ↔ a = 0 :=
by conversion cancel_conv

example {α} {a b c d : α} [add_semigroup α] [has_mul α]
[is_right_cancel α (+)] [is_left_cancel α (+)] :

a + b*c + c = a + d + c ↔ b*c = d :=
by conversion cancel_conv

The conversion tactic matches a goal lhs R rhs where R is a binary relation and runs the given converter
on R and lhs to try to exact a corresponding proof. We tried several approaches and the conv framework
appears very convenient and powerful. We can also easily derive an interactive tactic simplifying and replacing
an hypothesis in the current proof state, using our cancelation converter as basis.

Lean 4 will probably feature an improved simplification tactic with the ability to better handle such cases.

8The m argument is the base monad for the conv_t transformer, usually tactic.

11

Research Internship Report

3 An extendable monotonicity prover

3.1 Idea
Proving mathematics with Lean sometimes involves solving goals such as this very simple example:

p q r : Prop,
h : p → q,
hp : p,
hr : r
` q ∧ r

This proof is straighforward: the terms and.intro (h hp) hr or 〈 h hp, hr 〉 satisfy the goal. However,
we can notice that the conjonction operator ∧ is monotonous (in both arguments) with respect to the partial
order relation → on propositions:

(p → q) → p ∧ r → q ∧ r .

Recall that the → operator associates to the right. Calling g a proof of the above implication, we have
(g h) : p ∧ r → q ∧ r. We can thus change the goal to p ∧ r and then exact 〈hp, hr〉.

We can find the same pattern in a variety of common cases, some of which are described below:

• The same applies to the or (∨) operator: (p → q) → p ∨ r → q ∨ r. But we want to use full
generality and state that for any predicates p, q : α → Prop, we have

∀ (a b : α), r a b → p a → p b
∀ (a b : α), r a b → q a → q b

}
→ ∀ (a b : α), r a b → p a ∨ q a → p b ∨ q b .

Note that the premises are also monotonicity properties.

• Let 4 : α → α → Prop be a transitive binary relation on a type α. Then for every c : α we have:

a 4 b → c 4 a → c 4 b.

• Let 4 : α → α → Prop be any binary relation on a type α. Then for every p : Prop we have the
trivial assertion:

a 4 b → p → p.

• When A, B : set α and p : α → Prop,

A ⊇ B → ∀ x ∈ A, p x → ∀ x ∈ B, p x .

Based on these assertions, plus some others, our aim is to develop an automation procedure that, given
a b : α, an assumption h : a 4 b and a goal f a where f is monotonous with respect to 4 and →, provides
a proof to the assertion

a 4 b → f b → f a,

thus allowing to change the current goal to f b, as explained above. This is of course not possible for all goals.

3.2 Implementation
We define in Lean a structure monot that encapsulates this kind of monotonicity properties, along with a
[monot] user attribute that serves to collect user-defined monot properties:

structure monot {α : Type*} {β : Type*}
(r : α → α → Prop) (p : β → β → Prop) (f : α → β) : Prop :=

(monot : ∀a b, r a b → p (f a) (f b))

@[user_attribute]
meta def monot_attribute : user_attribute := { name := ‘monot, descr := "Monot rules" }

12

Research Internship Report

Users can then tag their own lemmas with @[monot], for instance9:

@[monot]
lemma monot.finset_card {α} :

monot ((⊆) : finset α → finset α → Prop) (≤) finset.card :=
〈 λ_ _, finset.card_le_of_subset 〉

We then define a tactic monot_subst (hrel : expr) (hyps : list expr) : tactic unit comprising
several simple steps:

1. pattern-match the inferred type of the hrel argument to retrieve an expression with shape r x y where
r is a reflexive transitive binary relation on a type α,

2. extract the predicate p : α → Prop such that the goal unifies with p x by abstracting any occurrence
of the sub-expression x in the goal by a λ-bound var,

3. ask the auxiliary monot-prover to find a proof g for monot (flip r) implies p, possibly making use of
the extra proofs provided through hyps, then apply the proof g hrel to the current goal, which changes
the latter to p y.

The auxiliary prover is a recursive function partly relying on the list of @[monot] lemmas provided by the
user, which makes it extendable. It also uses type class inference. It is based on the apply tactic, which
takes an e : expr and unifies the (inferred) type of e, or one of its conclusions, with the goal, providing the
corresponding proof. The possible subsequent missing premises then create each a new goal. In our prover,
recursion is achieved through the all_goals tactic which attempts to prove all the remaining goals with a single
given tactic. The main structure of the prover thus looks like this:

/- tries to solve a goal of the shape ‘monot r1 r2 f‘
using ns (names of lemmas tagged with @[monot])
and hs (local hypotheses provided in the interactive context) -/

meta def monot_aux (ns : list name) (hs : list expr) : tactic unit := do
(first (hs.map apply) >> skip) <|> first (ns.map applyc),
all_goals monot_aux

In addition to this, we add a strictly decreasing natural number parameter, to prevent unpredicted infinite
looping recursion. Moreover, great care must be taken regarding which lemmas are tagged with @[monot],
and in which order. That’s why we actually make distinct cases for lemmas regarding e.g. the monotonicity
of composition of two functions, which requires special treatment because it can always be instantiated with
identity and create loops:

lemma monot.comp {α β γ} {f : α → β} {g : β → γ}
{r : α → α → Prop} {r’ : β → β → Prop} {r’’ : γ → γ → Prop}
(hg : monot r’ r’’ g) (hf : monot r r’ f) :
monot r r’’ (g ◦ f) :=

〈 λ a b hab, hg.monot (f a) (f b) $ hf.monot a b hab 〉

Here are a two cases in which our tactic becomes useful. First, to find proofs of linear inequalities:

example {x : Z} (hx : x ≤ -2) : 3+x+x≤0 :=
begin

monot_subst hx,
-- The new goal is now (3 + -2 + -2 ≤ 0), i.e. (-1 ≤ 0).
simp -- or trivial

end

9A finset is constructed as a multiset with no duplicates. multiset α is the quotient of list α by the equality modulo
permutation equivalence relation.

13

Research Internship Report

monot_subst can also be used with sets, or set-like objects:

example {α : Type*} {p : α → Prop} {A B : finset α} {n : N} (h : A ⊆ B) :
finset.card A ≤ n ∧ ∀x∈A, p x :=

begin
monot_subst h, -- The goal is now: ‘finset.card B ≤ n ∧ ∀x ∈ B, p x‘.
admit

end

14

Research Internship Report

4 Integration of an external counter-example generator

4.1 Introduction and example
Nunchaku is a model finder, or counter-example generator, developed by Simon Cruanes and Jasmin C.
Blanchette with the aim of replacing Nitpick, the latter being specific to Isabelle. Conversely, Nunchaku is
designed to be integrated in any proof assistant, and corresponding bindings have already been developed for
Isabelle and Coq. No Lean integration was developed so far.

Nunchaku works as a frontend to several different solvers. It is currently compatible with CVC4, Paradox,
Kodkod or SMBC (see [10]). It understands higher-order logic and polymorphism, but not dependent types.
The integration will thus be first limited to a certain set of problems that don’t include e.g. dependent records
like the group type class. It ultimately takes the form of an interactive Lean tactic that translates in several
steps the focused goal into a complete Nunchaku problem, runs Nunchaku on this input, parses the output and
gives a hopefully meaningful answer to the user.

Nunchaku accepts several different input formats. We choose the native, best-supported .nun format for
problems. To give an idea of how Nunchaku is to be used, we provide here a sample problem. Suppose we want
to prove in Lean the putative assertion ∀n : N, n + n = 3*n. Here is what our tactic would ask Nunchaku
to solve for the negated goal ¬(∀n : N, n + n = 3*n):

data nat :=
| nat__zero
| nat__succ nat.

rec nat__add : (nat -> (nat -> nat)) :=
(forall a. (forall b. ((nat__add a (nat__succ b)) = (nat__succ (nat__add a b)))));
(forall a. ((nat__add a nat__zero) = a)).

rec nat__mul : (nat -> (nat -> nat)) :=
(forall a. (forall b. ((nat__mul a (nat__succ b)) = (nat__add (nat__mul a b) a))));
(forall a. ((nat__mul a nat__zero) = nat__zero)).

data has_add alpha :=
| has_add__mk (alpha -> (alpha -> alpha)).

rec has_add__add : (pi alpha. ((has_add alpha) -> (alpha -> (alpha -> alpha)))) :=
(forall x_0. ((has_add__add (has_add__mk x_0)) = x_0)).

rec bit0 : (pi alpha. ((has_add alpha) -> (alpha -> alpha))) :=
(forall s. (forall a. ((bit0 s a) = (has_add__add s a a)))).

data has_one alpha :=
| has_one__mk alpha.

rec has_one__one : (pi alpha. ((has_one alpha) -> alpha)) :=
(forall x_0. ((has_one__one (has_one__mk x_0)) = x_0)).

rec bit1 : (pi alpha. ((has_one alpha) -> ((has_add alpha) -> (alpha -> alpha)))) :=
(forall s_1. (forall s_2. (forall a. ((bit1 s_1 s_2 a) =

(has_add__add s_2 (bit0 s_2 a) (has_one__one s_1)))))).

goal
(˜(forall (n : nat). ((nat__add n n) = (nat__mul (bit1 (has_one__mk (nat__succ nat__zero))

(has_add__mk nat__add) (nat__succ nat__zero)) n)))).

Notice that numerous structures and projections are present. This problem could be made simpler by β-
reducing structure projections before translating. However, we would then lose some information that is useful
to Lean’s pretty-printer, and the formatted output would be less user-friendly.

15

Research Internship Report

In this particular case, Nunchaku finds a model, or counter-example to the universal quantification. We ask
the output to be formatted using s-expressions:

(SAT
((val

(_witness_of
(forall ((n nat))
(= (nat__add n n)
(nat__mul
(bit1 nat (has_one__mk nat (nat__succ nat__zero))
(has_add__mk nat nat__add) (nat__succ nat__zero)) n))))

(nat__succ nat__zero))))

Our tactic then parses this output, and pretty-prints the following indication to the user:
SAT:
Witness of
∀n : N, n + n = 3*n

is
1

An auxiliary tactic can alternatively retrieve the parsed output, and inform the user that the current goal
cannot be proved.

4.2 Lean to Nunchaku problem translation
The translation pipeline starts in tactic mode with the goal as an expr and the environment, which contains
thousands of declarations. Only a portion of this data is required to express a minimal Nunchaku problem for
the goal at stake.

The first translation step thus takes a Lean expression and outputs an ordered list of classified needed
declarations:

meta inductive nun_needed_st : Type
| Inductive : name → nun_needed_st
| Structure : name → nun_needed_st
| Definition : name → nun_needed_st

meta def get_sorted_needed_st : tactic (list nun_needed_st) := sorry

This tactic takes the goal, and extracts all references to declarations from the environment (the expr.const
constructor) it contains. Then, it classifies these declarations with nun_needed_st and recursively walks through
statements, using the lemmas (or types of constructors) defining them in Lean to get new declarations to explore.
Lean’s equation compiler indeed automatically provides equational lemmas for recursive definitions. Here are
the two lemmas generated for the addition of natural numbers:

nat.add.equations._eqn_1 : ∀ (a : N), nat.add a 0 = a
nat.add.equations._eqn_2 : ∀ (a b : N), nat.add a (nat.succ b) = nat.succ (nat.add a b)

Here is the (ordered) list of needed statements for the goal ∃n : N, nˆ2 = 16:

[Inductive nat, Definition nat.add, Definition nat.mul, Definition nat.pow,
Structure has_add, Definition bit0]

The statements are retrieved in a correct topological order, that is, their list gives a correct evaluation order
with respect to the dependency relation. Names referring to a structure projection are classified under the
structure’s name, and names referring to a datatype constructor under the name of the datatype. Statements
that are part of Nunchaku’s builtins, e.g. equality or logical connectives, are removed from the list.

16

Research Internship Report

namespace nun
meta inductive ty : Type -- Nunchaku types.
| Prop_
| Type_
| Arrow_ : ty → ty → ty
| Pi_ : name → ty → ty -- We use Lean’s ‘name‘ type.
| Var_ : name → bool → ty -- The bool argument is whether the var is local.
| App_ : name → list ty → ty

Figure 3: Nunchaku types AST

We then define datatypes to contain Nunchaku’s AST (abstract syntax tree) (partly reproduced in figure 3).
We follow the specifications given in the documentation [10]. Contrary to Lean, Nunchaku makes a distinction
between terms and types, which is reflected in our AST. A Nunchaku problem is a list of statements; those
include datatype definitions, (co)inductive predicates or recursive functions, which correspond respectively to
the data, rec and pred Nunchaku keywords.

The nun_needed_st list is then passed to a function translating each individual name into a list of Nunchaku
statements. For instance, the translation of a structure will produce one statement for the datatype, and some
others for the projections. Two separate recursive tactics are dedicated to the translation of a Lean expr into
a Nunchaku term or type. The Sort hierarchy of Lean is flattened. An expr.pi is translated into either a
Nunchaku Arrow_ or polymorphic Pi_ and the procedure fails in case a non-prenex type polymorphism or a
proper dependent type is detected.

So far, Lean names are kept intact. However, Nunchaku doesn’t allow the same set of characters in identifiers
as Lean. That’s why another step traverses the AST, turning each Lean name into a unique Nunchaku name.
We use for this the state_t monad transformer from Lean’s core library to maintain the names mapping. The
mapping itself uses Lean’s red-black map rb_map native implementation, and is kept for the inverse translation
of names.

Finally, the resulting AST is formatted using Lean’s format library, with respect to Nunchaku’s input
syntax. A unique file is created that is filled inside the io monad with the formatted input, and Nunchaku is
run as an external process using io.cmd.

4.3 Inverse translation
We ask Nunchaku to format its output using s-expressions, which makes parsing easier. The parsed data is
stored into a tree structure:

inductive stree (T : Type)
| node : stree → stree → stree
| leaf : T → stree
| nil {} : stree

Using the fixpoint combinator10 fix : Π {α : Type}, (parser α → parser α) → parser α from Lean’s
parser library, we define a sexpr_parser : Π {T : Type}, parser T → parser (stree T) such that
sexpr_parser P parses s-expressions whose base term is parsed by P.

The parsing of the output of section 4.1’s example gives the following tree. It is formatted using () for the
stree.nil constructor and [l r] for stree.node l r:

[SAT [[[val [[_witness_of [[forall [[[n [nat ()]] ()] [[= [[nat__add [n [n ()]]] [[nat__mul
[[bit1 [nat [[has_one__mk [nat [[nat__succ [nat__zero ()]] ()]]] [[has_add__mk [nat [
nat__add ()]]] [[nat__succ [nat__zero ()]] ()]]]]] [n ()]]] ()]]] ()]]] ()]] [[nat__succ
[nat__zero ()]] ()]]] ()] ()]]

10The fixpoint recursive parser fix F satisfies fix F = F (fix F).

17

Research Internship Report

After parsing, the stree structure is turned into a custom datatype reflecting Nunchaku’s output. For the
reconstruction of Lean’s expressions, we reuse our unique names mapping.

4.4 Limits to the translation, related and future work
Our translation, taken ”as is”, is still a prototype. It is not bug-free and many corner cases are still to implement
for it to be fully functional. Using our tactic with dependent types that are not propositions will result in a tactic
failure. Also, we didn’t implement the translation of quotient types, even though they belong to Nunchaku’s
specifications.

Cruanes and Blanchette [11] describe how any dependent type could be translated to Nunchaku, using the
asserting Nunchaku command. Different translations are proposed for type classes like Lean’s monoid or
group and for regular dependent types like fin (n : N) : Type, which is an implementation of Z/nZ. We
would like to eventually implement these ideas; this would make the Lean-Nunchaku bridge more useful.

Nunchaku isn’t the first external program that is integrated with Lean. Lewis [12] describes a similar process
to create an interface between Lean and Wolfram Mathematica, a popular computer algebra system.

18

Research Internship Report

Future work and conclusion
This work can be extended in many ways. The algebraic simplifier could handle more cases including distribu-
tivity or factorization, which would require some sophisticated algorithms on tree structures. All these tactics,
including the Nunchaku integration, would need to find real-life use cases while formalizing a big theorem.

Lean 4, successor to Lean 3, is being developed and will bring several changes to Lean’s API. These changes
will make it necessary to refactor the whole mathematical components library, as well as previously developed
tactics.

The Lean Forward meeting, to be held in January at the VU Amsterdam, will gather for the first time Lean
developers and users in an interactive workshop. It will hopefully give birth to new ideas that would make
interactive theorem proving always more accessible.

19

Research Internship Report

References
[1] “The matryoshka project: Fast interactive verification through strong higher-order automation.” [Online].

Available: matryoshka.gforge.inria.fr

[2] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, “The lean theorem prover (system
description),” in CADE, 2015.

[3] “The coq proof assistant.” [Online]. Available: coq.inria.fr

[4] “The lean mathematical components library.” [Online]. Available: github.com/leanprover/mathlib

[5] J. Avigad, L. M. de Moura, and S. Kong, “Theorem proving in lean.”

[6] J. Avigad, G. Ebner, and S. Ullrich, The Lean Reference Manual.

[7] “The coq proof assistant - library coq.init.logic.” [Online]. Available: coq.inria.fr/library/Coq.Init.Logic.
html

[8] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura, “A metaprogramming framework for formal
verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP, pp. 34:1–34:29, Aug. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3110278

[9] D. Selsam and L. de Moura, “Congruence closure in intensional type theory,” CoRR, vol. abs/1701.04391,
2017. [Online]. Available: http://arxiv.org/abs/1701.04391

[10] “Nunchaku documentation.” [Online]. Available: https://nunchaku-inria.github.io/nunchaku/

[11] S. Cruanes and J. C. Blanchette, “Extending nunchaku to dependent type theory,” arXiv preprint
arXiv:1606.05945, 2016.

[12] R. Y. Lewis and M. Wu, “A bi-directional extensible ad hoc interface between lean and mathematica.”

20

matryoshka.gforge.inria.fr
coq.inria.fr
github.com/leanprover/mathlib
coq.inria.fr/library/Coq.Init.Logic.html
coq.inria.fr/library/Coq.Init.Logic.html
http://doi.acm.org/10.1145/3110278
http://arxiv.org/abs/1701.04391
https://nunchaku-inria.github.io/nunchaku/

	Introduction
	Lean in a nutshell
	Type system
	Inductive datatypes, structures and type classes
	Logic and formalization
	Automation and programming in Lean
	Manipulating expressions

	An algebraic equation simplifier
	Motivation and goal
	AC term rewriting in Lean
	Implementation

	An extendable monotonicity prover
	Idea
	Implementation

	Integration of an external counter-example generator
	Introduction and example
	Lean to Nunchaku problem translation
	Inverse translation
	Limits to the translation, related and future work

	Bibliography

