
Superposition with Lambdas
(Technical Report)

Alexander Bentkamp1(�), Jasmin Blanchette1,2, Sophie Tourret2,
Petar Vukmirović1, and Uwe Waldmann2

1 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
{a.bentkamp,j.c.blanchette,p.vukmirovic}@vu.nl

2 Max-Planck-Institut für Informatik, Saarland Informatics Campus,
Saarbrücken, Germany

{jblanche,stourret,uwe}@mpi-inf.mpg.de

Abstract. We designed a superposition calculus for a clausal fragment of
extensional polymorphic higher-order logic that includes anonymous func-
tions but excludes Booleans. The inference rules work on βη-equivalence
classes of λ-terms and rely on higher-order unification to achieve refuta-
tional completeness. We implemented the calculus in the Zipperposition
prover and evaluated it on TPTP and Isabelle benchmarks. The results
suggest that superposition is a suitable basis for higher-order reasoning.

1 Introduction

Superposition [5] is widely regarded as the calculus par excellence for reasoning
about first-order logic with equality. To increase automation in proof assistants
and other verification tools based on higher-order formalisms, we propose to
generalize superposition to an extensional, polymorphic, clausal version of higher-
order logic (also called simple type theory). Our ambition is to achieve a graceful
extension, which coincides with standard superposition on first-order problems
and smoothly scales up to arbitrary higher-order problems.

Bentkamp, Blanchette, Cruanes, and Waldmann [11] recently designed a
family of superposition-like calculi for a λ-free fragment of higher-order logic,
with currying and applied variables. We adapt their “extensional nonpurifying”
calculus to also support λ-expressions (Section 3). Our calculus does not support
first-class Booleans; it is conceived as the penultimate milestone towards a
superposition calculus for full higher-order logic. If desired, Booleans can be
encoded in our logic fragment using an uninterpreted type and uninterpreted
“proxy” symbols corresponding to equality, the connectives, and the quantifiers.

Designing a higher-order superposition calculus poses three main challenges:

1. In first-order logic, superposition is parameterized by a ground-total simplifi-
cation order �, but such orders do not exist for λ-terms considered equal up to
β-conversion. The relations designed for proving termination of higher-order
term rewriting systems, such as HORPO [41] and CPO [22], lack many of
the desired properties (e.g., transitivity, stability under substitution).

2. Higher-order unification is undecidable and may give rise to an infinite set of
incomparable unifiers. For example, the constraint f (y a)

?
= y (f a) admits

infinitely many independent solutions of the form {y 7→ λx. fn x}.
3. In first-order logic, to rewrite into a term s using an oriented equation t ≈ t′,

it suffices to find a subterm of s that is unifiable with t. In higher-order
logic, this is insufficient. Consider superposition from f c ≈ a into y c 6≈ y b.
The left-hand sides can obviously be unified by {y 7→ f}, but the more
general substitution {y 7→ λx. z x (f x)} also gives rise to a subterm f c after
β-reduction. The corresponding inference generates the clause z c a 6≈ z b (f b).

To address the first challenge, we adopt η-short β-normal form to represent
βη-equivalence classes of λ-terms. In the spirit of Jouannaud and Rubio’s early
joint work [40], we state requirements on the term order only for ground terms
(i.e., closed monomorphic βη-equivalence classes); the nonground case is connected
to the ground case via stability under substitution. Even on ground terms, it
is impossible to obtain all desirable properties. We sacrifice compatibility with
arguments (the property that s′ � s implies s′ t � s t) and compensate for it
with an argument congruence rule (ArgCong), as in Bentkamp et al. [11].

For the second challenge, we accept that there might be infinitely many
incomparable unifiers and enumerate a complete set (including the notorious flex–
flex pairs [38]), relying on heuristics to keep the combinatorial explosion under
control. The saturation loop must also be adapted to interleave this enumeration
with the theorem prover’s other activities (Section 6). Despite its reputation
for explosiveness, higher-order unification is a conceptual improvement over SK
combinators, because it can often compute the right unifier.

Consider the conjecture ∃z. ∀x y. z x y ≈ f y x. After negation, clausification,
and skolemization (which are as for first-order logic), the formula becomes
z (skx z) (sky z) 6≈ f (sky z) (skx z). Higher-order unification quickly computes the
unique unifier: {z 7→ λx y. f y x}. In contrast, an encoding approach based on
combinators, similar to the one implemented in Sledgehammer [50], would blindly
enumerate all possible SK terms for z until the right one, S (K (S f)) K, is found.
Given the definitions S z y x ≈ z x (y x) and K x y ≈ x, the E prover [59] in auto
mode needs to perform 3756 inferences to derive the empty clause.

For the third challenge, when applying t ≈ t′ to perform rewriting inside
a higher-order term s, the idea is to encode an arbitrary context as a fresh
higher-order variable z, unifying s with z t; the result is (z t′)σ, for some unifier σ.
This is performed by a dedicated fluid subterm superposition rule (FluidSup).

Functional extensionality (the property that ∀x. y x ≈ z x implies y ≈ z)
is also considered a challenge for higher-order reasoning [14], although similar
difficulties arise with the first-order theories of sets and arrays [35]. Our approach
is to add extensionality as an axiom and provide optional rules as optimizations
(Section 5). With this axiom, our calculus is refutationally complete with respect
to extensional Henkin semantics (Section 4).

We implemented the calculus in the Zipperposition prover [28] (Section 6).
Our empirical evaluation includes benchmarks from the TPTP [63] and inter-
active verification problems exported from Isabelle/HOL [23] (Section 7). The

2

results appear promising and suggest that an optimized implementation inside a
competitive prover such as E [59], SPASS [68], or Vampire [46] would outperform
existing higher-order automatic provers.

2 Logic

Our extensional polymorphic clausal higher-order logic is a restriction of full
TPTP THF [16] to rank-1 (top-level) polymorphism, as in TH1 [42]. In keeping
with standard superposition, we consider only formulas in conjunctive normal
form, without explicit quantifiers or Boolean type. We use Henkin semantics
[15,32,36], as opposed to the standard semantics that serves as the foundation
of the HOL systems [34]. By admitting nonstandard models, Henkin semantics
is not subject to Gödel’s first incompleteness theorem, allowing us to claim the
soundness and refutational completeness of our calculus.

2.1 Syntax

We fix a set Σty of type constructors with arities and a set Vty of type variables.
We require at least one nullary type constructor ι ∈ Σty and a binary function
type constructor → ∈ Σty to be present. A type τ, υ is either a type variable
α ∈ Vty or has the form κ(τ̄n) for an n-ary type constructor κ ∈ Σty and types
τ̄n. We use the notation ān or ā to stand for the tuple (a1, . . . , an) or product
a1 × · · · × an, where n ≥ 0. We write κ for κ() and τ → υ for →(τ, υ). A type
declaration is an expression of the form Πᾱm. τ (or simply τ if m = 0), where all
type variables occurring in τ belong to ᾱm.

We fix a set Σ of (function) symbols a, b, c, f, g, h, . . . , with type declarations,
written as f : Πᾱm. τ or f, and a set V of term variables with associated types,
written as x : τ or x . We require the presence of a symbol diff : Πα, β. (α→ β)→
(α → β) → α ∈ Σ. We use this symbol to express the polymorphic functional
extensionality axiom

y (diff〈α, β〉y z) 6≈ z (diff〈α, β〉y z) ∨ y ≈ z Ext

which we will assume to be contained in all problems.
The sets (Σty,Vty,Σ,V) form the signature. The set of raw λ-terms is defined

inductively as follows. Every x :τ ∈ V is a raw λ-term of type τ . If f : Πᾱm. τ ∈ Σ
and ῡm is a tuple of types, called type arguments, then f〈ῡm〉 (or simply f if
m = 0) is a raw λ-term of type τ{ᾱm 7→ ῡm}. If x : τ and t : υ, then the
λ-expression λx. t is a raw λ-term of type τ → υ. If s : τ → υ and t : τ , then the
application s t is a raw λ-term of type υ.

The α-renaming rule is defined as (λx. t) →α (λy. t{x 7→ y}), where y does
not occur free in t and is not captured by a λ in t. Raw λ-terms form equivalence
classes modulo α-renaming, called λ-terms. A proper subterm of a λ-term t is
any subterm of t that is distinct from t itself. A variable occurrence is free in
a λ-term if it is not bound by a λ-expression. A λ-term is ground if it is built

3

without using type variables and contains no free term variables. Using the spine
notation [26], λ-terms can be decomposed in a unique way as a non-application
head t applied to zero or more arguments: t s1 . . . sn or t s̄n (abusing notation).

The β- and η-reduction rules are defined on λ-terms as (λx. t)u →β t{x 7→ u}
and (λx. t x) →η t. For β, bound variables in t are renamed if necessary to avoid
capture; for η, the variable x must not occur free in t. The λ-terms form equiva-
lence classes modulo βη-reduction, called βη-equivalence classes or simply terms.
When defining operations that need to analyze the structure of terms, we use
the η-short β-normal form t↓βη, obtained by applying →β and →η exhaustively,
as a representative of the equivalence class t. Many authors prefer the η-long
β-normal form [38,40,49], but in a polymorphic setting it has the drawback that
instantiating a type variable by a function type can lead to η-expansion. We
reserve the letters s, t, u, v for terms and w, x, y, z for variables, and write : τ to
indicate their type.

An equation s ≈ t is formally an unordered pair of terms s and t. A literal is
an equation or a negated equation, written ¬ s ≈ t or s 6≈ t. A clause L1∨· · ·∨Ln
is a finite multiset of literals Lj . The empty clause is written as ⊥.

In general, a substitution {ᾱm, x̄n 7→ ῡm, s̄n}, where each xj has type τj and
each sj has type τj{ᾱm 7→ ῡm}, maps m type variables to m types and n term
variables to n terms. The letters θ, ρ, σ are reserved for substitutions. Substi-
tutions are lifted to terms and clauses in a capture-avoiding way; for example,
(λx. y){y 7→ x} = (λx′. x). The composition ρσ applies ρ first: tρσ = (tρ)σ. The
notation σ[x̄n 7→ s̄n] denotes the substitution that replaces each xi by si and that
otherwise coincides with σ. A complete set of unifiers on a set X of variables for
two terms s and t is a set U of unifiers of s and t such that for every unifier ρ of
s and t there exists a member σ ∈ U and a substitution θ such that xσθ = xρ for
all x ∈ X. We use CSUX(s, t) to denote an arbitrary (ideally, minimal) complete
set of unifiers on X for s and t. The set X will consist of the free variables of
the clauses in which s and t occur and will be left implicit.

2.2 Semantics

A type interpretation Ity = (U, Jty) is defined as follows. The universe U is a
nonempty collection of nonempty sets, called domains. The function Jty associates
a function Jty(κ) : Un → U with each n-ary type constructor κ, such that for all
domains D1,D2 ∈ U, Jty(→)(D1,D2) is a subset of the function space from D1

to D2. The semantics is standard if Jty(→)(D1,D2) is the entire function space
for all D1,D2.

A type valuation ξ is a function that maps every type variable to a domain.
The denotation of a type for a type interpretation Ity and a type valuation ξ is
defined by JαKξIty = ξ(α) and Jκ(τ̄)KξIty = Jty(κ)(Jτ̄KξIty). Here and elsewhere, we
abuse notation by applying an operation on a tuple when it must be applied
elementwise, such as Jτ̄nK

ξ
Ity standing for Jτ1K

ξ
Ity , . . . , JτnK

ξ
Ity . A type valuation ξ can

be extended to be a valuation by additionally assigning an element ξ(x) ∈ JτKξIty
to each variable x : τ . An interpretation function J for a type interpretation

4

Ity associates with each symbol f : Πᾱm. τ and domain tuple D̄m ∈ Um a value
J (f, D̄m) ∈ JτKξIty , where ξ is the type valuation that maps each αi to Di.

The comprehension principle states that every function designated by a
λ-expression is contained in the corresponding domain. Loosely following Fit-
ting [32, Section 2.4], we initially allow λ-expressions to designate arbitrary
elements of the domain, to be able to define the denotation of a term. We impose
restrictions afterwards using the notion of a proper interpretation. A λ-designation
function L for a type interpretation Ity is a function that maps a valuation ξ and
a λ-expression of type τ to elements of JτKξIty . A type interpretation, an interpre-
tation function, and a λ-designation function form an (extensional) interpretation
I = (Ity, J ,L). For an interpretation I and a valuation ξ, the denotation of a
term is defined as JxKξI = ξ(x), Jf〈τ̄m〉KξI = J (f, Jτ̄mKξIty), Js tKξI = JsKξI(JtKξI), and
Jλx. tKξI = L(ξ, λx. t). For ground terms t, the denotation does not depend on
the choice of the valuation ξ, which is why we sometimes write JtKI for JtKξI .

An interpretation I is proper if Jλx. tKξI(a) = JtKξ[x 7→a]
I for all λ-expressions

(λx.t) and all valuations ξ. If a type interpretation Ity and a interpretation function
J can be extended by a λ-designation function L to a proper interpretation
(Ity, J ,L), then this L is unique [32, Proposition 2.18].

Given an interpretation I and a valuation ξ, an equation s ≈ t is true if (and
only if) JsKξI and JtKξI are equal and it is false otherwise. A disequation s 6≈ t is
true if s ≈ t is false. A clause is true if at least one of its literals is true. A clause
set is true if all its clauses are true. A proper interpretation I is a model of a
clause set N , written I |= N , if N ∪ {Ext} is true in I for all valuations ξ.

2.3 Skolemization

As observed by Bentkamp et al. [11], a problem expressed in higher-order logic
must be transformed into clausal normal form before the calculi can be applied.
This process works as in the first-order case, except for skolemization. The issue
is that skolemization, when performed naively, is unsound for λ-free higher-order
logic with a Henkin semantics [52, Section 6]. The crux of the issue is that
skolemization introduces new functions that can be used to instantiate variables.

The theoretical part of this report is not affected by this subtlety because
the problems are given in clausal form. In the implementation, our solution is
to claim soundness only with respect to models that satisfy the axiom of choice,
which is the semantics mandated by the TPTP THF format [64]. By contrast,
our completeness result holds with respect to arbitrary models as defined in
Section 2.2.

2.4 Axiomatization of Booleans

Our clausal logic lacks Booleans, but these can easily be axiomatized as follows.
We extend the signature with a nullary type constructor bool ∈ Σty equipped
with the proxy symbols true, false : bool ∈ Σ, implies : bool → bool → bool ∈ Σ,
forall : Πα. (α→ bool)→ bool , and equal : Πα. α→ α→ bool , characterized by
the following axioms:

5

true 6≈ false
a ≈ true ∨ a ≈ false

a ≈ true ∨ implies a b ≈ true
b 6≈ true ∨ implies a b ≈ true

implies a b 6≈ true ∨ a 6≈ true ∨ b ≈ true

p 6≈ (λx. true) ∨ forall〈α〉p ≈ true
forall〈α〉p 6≈ true ∨ p ≈ (λx. true)
x 6≈ y ∨ equal〈α〉x y ≈ true
equal〈α〉x y 6≈ true ∨ x ≈ y

Proxies for the ¬, ∨, and ∧ connectives and the ∃ quantifier can be defined
in terms of the above—for example:

not ≈ (λa. implies a false)
exists〈α〉 ≈ (λp. not (forall〈α〉 (λx. not (p x))))

Similarly, Hilbert choice can be axiomatized as the proxy symbol choice :
Πα. (α→ bool)→ α, characterized by the axiom

p x 6≈ true ∨ p (choice〈α〉p) ≈ true

Using Hilbert choice, we can provide alternative definitions for ∃ and ∀:

exists〈α〉 ≈ (λp. p (choice〈α〉p))
forall〈α〉 ≈ (λp. not (exists〈α〉 (λx. not (p x))))

The above axiomatization of Booleans can be used in a prover to support full
higher-order logic (with or without Hilbert choice), corresponding to the TPTP
THF format variants TH0 (monomorphic) [64] and TH1 (polymorphic) [42]. The
prover’s clausifier would transform the outer first-order skeleton of a formula into
a clause and use the axiomatized Boolean type and operations within the terms.
It would also include the proxy axioms in the clausal problem.

3 The Calculus

Our superposition calculus for clausal higher-order logic is inspired by the λ-free
extensional nonpurifying calculus described by Bentkamp et al. [11]. The text of
this and the next section is partly based on that paper and the associated technical
report [12] (with Cruanes’s permission). The central idea is that superposition
inferences are restricted to unapplied subterms occurring in the “first-order
outer skeleton” of the superterm—that is, outside λ-expressions and outside the
arguments of applied variables. We call these “green subterms.” Thus, an equation
g ≈ (λx. f x x) cannot be used directly to rewrite g a to f a a, because g is applied
in g a. A separate inference rule, ArgCong, takes care of deriving g x ≈ f x x,
which can be oriented independently of its parent clause and used to rewrite g a
or f a a.

A term (i.e., a βη-equivalence class) t is defined to be a green subterm of a
term s if either s = t or s = f〈τ̄〉 s̄ for some function symbol f, types τ̄ and terms
s̄, where t is a green subterm of si for some i. In f (g a) (y b) (λx. h c (g x)), the
green subterms are a, g a, y b, λx. h c (g x), and the entire term. The set of green
positions of a term is defined analogously to the set of position of a first-order

6

term: ε is a green position of t, and if t = f〈τ̄〉 s̄ and p is a green position of si,
then i.p is a green position of t. We denote the green subterm of s at the green
position p by s|p. We write t = s<u>p to express that u is a green subterm of t
at the green position p and call s< >p a green context ; we leave of the subscript p
if there are no ambiguities.

Another key notion is that of a “fluid” term. A subterm t of s[t] is called
fluid if (1) t↓βη is of the form y ūn, where y is not bound in s[t] and n ≥ 1,
or (2) t↓βη is a λ-expression and there exists a substitution σ such that tσ↓βη
is not a λ-expression (due to η-reduction). A necessary condition for case (2)
is that t↓βη contains an applied variable that is not bound in s[t]. Intuitively,
fluid subterms are terms whose η-short β-normal form can change radically as a
result of instantiation. For example, applying the substitution {z 7→ (λx. x)} to
the fluid term λx. y a (z x) makes the λ-expression vanish: (λx. y a x) = y a and
similarly (λx. f (y x) x){y 7→ (λx. a)} = (λx. f a x) = f a.

3.1 Term Order

The calculus is parameterized by a well-founded strict total order � on ground
terms satisfying the following properties:

• green subterm property : t<s> � s (i.e., t<s> � s or t<s> = s);
• compatibility with green contexts: s′ � s implies t<s′> � t<s>.

The literal and clause orders are defined as multiset extensions in the standard
way [5]. Two properties that are not required are compatibility with λ-expressions
(s′ � s implies (λx.s′) � (λx.s)) and compatibility with arguments (s′ � s implies
s′ t � s t). The latter would even be inconsistent with totality. To see why, consider
the symbols c � b � a and the terms λx. b and λx. x. Owing to totality, one of
the terms must be larger than the other, say, (λx. b) � (λx. x). By compatibility
with arguments, we get (λx. b) c � (λx. x) c, i.e., b � c, a contradiction. A similar
line of reasoning applies if (λx. b) ≺ (λx. x), using a instead of c.

For nonground terms, � is extended to a strict partial order so that t � s if and
only if tθ � sθ for all grounding substitutions θ. We also introduce a quasiorder %
such that t % s if and only if tθ � sθ for all grounding substitutions θ, and
similarly for literals and clauses. The quasiorder % is more precise than the strict
order �. For example, we have x b 6� x a because x b 6= x a and x b 6� x a by
stability under substitutions with {x 7→ λy. c}. But we can have we can have
x b % x a.

Our approach to derive a suitable order is to encode η-short β-normal forms
into untyped λ-free higher-order terms and apply an order �base such as the λ-free
Knuth–Bendix order (KBO) [9], the λ-free lexicographic path order (LPO) [21],
or the embedding path order (EPO) [10]. The encoding, denoted by bd ce, trans-
lates λx : τ. t to lam bdτcebdtce and uses De Bruijn symbols dbi to represent bound
variables x [25]. It replaces fluid terms t by fresh variables zt and maps type
arguments to term arguments, while erasing any other type information; thus,
bdλx : ι. λy : ι. xce = lam ι (lam ι (db1 ι)) and bdf〈ι〉 (y a)ce = f ι zy a. The use of De

7

Bruijn indices and the monolithic encoding of fluid terms ensure stability under
α-renaming and under substitution.

More precisely, the encoding bd ce is composed of two steps bd cedb and bd celam.
Given the higher-order signature (Σty,Vty,Σ,V), bd cedb encodes terms into the
signature (Σty,Vty,Σ] {dbi | i ∈ N},V) by replacing each occurrence of a bound
variable by dbi, where i is the number of λs in the term structure between the
binding λ and the bound variable. For types, we simply define bdτcedb = τ . Then,
bd celam encodes these types and terms further as terms over the untyped λ-free
signature (Σty] Σ] {lam}] {dbi | i ∈ N}, {zt | t is a term}). The type-to-term
version of bd celam is defined as bdαcelam = α and bdκ(τ̄)celam = κ bdτ̄celam. The term-to-
term version is defined as follows. Here, fluid-like means that the λ-term t such
that bdtcedb = tdb is fluid.

bdtdbcelam =

ztdb if tdb = x or if tdb is fluid-like
f bdτ̄celam bdūdbcelam if t = f〈τ̄〉 ūdb
lam bdτcelam bdudbcelam if t = (λx : τ. udb) and tdb is not fluid-like

For any λ-terms t and s, let bdtce = bdbdtcedbcelam and let t �meta s be bdtce �base bdsce.

Lemma 1. Let�base be a strict partial order on λ-free terms. If�base’s restriction
to ground terms enjoys well-foundedness, totality, the green subterm property,
and compatibility with green contexts, the restriction to ground terms of the
induced order �meta enjoys the same properties.

Proof. Transitivity and irreflexivity of �meta follow directly from transitivity and
irreflexivity of �base.

Well-foundedness: If there was an infinite descending chain of ground terms
t1 �meta t2 �meta . . . , there would be the infinite descending chain bdt1ce �base

bdt2ce �base . . . , in contradiction to the well-foundedness of �base on ground terms.
Totality: By totality of �base, for any ground terms t and s, we have bdtce �base

bdsce, bdtce ≺base bdsce, or bdtce = bdsce. In the first two cases it follows t �meta s or
t ≺meta s. In the last case, it follows t = s because the encoding bd ce is clearly
injective.

Green subterm property: Let s be a term. We show that s �meta s|p by
induction on p, where s|p denotes the green subterm at position p. If p = ε, this
is trivial. If p = p′.i, we have s �meta s|p′ by the induction hypothesis. Hence, it
suffices to show that s|p′ �meta s|p′.i. From the existence of the position p′.i, we
know that s|p′ must be of the form s|p′ = f〈τ̄〉 ū. Then s|p′.i = ui. The encoding
yields bds|p′ce = f bdτ̄ce bdūce and hence bds|p′ce �base bds|p′.ice by the green subterm
property of �base. It follows that s|p′ �meta s|p′.i and hence s �meta s|p.

Compatibility with green contexts: By induction on the depth of the context,
it suffices to show that t �meta s implies f〈τ̄〉 ū t v̄ �meta f〈τ̄〉 ū s v̄ for all t, s, f, τ̄ ,
ū, and v̄. This is equivalent to showing that bdtce �base bdsce implies

bdf〈τ̄〉 ū t v̄ce = f bdτ̄cebdūcebdtcebdv̄ce �base f bdτ̄cebdūcebdscebdv̄ce = bdf〈τ̄〉 ū s v̄ce

which follows directly from compatibility with green contexts of �base.

8

Lemma 2. Let �base be a strict partial order on λ-free terms. If �base enjoys
stability under substitution (with respect to λ-free terms), �meta enjoys stability
under substitution (with respect to βη-equivalence classes).

Proof. Let t be a λ-term and tdb be a bdcedb-encoded λ-term such that tdb = bdtcedb.
Let θ be a substitution. Then define a λ-free substitution ρ by ztdbρ = bdtθce.

Then bdtdbcelamρ = bdtθce for all tdb by induction on the encoding rules: If
tdb = x or if tdb is fluid-like, bdtdbcelamρ = ztdbρ = bdtθce. If tdb = f〈τ̄〉 ūdb where
ūdb = bdūcedb for some tuple ū of λ-terms, then bdtdbcelamρ = f(bdτ̄celamρ)(bdūdbcelamρ)

IH
=

f bdτ̄ θce bdūθce = bdf (τ̄ θ) (ūθ)ce = bdtθce. If tdb = (λx : τ. udb) where udb = bducedb for
some λ-term u and tdb is not fluid-like, bdtdbcelamρ = lam (bdτcelamρ) (bdudbcelamρ)

IH
=

lam bdτθce bduθce = bdλx : τθ. bduθcedbcelam = bdλx : τθ. uθce = bd(λx : τ. u)θce = bdtθce.
Here, x is a fresh variable. In the last step, it is crucial that tdb is not fluid-like
because otherwise an η-reduction might be triggered.

From bdtdbcelamρ = bdtθce, we derive bdbdtcedbcelamρ = bdtθce and hence bdtceρ = bdtθce.
Now we assume t �meta s for some terms t and s. Then bdtce �base bdsce and

by stability under substitutions, bdtceρ �base bdsceρ. With the above observation, it
follows that bdtθce �base bdsθce and hence tθ �meta sθ.

3.2 The Inference Rules

In addition to �, the calculus is parameterized by a selection function, which
maps each clause to a subclause consisting of negative literals. A literal L<y>
must not be selected if y ūn, with n > 0, is a %-maximal term of the clause.

A literal L is (strictly) eligible in C if it is selected in C or if there are no
selected literals in C and L is (strictly) maximal in C. A variable is deep in a
clause C if it occurs inside a λ-expression or inside an argument of an applied
variable; these cover all occurrences that may correspond to positions inside
λ-expressions after applying a substitution. A variable that is not deep is said to
be shallow.

We regard positive and negative superposition as two cases of a single rule
D︷ ︸︸ ︷

D′ ∨ t ≈ t′
C︷ ︸︸ ︷

C ′ ∨ [¬] s<u> ≈ s′
Sup

(D′ ∨ C ′ ∨ [¬] s<t′> ≈ s′)σ
with the following side conditions:

1. u is not a fluid subterm;
2. u is not a deep variable in C;
3. variable condition: if u is a variable y, there must exist a grounding substitu-

tion θ such that tσθ � t′σθ and Cσθ ≺ C ′′σθ, where C ′′ = C{y 7→ t′};
4. σ ∈ CSU(t, u); 5. tσ 6- t′σ; 6. s<u>σ 6- s′σ; 7. Cσ 6- Dσ;
8. (t ≈ t′)σ is strictly eligible in Dσ;
9. ([¬] s<u> ≈ s′)σ is eligible in Cσ, and strictly eligible if it is positive.

9

There are four main differences with the statement of the standard superposition
rule: Contexts s[] are replaced by green contexts s< >. The standard condition
u /∈ V is generalized by conditions 2 and 3. Most general unifiers are replaced by
complete sets of unifiers. And 6� is replaced by the more restrictive 6-.

The second rule is a variant of Sup that focuses on fluid subterms occurring
in green contexts. Its statement is

D︷ ︸︸ ︷
D′ ∨ t ≈ t′

C︷ ︸︸ ︷
C ′ ∨ [¬] s<u> ≈ s′

FluidSup
(D′ ∨ C ′ ∨ [¬] s<z t′> ≈ s′)σ

with the following side conditions, in addition to Sup’s conditions 5 to 9:

1. u is either a deep variable in C or a fluid subterm;
2. z is a fresh variable; 3. σ ∈ CSU(z t, u); 4. z t′ 6= z t.

The equality resolution and equality factoring rules are almost identical to
their standard counterparts:

C ′ ∨ u 6≈ u′
EqRes

C ′σ

C ′ ∨ u′ ≈ v′ ∨ u ≈ v
EqFact

(C ′ ∨ v 6≈ v′ ∨ u ≈ v′)σ

For EqRes: σ ∈ CSU(u, u′) and (u 6≈ u′)σ is eligible in the premise. For EqFact:
σ ∈ CSU(u, u′), u′σ 6- v′σ, uσ 6- vσ, and (u ≈ v)σ is eligible in the premise.

Argument congruence, a higher-order concern, is embodied by the rule

C ′ ∨ s ≈ s′
ArgCong

C ′σ ∨ (sσ) x̄n ≈ (s′σ) x̄n

where σ is the most general type substitution that ensures well-typedness of the
conclusion. In particular, if the result type of s is not a type variable, σ is the
identity substitution; and if the result type is a type variable, it is instantiated
with ᾱn → β, where ᾱn and β are for fresh type variables, yielding infinitely
many conclusions, one for each n. The literal sσ ≈ s′σ must be strictly eligible
in (C ′ ∨ s ≈ s′)σ, and x̄n is a nonempty tuple of distinct fresh variables.

Finally, the rules are complemented by the polymorphic functional extension-
ality axiom Ext.

3.3 Rationale for the Rules

The calculus realizes the following division of labor: Sup and FluidSup are
responsible for green subterms, which are outside λs, ArgCong indirectly gives
access to the remaining positions outside λs, and the extensionality axiom takes
care of subterms occurring inside λs.

10

Example 3. Prefix subterms such as g in the term g a are not green subterms
and thus cannot be superposed into. ArgCong gives us access to those positions.
Consider the clauses

g a 6≈ f a g ≈ f

An ArgCong inference from the second clause results in g x ≈ f x. This clause
can be used for a Sup inference into the first clause, yielding f a 6≈ f a and thus
⊥ by EqRes.

Example 4. Applied variables give rise to subtle situations with no counterparts
in first-order logic. Consider the clauses

f a ≈ c h (y b) (y a) 6≈ h (g (f b)) (g c)

where f a � c. It is easy to see that the clause set is unsatisfiable, by grounding the
second clause with θ = {y 7→ (λx. g (f x))}. However, to mimic the superposition
inference that can be performed at the ground level, it is necessary to superpose at
an imaginary position below the applied variable y and yet above its argument a,
namely, into the subterm f a of g (f a) = (λx. g (f x)) a = (y a)θ. FluidSup’s
z variable effectively transforms f a ≈ c into z (f a) ≈ z c, whose left-hand side
can be unified with y a by taking {y 7→ (λx. z (f x))}. The resulting clause is
h (z (f b)) (z c) 6≈ h (g (f b)) (g c), which has the right form for EqRes.

Example 5. The following clause set has a similar flavor:

f a ≈ c f b ≈ d g c 6≈ y a ∨ g d 6≈ y b

EqRes is applicable on either literal of the third clause, but the computed unifier,
{y 7→ λx. g c} or {y 7→ λx. g d}, is not the right one. Again, we need FluidSup.

Example 6. Third-order clauses in which variables are applied to λ-expressions
can be even more stupefying. The clause set

f a ≈ c h (y (λx. g (f x)) a) y 6≈ h (g c) (λw x. w x)

is unsatisfiable. To see this, apply θ = {y 7→ (λw x. w x)} to the second clause:
h (g (f a)) (λw x.w x) 6≈ h (g c) (λw x.w x). Let f a � c. A Sup inference is possible
between the first clause and this ground instance of the second one. But at the
nonground level, the subterm f a is not clearly localized: g (f a) = (λx. g (f x)) a =
(λw x.w x) (λx. g (f x)) a = (y (λx. g (f x)) a)θ. FluidSup can cope with this. One
of the unifiers of z (f a) and y (λx. g (f x)) a will be {y 7→ (λw x. w x), z 7→ g},
yielding h (g c) (λw x. w x) 6≈ h (g c) (λw x. w x).

Example 7. FluidSup is concerned not only with applied variables but also
with λ-expressions that, after substitution, may be η-reduced to reveal new
applied variables or green subterms. Consider the clause set

g a ≈ b h (λy. x y g z) ≈ c h (f b) 6≈ c

11

Applying θ = {x 7→ λy′ w z′. f (w a) y′, z 7→ b} to the second clause yields (note
that the value z is mapped to does not matter):

h (λy. (λy′ w z′. f (w a) y′) y g b) ≈ c

= h (λy. f (g a) y) ≈ c

= h (f (g a)) ≈ c

A Sup inference is possible between the first clause of the considered set and
this new ground clause, producing the clause h (f b) ≈ c. By also considering
λ-expressions, the FluidSup rule is applicable at the nonground level to derive
this clause.

The side condition on FluidSup could be tightened by analyzing syntactically
whether terms can be subject to η-normalization after variable instantiation. For
example, there is no instantiation of y that would make it possible to eliminate
the λ in λx. y (f x a).

Because it gives rise to flex–flex pairs (unification constraints where both sides
are applied variables), FluidSup can be very prolific. With applied variables
on both sides of its maximal literal, the extensionality axiom is another prime
source of flex–flex pairs. Flex–flex pairs can also arise in the other rules (Sup,
EqRes, and EqFact).

Due to order restrictions and fairness, we cannot postpone solving flex–flex
pairs indefinitely. Thus, we cannot use Huet’s pre-unification procedure [38] and
must instead choose a complete procedure such as Jensen and Pietrzykowski’s [39]
or Snyder and Gallier’s [61]. On the positive side, optional inference rules can
efficiently cover many cases where FluidSup or the extensionality axiom would
otherwise be needed (Section 5), and heuristics can help keep the explosion under
control. Moreover, flex–flex pairs are not always as bad as their reputation; for
example, y a b

?
= z c d admits a most general unifier: {y 7→ (λw x. y′ w x c d), z 7→

y′ a b}.
The calculus is a graceful generalization of standard superposition, except

for the extensionality axiom. From g x ≈ f x x, the axiom can be used to derive
clauses such as (λx. y x (g x)) ≈ (λx. y x (f x x)), which are useless if the problem
is first-order. This could be avoided if we could find a way to make the positive
literal, y ≈ z, maximal, or to select it without losing refutational completeness.
This literal interacts only with green subterms of function type, which cannot
arise in first-order clauses.

3.4 Redundancy Criterion

A redundant (or composite) clause is usually defined as a clause whose ground
instances are entailed by smaller (≺) ground instances of existing clauses. This
would be too strong for our calculus; for example, it would make ArgCong
inferences redundant. Our solution is to base the redundancy criterion on a
weaker ground logic in which argument congruence and extensionality are not
guaranteed to hold.

12

The weaker logic is defined via an encoding b c of ground λ-terms into
monomorphic first-order terms, with d e as its inverse. Accordingly, we refer to
the source logic as the ceiling logic and to the target logic as the floor logic.
The b c encoding indexes each symbol occurrence with its type arguments and
argument count. Thus, bfc = f0, bf ac = f1(a0), and bg〈ι〉c = gι0. In addition, it
conceals λs by replacing them with fresh symbols. These measures effectively
disable argument congruence and extensionality. For example, the clause sets
{g0 ≈ f0, g1(a0) 6≈ f1(a0)} and {b0 ≈ a0, c0 6≈ d0} are satisfiable, even though
{g ≈ f, g a 6≈ f a} and {b ≈ a, (λx. b) 6≈ (λx. a)} are unsatisfiable.

Given a ground higher-order signature (Σty, {},Σ, {}), we define a first-order
signature (Σty, {},Σ↓, {}) as follows. The type constructors Σty are the same in
both signatures, but → is uninterpreted in first-order logic. For each ground
instance f〈ῡ〉 : τ1 → · · · → τn → τ of a symbol f ∈ Σ, we introduce a first-order
symbol f ῡj ∈ Σ↓ with argument types τ̄j and result type τj+1 → · · · → τn → τ , for
each j. Moreover, for each ground term λx. t, we introduce a symbol bλx. tc ∈ Σ↓

of the same type.
The b c encoding is defined on ground η-short β-normal forms so that λx. t is

mapped to the symbol bλx. tc and bf〈ῡ〉 s̄jc = f ῡj (bs̄jc) recursively. The encoding
is extended to literals and clauses elementwise. Using the inverse mapping d e,
the order � can be transferred to the floor level by defining t � s as dte � dse.
The property that � on clauses is the multiset extension of � on literals, which
in turn is the multiset extension of � on terms, is maintained because d e maps
the multiset representations elementwise.

More precisely, the b c mapping is extended to ground literals and ground
clauses as follows:

bs ≈ tc = bsc ≈ btc
bs 6≈ tc = bsc 6≈ btc

bL1 ∨ · · · ∨ Lnc = bL1c∨ · · · ∨ bLnc

The b c mapping is bijective with d e:

dbλx. sce = λx. s

df τ̄i t̄ie = f〈τ̄〉dt̄ie
ds ≈ te = dse ≈ dte
ds 6≈ te = dse 6≈ dte

dL1 ∨ · · · ∨ Lne = dL1e∨ · · · ∨ dLne

A crucial property of b c is that green subterms in the ceiling logic corre-
spond to subterms in the floor logic. Thus, the subterms considered by Sup and
FluidSup coincide with the the subterms exposed to the redundancy criterion.

Lemma 8. For all ground terms s and t in the floor logic, dt[s]pe = dte<dse>p.
Proof. By induction on p.

If p = ε, then s = t[s]p. Hence dt[s]pe = dse = dte<dse>p.

13

If p = i.p′, then t[s]p = f τ̄n(u1, . . . , un) with ui = ui[s]p′ . Applying d e, we
obtain by the induction hypothesis that dt[s]pe equals

f〈dτ̄e〉du1e . . .dui−1e duie<dse>p′ dui+1e . . .dune

It follows that dt[s]pe = dte<dse>p. ut

Lemma 9. Well-foundedness, totality on ground terms, compatibility with all
contexts, and the subterm property hold for � in the floor logic.

Proof. Compatibility with contexts: We want to show that s � s′ implies
t[s]p � t[s′]p for floor terms t, s and s′. Assuming s � s′, we have dse � ds′e.
By compatibility with green contexts in the ceiling logic, we have dte<dse>p �
dte<ds′e>p. By Lemma 8, we have t[s]p � t[s′]p.

Well-foundedness: Assume that there exists an infinite descending chain
t1 � t2 � · · · of floor terms. By applying d e, we then obtain an infinite descending
chain of ceiling terms dt1e � dt2e � · · · , contradicting well-foundedness in the
ceiling logic.

Totality on ground terms: Let s, t be ground terms of the floor logic. Then
dte and dse must be comparable by totality on ground ceiling terms. Hence, t
and s are comparable.

Subterm property: By Lemma 8 and the subterm property in the ceiling logic,
dt[s]pe = dte<dse>p � dse. Hence, t[s]p � s. ut

In standard superposition, redundancy employs the entailment relation |= on
ground clauses. We define redundancy of ceiling clauses in the same way, but using
the floor logic’s |= on the b c-encoded clauses. This definition gracefully generalizes
the standard first-order notion of redundancy. For Sup, FluidSup, EqRes,
and EqFact, we can use the more precise notion of redundancy of inferences
instead of redundancy of clauses—a ground inference being redundant if the
conclusion follows from existing clauses that are smaller than the largest premise.
For ArgCong, whose conclusion is too large, we use redundancy of clauses.

More precisely we define redundancy as follows: As usual, an inference is
a ground instance of an inference I if it is the result of applying a grounding
substitution to I and if it is itself an inference (satisfying all the conditions of
the inference rules).

A ground ceiling clause C is redundant with respect to a set of ceiling ground
clauses N if bCc is entailed by clauses from bNc that are smaller than bCc. A
possibly nonground ceiling clause C is redundant with respect to a set of ceiling
clauses N if all its ground instances are redundant with respect to GΣ(N), the
set of ground instances of clauses in N. Let Red(N) be the set of all clauses that
are redundant with respect to N.

For all inference rules except ArgCong, a ground inference with conclusion
E and right (or only) premise C is redundant with respect to a set of ground
clauses N if one of its premises is redundant with respect to N , or if bEc is

14

entailed by clauses in bNc that are smaller than bCc. A nonground inference is
redundant with respect to a clause set N if all its ground instances are redundant
with respect to GΣ(N).

An ArgCong inference is redundant with respect to a clause set N if its
premise is redundant with respect to N or if its conclusion is contained in N or
redundant with respect to N.

We call N saturated up to redundancy if every inference from clauses in N
is redundant with respect to N.

The saturation procedures of superposition-based provers aggressively delete
clauses that are strictly subsumed by other clauses. A clause C subsumes D if
there exists a substitution σ such that Cσ ⊆ D. A clause C strictly subsumes D if
C subsumes D but D does not subsume C. For example, x ≈ c strictly subsumes
both a ≈ c and b 6≈ a ∨ x ≈ c. The proof of refutational completeness of
resolution and superposition provers relies on the well-foundedness of the strict
subsumption relation [58, Section 7]. Unfortunately, this property does not hold
for higher-order logic, where f x x ≈ c is strictly subsumed by f (x a) (x b) ≈ c,
which is strictly subsumed by f (x a a) (x b b′) ≈ c, and so on. Subsumption must
be restricted to prevent such infinite chains—for example, by requiring that the
subsumer is syntactically smaller than or of the same size as the subsumee.

4 Refutational Completeness

Besides soundness, the most important property of the higher-order superposition
calculus introduced in Section 3 is refutational completeness. The proof is adapted
from Bentkamp et al. [11]. We use the structure and notation of Waldmann’s
version [67], which is essentially the completeness proof for superposition without
constraints [5] presented in the style of the proof for superposition with constraints
by Nieuwenhuis and Rubio [53].

4.1 Outline of the Proof

For the rest of Section 4, let N 63 ⊥ be a higher-order clause set saturated
up to redundancy with respect to the inference rules and that contains the
extensionality axiom. To avoid empty Herbrand domains, we assume that the
signature Σ contains a polymorphic symbol of type Πα. α. The proof proceeds in
two steps:

1. Construct a model of the first-order grounded clause set bGΣ(N)c, where b c
is the encoding of ground terms used to define redundancy (Section 3.4).

2. Lift this first-order model to a proper higher-order interpretation and show
that it is a model of GΣ(N) and hence of N.

15

The first step follows the same general idea as the completeness proof for
standard superposition [5, 54, 67]. We construct a term rewriting system R∞
and use it to define a candidate interpretation that equates all terms that share
the same normal form with respect to R∞. At this level, expressions λx. t are
regarded as uninterpreted symbols bλx. tc.

As in the standard proof, it is the set N , and not its grounding GΣ(N), that
is saturated. We must show that there exist nonground inferences corresponding
to all necessary ground Sup, EqRes, and EqFact inferences. We face two
specifically higher-order difficulties. First, in standard superposition, we can
avoid Sup inferences into variables x by exploiting the order’s compatibility with
contexts: If t′ ≺ t, we have C{x 7→ t′} ≺ C{x 7→ t}, which allows us to invoke
the induction hypothesis at a key point in the argument to establish the truth of
C{x 7→ t′}. This technique fails for higher-order variables x that occur applied
in C, because the order lacks compatibility with arguments. Hence, our Sup rule
must perform some inferences into variables. The other difficulty also concerns
applied variables. We must show that any necessary ground Sup inference into a
position corresponding to a fluid term or a deep variable on the nonground level
can be lifted to a FluidSup inference. This involves showing that the z variable
in FluidSup can represent arbitrary contexts around a term t.

For the first-order model construction, βη-normalization is the proverbial dog
that did not bark. At the ground level, the rules Sup, EqRes, and EqFact
preserve η-short β-normal form, and so does first-order term rewriting. Thus, we
can completely ignore →β and →η. At the nonground level, β- and η-reduction
can arise only through instantiation. This poses no difficulties thanks to the
order’s stability under substitution.

The second step of the completeness proof consists of constructing a higher-
order interpretation and proving that it is a model of GΣ(N), and hence of N.
The difficulty is to show that the symbols representing λ-expressions behave like
the λ-expressions they represent. This step relies on saturation with respect to
the ArgCong rule—which connects a λ-expression with its value when applied
to an argument x—and on the presence of the extensionality axiom.

4.2 Candidate Interpretation

The construction of the candidate interpretation is as in the first-order proof,
except that it is based on bGΣ(N)c. We first define sets of rewrite rules EC and
RC for all C ∈ bGΣ(N)c by induction on the clause order. Assume that ED has
already been defined for all D ∈ bGΣ(N)c with D ≺ C. Then RC =

⋃
D≺C ED.

Let EC = {s→ t} if the following conditions are met:

(a) C = C ′ ∨ s ≈ t;
(b) s ≈ t is strictly maximal in C;
(c) s � t;
(d) C is false in RC ;
(e) C ′ is false in RC ∪ {s→ t}; and
(f) s is irreducible with respect to RC .

16

Then C is productive. Otherwise, EC = ∅. Finally, R∞ =
⋃
D ED.

A rewrite system R defines an interpretation T ∅Σ /R such that for every ground
equation s ≈ t, we have T ∅Σ /R |= s ≈ t if and only if s ↔∗R t. Formally, T ∅Σ /R
denotes the monomorphic first-order interpretation whose universes Uτ consist
of the R-equivalence classes of the terms of type τ over the signature Σ and
the empty set of variables, denoted as TΣ(∅)/R by Waldmann [67] and as I by
Bachmair and Ganzinger [5]. The interpretation T ∅Σ /R is term-generated—that
is, for every element a of the universe of this interpretation and for any valuation
ξ, there exists a ground term t such that JtKξT ∅

Σ /R
= a. To lighten notation, we

will write R to refer to both the term rewriting system R and the interpretation
T ∅Σ /R.

The following properties of the candidate interpretations can be shown exactly
as in Waldmann’s version of the first-order proof [67].

Lemma 10. The rewrite systems RC and R∞ are confluent and terminating.

Lemma 11. If D ∈ bGΣ(N)c is true in RD, then D is true in R∞ and RC for
all C � D.

Lemma 12. If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in
R∞ and RC for all C � D.

4.3 Lifting Lemmas

We proceed by lifting inferences from the ground to the nonground level. It is
essential to the lifting lemmas that the selected literals of a clause correspond to
the selected literals in its ground instances. However, there is no need to impose
this as a restriction to the selection function. Instead, following Bachmair and
Ganzinger [6, p. 45], let S be the selection function with respect to which N is
saturated up to redundancy. We introduce another selection function SN such
that each clause C ∈ GΣ(N) is a ground instance of a clause D ∈ N such that the
selections S (D) and SN (C) coincide. In the remainder of the proof, we adhere to
the following convention:

Convention 13. When we speak about selected literals of clauses in N , it is
with respect to the selection function S . When we speak about selected literals
of clauses in GΣ(N), it is with respect to the selection function SN .

Lemma 14 (Lifting of EqRes and EqFact inferences). Let Cθ ∈ GΣ(N),
where θ is a substitution and the selected literals in C ∈ N correspond to those
in Cθ (using S for C and SN for Cθ as mentioned in Convention 13). Then
every EqRes or EqFact inference from Cθ is a ground instance of an inference
from C.

Proof. EqRes: If there is an EqRes inference from Cθ, then Cθ is of the form
Cθ = C ′θ ∨ sθ 6≈ s′θ where C = C ′ ∨ s 6≈ s′, and sθ 6≈ s′θ is selected or no

17

literal of Cθ is selected and sθ 6≈ s′θ is maximal. The ground inference is

C ′θ ∨ sθ 6≈ s′θ
EqRes

C ′θ

where sθ and s′θ are unifiable and ground; hence sθ = s′θ. Since sθ 6≈ s′θ
is maximal (and nothing is selected) or selected in Cθ, We know that s 6≈
s′ is maximal (and nothing is selected) or selected in C. Since s and s′ are
unifiable, there exists some idempotent σ ∈ CSU(s, s′) such that σρ = θ for some
substitution ρ. Hence there is an inference

C ′ ∨ s 6≈ s′
EqRes

C ′σ

By idempotence of σ, we have C ′σθ = C ′θ. Thus the ground inference is the
θ-ground instance of the nonground inference.

EqFact: Analogously, if there is an EqFact inference from Cθ, then Cθ is of
the form Cθ = C ′θ ∨ s′θ ≈ t′θ ∨ sθ ≈ tθ where sθ ≈ tθ is maximal, no literal is
selected in Cθ, sθ 6≺ tθ, and C = C ′ ∨ s′ ≈ t′ ∨ s ≈ t. The ground inference is

C ′θ ∨ s′θ ≈ t′θ ∨ sθ ≈ tθ
EqFact

C ′θ ∨ tθ 6≈ t′θ ∨ sθ ≈ t′θ

where sθ and s′θ are unifiable and ground; hence sθ = s′θ. Since sθ ≈ tθ is
maximal in Cθ, nothing is selected in Cθ, and sθ 6≺ tθ, we know that s ≈ t is
maximal in C, nothing is selected in C, and s 6≺ t. Since s and s′ are unifiable, there
exists some idempotent σ ∈ CSU(s, s′) such that σρ = θ for some substitution ρ.
Hence there is an inference

C ′ ∨ s′ ≈ t′ ∨ s ≈ t
EqFact

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

By idempotence of σ, we have (C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σθ = C ′θ ∨ tθ 6≈ t′θ ∨
sθ ≈ t′θ. Thus, the ground inference is the θ-ground instance of the nonground
inference. ut

To lift Superposition inferences, we need the following auxiliary lemma:

Lemma 15 (Instances of green subterms). Let s be a λ-term in η-short
β-normal form, let σ be a substitution, let p be a green position of both s and
sσ↓βη. Then (s|p)σ↓βη = (sσ↓βη)|p.

Proof. By induction on p.
If p = ε, then (s|p)σ↓βη = sσ↓βη = (sσ↓βη)|p.
If p = i.p′, then s = f〈τ̄〉 s1 . . . sn and sσ = f〈τ̄σ〉 (s1σ) . . . (snσ), where

1 ≤ i ≤ n and p′ is a green position of si. Clearly, βη-normalization steps of sσ
can take place only in proper subterms. So sσ↓βη = f〈τ̄σ〉 (s1σ↓βη) . . . (snσ↓βη).

18

Since p = i.p′ is a green position of sσ↓βη, p′ must be a green position of (siσ)↓βη.
By induction, (si|p′)σ↓βη = (siσ↓βη)|p′ , therefore

(s|p)σ↓βη = (s|i.p′)σ↓βη = (si|p′)σ↓βη = (siσ↓βη)|p′ = (sσ↓βη)|p.

ut

Definition 16. Let I be a ground Sup inference from Dθ = D′θ ∨ tθ ≈ t′θ
and Cθ = C ′θ ∨ [¬] sθ<tθ>p ≈ s′θ, where we assume that s, t, sθ and tθ are
represented by λ-terms in η-short β-normal form. Let p′ be the longest prefix of
p that is a green position of s.1 We call the ground inference liftable, if s|p′ is a
deep variable in C, or if p = p′ and the variable condition holds for D and C, or
if p 6= p′ and s|p′ is not a variable.

Lemma 17 (Lifting of Sup inferences). Let Dθ,Cθ ∈ GΣ(N), where θ is a
substitution and the selected literals in D ∈ N and C ∈ N correspond to those
in Dθ and Cθ (possibly using different selection functions for GΣ(N) and N).
Then every liftable Sup inference between Dθ and Cθ is a ground instance of a
Sup or FluidSup inference from D and C.

Proof. We may assume that D = D′ ∨ t ≈ t′ and C = C ′ ∨ [¬] s ≈ s′, and that
the inference has the form

D′θ ∨ tθ ≈ t′θ C ′θ ∨ [¬] sθ<tθ>p ≈ s′θ
Sup

D′θ ∨ C ′θ ∨ [¬] sθ<t′θ>p ≈ s′θ
where tθ ≈ t′θ is strictly eligible, [¬] sθ ≈ s′θ is strictly eligible if positive and
eligible if negative, Dθ 6% Cθ, tθ 6- t′θ, and sθ 6- s′θ. Furthermore, we assume
that s, t, sθ and tθ are represented by λ-terms in η-short β-normal form.

Let p′ be the longest prefix of p that is a green position of s; let u = s|p′ .
By Lemma 15, uθ agrees with sθ|p′ (considering both as terms rather than as
λ-terms).

Case 1: p = p′; u is not fluid; and if u is a variable, it is not deep in C. Then
uθ = sθ|p′ = sθ|p = tθ. As θ is a unifier of u and t, there exists some idempotent
σ ∈ CSU(t, u) such that σρ = θ for some substitution ρ. The inference conditions
can be lifted: (Strict) eligibility of tθ ≈ t′θ and [¬] sθ ≈ s′θ implies (strict)
eligibility of t ≈ t′ and [¬] s ≈ s′; Dθ 6% Cθ implies D 6% C; tθ 6- t′θ implies
t 6- t′; and sθ 6- s′θ implies s 6- s′. Moreover, by liftability, the variable condition
holds for D and C. So there is a Superposition inference

D′ ∨ t ≈ t′ C ′ ∨ [¬] s<u>p ≈ s′
Sup

(D′ ∨ C ′ ∨ [¬] s<t′>p ≈ s′)σ
where σ = mgu(t, u). Since σ is idempotent, θ = σρ = σσρ = σθ, so (D′ ∨
C ′ ∨ [¬] s<t′>p ≈ s′)σθ = D′θ ∨ C ′θ ∨ [¬] sθ<t′θ>p ≈ s′θ, which implies that the
ground inference is the θ-ground instance of the nonground inference.
1 Since ε is a green position of s, the longest prefix always exists.

19

Case 2: (a) p 6= p′; or (b) u is fluid; or (c) u is a deep variable in C. We will
first show that u is either fluid or a deep variable in C, even in case (a). Suppose
it is neither. By liftability, u cannot be a shallow variable either. Moreover, since
u is not fluid, it cannot have the form y ūn for a variable y and n ≥ 1. If u were
an application f〈τ̄〉s1 . . . sn with n ≥ 0, uθ would have the form f〈τ̄ θ〉s1θ . . . snθ,
but then there is some 1 ≤ i ≤ n such that p′.i is a prefix of p and s|p′.i is a green
subterm of s, contradicting the fact that p′ is the longest prefix of p with this
property. So u must be a λ-expression, but since tθ is a proper green subterm of
uθ, uθ cannot be a λ-expression, contradicting the assumption that u is neither
fluid nor a deep variable in C.

Let p = p′.p′′. Let z be a new variable. Define a substitution θ′ that maps z to
λy.(sθ|p′)<y>p′′ and any other variable w to wθ. Clearly, (z t)θ′ = (sθ|p′)<tθ>p′′ =
sθ|p′ = uθ = uθ′. As θ′ is a unifier of u and z t, there exists some idempotent
σ ∈ CSU(z t, u) such that σρ = θ′ for some substitution ρ. As in Case 1, (strict)
eligibility of the ground literals implies (strict) eligibility of the nonground literals.
Moreover, by construction of θ′, tθ′ = tθ 6= t′θ = t′θ′ implies (z t)θ′ 6= (z t′)θ′,
and thus (z t)σ 6= (z t′)σ. So there is an inference

D′ ∨ t ≈ t′ C ′ ∨ [¬] s<u>p′ ≈ s′
FluidSup

(D′ ∨ C ′ ∨ [¬] s<z t′>p′ ≈ s′)σ
where σ ∈ CSU(z t, u). Since σ is idempotent, θ′ = σρ = σσρ = σθ′, so (D′ ∨
C ′ ∨ [¬] s<z t′>p′ ≈ s′)σθ′ = D′θ′ ∨ C ′θ′ ∨ [¬] sθ′<zθ′ t′θ′>p′ ≈ s′θ′ = D′θ′ ∨
C ′θ′ ∨ [¬] sθ<sθ|p′<t′θ>p′′>p′ ≈ s′θ′ = D′θ ∨ C ′θ ∨ [¬] sθ<t′θ>p ≈ s′θ, which
implies that the ground inference is the θ′-ground instance of the nonground
inference. ut

4.4 Construction of the First-Order Model

The candidate interpretation R∞ is a model of bGΣ(N)c. Like in the first-order
proof, this is shown by induction on the clause order. For the induction step, we
fix some clause bCθc ∈ bGΣ(N)c and assume that all smaller clauses are true in
RCθ. We distinguish several cases, most of which amount to showing that Cθ
can be used in a certain inference. Then we deduce that bCθc is true in RCθ to
complete the induction step.

The next two lemmas are slightly adapted from the first-order proof. The
justification for Lemma 18, about liftable inferences, is essentially as in the
first-order case. The proof of Lemma 19, about nonliftable inferences, is more
problematic. The standard argument involves defining a substitution θ′ such that
bCθ′c and bCθc are equivalent and Cθ′ ≺ Cθ. But due to nonmonotonicity, we
might have Cθ′ � Cθ, blocking the application of the induction hypothesis. This
is where the variable condition and the ArgCong rule come into play.

Lemma 18. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in
C ∈ N correspond to those in Dθ and Cθ, respectively. We consider a liftable Sup
inference from Dθ and Cθ or an EqRes or EqFact inference from Cθ. Let E be

20

the conclusion. Assume that Cθ and Dθ are nonredundant with respect to GΣ(N).
Then bEc is entailed by clauses from bGΣ(N)c that are smaller than bCθc.

Proof. We have a liftable Sup inference from Dθ and Cθ or an EqRes or EqFact
inference from Cθ. As shown in the lifting lemmas (Lemmas 14 and 17) this
inference is an instance of an inference from C (or from D and C for Sup
inferences). Let Ẽ be its conclusion, then Ẽθ = E. Since N is saturated up to
redundancy, this inference is redundant with respect to N and hence the θ-ground
instance of this inference is redundant with respect to GΣ(N). By definition of
inference redundancy, since none of Dθ and Cθ are redundant with respect to
GΣ(N), bEc is entailed by clauses from bGΣ(N)c that are smaller than bCθc. ut

Lemma 19. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in
C ∈ N correspond to those in Dθ and Cθ, respectively. We consider a nonliftable
Sup inference from Dθ and Cθ. Assume that Cθ and Dθ are nonredundant with
respect to GΣ(N). Let D′θ be the clause Dθ without the literal involved in the
inference. Then bCθc is entailed by ¬bD′θc and the clauses in bGΣ(N)c that are
smaller than bCθc.

Proof. Let Cθ = C ′θ ∨ [¬] sθ ≈ s′θ and Dθ = D′θ ∨ tθ ≈ t′θ, where [¬] sθ ≈ s′θ
and tθ ≈ t′θ are the literals involved in the inference, sθ � s′θ, tθ � t′θ, and C ′,
D′, s, s′, t, t′ are the respective subclauses and terms in C and D.

Let R be an interpretation such that bD′θc is false and the clauses in bGΣ(N)c
that are smaller than bCθc are true. Since Cθ � Dθ by the Sup order conditions,
it follows that R |= btθ ≈ t′θc. We must show that R |= bCθc.

Let p the position in sθ where the inference takes place and p′ the longest
prefix of p that is a green subterm of s. Since the inference is not liftable, s|p′ is
not a deep variable; if p = p′, the variable condition does not hold for D and C;
and if p 6= p′, s|p′ is a variable. That means the inference is either at the position
of an unapplied variable shallow in C, for which the variable condition does not
hold, or below an unapplied variable shallow in C.

Case 1: We assume that it is a superposition below a variable shallow in C,
say, x. Let tθ ≈ t′θ be the strictly maximal literal of Dθ, where tθ � t′θ. Then
tθ is an argument subterm of xθ and hence an argument subterm of xθ w̄ for
any arguments w̄. Let v be the term that we obtain by replacing tθ by t′θ in xθ
at the relevant position. It follows from the definition of R that R |= btθ ≈ t′θc
and by congruence, R |= bxθ w̄ ≈ v w̄c for any arguments w̄. Hence, R |= bCθc
if and only if R |= bC{x 7→ v}θc by congruence. Here, it is crucial that the
variable is shallow in C because congruence does not hold on the floor level
below λ-expressions. By the inference conditions we have tθ � t′θ, which implies
bCθc � bC{x 7→ v}θc by compatibility with green contexts. Therefore, by the
assumption about R, we have R |= bC{x 7→ v}θc and hence R |= bCθc.

Case 2: The superposition takes place at the position of a variable x shallow in
C, but the variable condition does not hold. Since the variable condition does
not hold, we know that Cθ � C ′′θ, where C ′′ = C{x 7→ t′}. We cannot have
Cθ = C ′′θ because xθ = tθ 6= t′θ and x occurs in C. Hence, we have Cθ � C ′′θ.

21

By the definition of R, Cθ � C ′′θ implies R |= bC ′′θc. We will use equalities
that are true in R to rewrite bCθc into bC ′′θc, which implies R |= bCθc by
congruence.

By saturation up to redundancy, for any type-correctm-tuple of fresh variables
z̄, we can use an ArgCong inference with premise D (if m > 0) or D itself (if
m = 0) to show that up to variable renaming D′ ∨ t z̄ ≈ t′ z̄ is in N ∪ Red(N).
Hence, D′θ ∨ tθ ū ≈ t′θ ū is in GΣ(N ∪ Red(N)) for any type-correct ground
arguments ū.

First, we observe that whenever tθ ū and t′θ ū are smaller than the maximal
term of Cθ for some arguments ū, we have

R |= btθ ūc ≈ bt′θ ūc (†)

To show this, we assume that tθ ū and t′θ ū are smaller than the maximal term
of Cθ and we distinguish two cases: If tθ is smaller than the maximal term
of Cθ, all terms in D′θ are smaller than the maximal term of Cθ and hence
D′θ ∨ tθ ū ≈ t′θ ū ≺ Cθ. If, on the other hand, tθ is equal to the maximal term
of Cθ, tθ ū and t′θ ū are smaller than tθ. Hence tθ ū ≈ t′θ ū ≺ tθ ≈ t′θ and
D′θ ∨ tθ ū ≈ t′θ ū ≺ Dθ ≺ Cθ. In both cases, since D′θ is false in R, by the
definition of R, R |= btθ ūc ≈ bt′θ ūc.

We proceed to show the equivalence of Cθ and C ′′θ via rewriting with
equations of the form (†) where tθū and t′θū are smaller than the maximal term of
Cθ. Since x is shallow in C, every occurrence of x in C is not inside a λ-expression
and not inside an argument of an applied variable. Therefore, all occurrences of x
in C are in a green subterm of the form x v̄ for some terms v̄ that do not contain
x. Hence, every occurrence of x in C corresponds to a subterm b(x v̄)θc = btθ v̄θc
in bCθc and to a subterm b(x v̄){x 7→ t′}θc = bt′θ v̄{x 7→ t′}θc = bt′θ v̄θc in
bC ′′θc. These are the only places where Cθ and C ′′θ differ.

In order to justify the necessary rewrites from btθ v̄θc into bt′θ v̄θc using (†),
we need to show that btθ v̄θc and bt′θ v̄θc are smaller than the maximal term
in bCθc for the relevant v̄. If v̄ is the empty tuple, we do not need to show this
because R |= btθ ≈ t′θc follows from bDθc being true and bD′θc being false. If
v̄ is non-empty, it suffices to show that x v̄ is not a maximal term in C. Then
btθ v̄θc and bt′θ v̄θc, which correspond to the term x v̄ in C, cannot be maximal
in bCθc and bC ′′θc either. Hence they must be smaller than the maximal term
in bCθc because they are subterms of bCθc and bC ′′θc ≺ bCθc, respectively.

To show that x v̄ is not a maximal term in C, we make a case distinction
on whether [¬]sθ ≈ s′θ is selected in Cθ or sθ is the maximal term in Cθ. One
of these must hold because [¬]sθ ≈ s′θ is eligible in Cθ. If it is selected, by the
selection restrictions, x cannot be the head of a maximal term of C. If sθ is the
maximal term in Cθ, we can argue that x is a green subterm of s and, since x is
shallow, s cannot be of the form x v̄ for a non-empty v̄.

This justifies the necessary rewrites between bCθc and bC ′′θc and it follows
that R |= bCθc. ut

Using these two lemmas, the induction argument works as in the first-order
case.

22

Lemma 20 (Model construction). Let bCθc ∈ bGΣ(N)c. We have

(i) EbCθc = ∅ if and only if RbCθc |= bCθc;
(ii) if Cθ is redundant with respect to GΣ(N), then RbCθc |= bCθc;
(iii) bCθc is true in R∞ and in RD for every D ∈ bGΣ(N)c with D � bCθc; and
(iv) if Cθ has selected literals, then RbCθc |= bCθc.

Proof. We use induction of the clause order � on floor logic ground clauses and
assume that (i)–(iv) are already satisfied for all clauses in bGΣ(N)c that are
smaller than bCθc. The ‘if’ part of (i) is obvious from the construction and that
condition (iii) follows from (i) by Lemmas 11 and 12. So it remains to show
(ii), (iv), and the ‘only if’ part of (i), i.e., we show the following: If EbCθc = ∅
or Cθ is redundant with respect to GΣ(N) or Cθ has selected literals, then
RbCθc |= bCθc. Without loss of generality, we assume that the selected literals in
C ∈ N correspond to those in Cθ.

Case 1: Cθ is redundant with respect to GΣ(N). Then bCθc is entailed by
clauses from bGΣ(N)c that are smaller than bCθc. By part (iii) of the induction
hypothesis, these clauses are true in RbCθc. Hence bCθc is true in RbCθc.

Case 2: Cθ is not redundant with respect to GΣ(N) and Cθ contains an eligible
negative literal. Let sθ 6≈ s′θ with sθ � s′θ be one of these literals and C ′θ the
rest of the clause.

Case 2.1: sθ = s′θ. Then there is an EqRes inference:

C ′θ ∨ sθ 6≈ s′θ
EqRes

C ′θ

By Lemma 18, bC ′θc is entailed by clauses from bGΣ(N)c that are smaller than
bCθc. By part (iii) of the induction hypothesis, these clauses are true in RbCθc,
which implies that bC ′θc and hence bCθc are true in RbCθc.

Case 2.2: sθ � s′θ. If R |= bsθ 6≈ s′θc, then it follows directly that R |= bCθc.
So we assume that bsθc ↓RbCθc bs′θc (i.e., bsθc and bs′θc have the same normal
form), which means that R |= bsθ ≈ s′θc. Since sθ � s′θ, bsθc must be reducible
by some rule in some EbDθc ⊆ RbCθc. Without loss of generality, we assume that
the selected literals in D ∈ N correspond to those in Dθ and that C and D are
variable disjoint; so we can use the same substitution θ. Let Dθ = D′θ ∨ tθ ≈ t′θ
with EbDθc = {btθc→ bt′θc}.

There is a Sup inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ<tθ> 6≈ s′θ
Sup

D′θ ∨ C ′θ ∨ sθ<t′θ> 6≈ s′θ
If this inference is not liftable, by Lemma 19, ¬bD′θc and the clauses in bGΣ(N)c
that are smaller than bCθc imply bCθc. Since bDθc is productive, bD′θc is false
in RbCθc by Lemma 12. By part (iii) of the induction hypothesis, all clauses in

23

bGΣ(N)c that are smaller than bCθc are true in RbCθc. Therefore, bCθc is true
in RbCθc.

If this inference is liftable, by Lemma 18, bD′θ ∨ C ′θ ∨ sθ<t′θ> 6≈ s′θc is
entailed by clauses from bGΣ(N)c that are smaller than bCθc. By part (iii) of the
induction hypothesis, bD′θ ∨ C ′θ ∨ sθ<t′θ> 6≈ s′θc is then true in RbCθc. Since
bD′θc is false in RbCθc, it follows that RbCθc |= C ′θ or RbCθc |= sθ<t′θ> 6≈ s′θ. In
the latter case, we have RbCθc |= sθ<tθ> 6≈ s′θ because tθ → tθ′ ∈ RbCθc. Hence,
in both cases, RbCθc |= Cθ.

Case 3: Cθ is not redundant and contains no eligible negative literal. Then
nothing is selected in Cθ and Cθ can be written as C ′θ∨sθ ≈ s′θ, where sθ ≈ s′θ
is a maximal literal. If EbCθc = {bsθc→ bs′θc} or RbCθc |= bC ′θc or sθ = s′θ,
there is nothing to show, so assume that EbCθc = ∅ and that bC ′θc is false in
RbCθc. Without loss of generality, sθ � s′θ.

Case 3.1: bsθ ≈ s′θc is maximal in bCθc, but not strictly maximal. Then Cθ
can be written as C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this
case, there is a EqFact inference

Cθ = C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ
EqFact

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

By Lemma 18, its conclusion is entailed by clauses from bGΣ(N)c that are smaller
than bCθc. By part (iii) of the induction hypothesis, these clauses are true in
RbCθc, which implies that bC ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θc is true in RbCθc. Since
t′θ = s′θ and hence bt′θ 6≈ s′θc is false in RbCθc, this implies that RbCθc |= bCθc.

Case 3.2: sθ ≈ s′θ is strictly maximal in Cθ and bsθc is reducible by RbCθc.
Let btθc → bt′θc ∈ RbCθc be a rule that reduces bsθc. This rule stems from
a productive clause bDθc = bD′θ ∨ tθ ≈ t′θc. Without loss of generality, we
assume that the selected literals in D ∈ N correspond to those in Dθ and that
C and D are variable disjoint; so we can use the same substitution θ.

We can now proceed in essentially the same way as in Case 2.2: There is a
Sup inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ<tθ> ≈ s′θ
Sup

D′θ ∨ C ′θ ∨ sθ<t′θ> ≈ s′θ
If this inference is not liftable, by Lemma 19, ¬bD′θc and the clauses in bGΣ(N)c
that are smaller than bCθc imply bCθc. Since bDθc is productive, bD′θc is false
in RbCθc by Lemma 12. By part (iii) of the induction hypothesis, all clauses in
bGΣ(N)c that are smaller than bCθc are true in RbCθc. Therefore, bCθc is true
in RbCθc.

If this inference is liftable, by Lemma 18, bD′θ ∨ C ′θ ∨ sθ<t′θ> ≈ s′θc is
entailed by clauses from bGΣ(N)c that are smaller than bCθc. By part (iii) of the
induction hypothesis, bD′θ ∨ C ′θ ∨ sθ<t′θ> ≈ s′θc is then true in RbCθc. Since
bD′θc is false in RbCθc, it follows that RbCθc |= C ′θ or RbCθc |= sθ<t′θ> ≈ s′θ. In
the latter case, we have RbCθc |= sθ<tθ> ≈ s′θ because tθ → tθ′ ∈ RbCθc. Hence,
in both cases, RbCθc |= Cθ.

24

Case 3.3: sθ ≈ s′θ is strictly maximal in Cθ and bsθc is irreducible with respect
to RbCθc. By assumption Cθ is not redundant and we have EbCθc = ∅. We
assume that bCθc is false in RbCθc. By the definition of EbCθc, bC ′θc must be
true in RbCθc ∪ {bsθc→ bs′θc}. Then C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal
btθ ≈ t′θc is true in RbCθc ∪ {bsθc→ bs′θc} and false in RbCθc. In other words,
btθc ↓RbCθc∪{bsθc→bs′θc} bt′θc, but not btθc ↓RbCθc bt′θc. Consequently, there is a
rewrite proof of btθc→∗ buc←∗ bt′θc by RbCθc ∪ {bsθc→ bs′θc} in which the
rule bsθc→ bs′θc is used at least once. Without loss of generality, we assume
that tθ � t′θ. Since sθ ≈ s′θ � tθ ≈ t′θ and sθ � s′θ we can conclude that
sθ � tθ � t′θ. But then there is only one possibility how the rule bsθc→ bs′θc
can be used in the rewrite proof: We must have sθ = tθ and the rewrite proof
must have the form btθc → bs′θc →∗ buc ←∗ bt′θc, where the first step uses
bsθc→ bs′θc and all other steps use rules from RbCθc. Consequently, bs′θ ≈ t′θc
is true in RbCθc. Now observe that there is an EqFact inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ
EqFact

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

By Lemma 18, its conclusion is entailed by clauses from bGΣ(N)c that are smaller
than bCθc. By part (iii) of the induction hypothesis, these clauses are true in
RbCθc, which implies that bC ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θc is true in RbCθc. Since
the literal bt′θ 6≈ s′θc must be false in RbCθc, this implies that RbCθc |= bCθc,
contradicting our assumption. ut

4.5 Construction of the Higher-Order Model

Notation: We write s ∼ t for ground ceiling terms s and t as an abbreviation for
R∞ |= bsc ≈ btc, which is equivalent to JbscKR∞

= JbtcKR∞
.

Lemma 21. For all ceiling logic ground terms t, s : τ → υ, the following state-
ments are equivalent:

1. t ∼ s
2. t (diff〈τ, υ〉(t, s)) ∼ s (diff〈τ, υ〉(t, s))
3. t u ∼ s u for all ceiling logic ground terms u

Proof. (3)⇒(2): Let u = diff〈τ, υ〉(t, s).
(2)⇒(1): As a ground instance of the extensionality axiom, we have

R∞ |= bt (diff〈τ, υ〉(t, s)) 6≈ s (diff〈τ, υ〉(t, s)) ∨ t ≈ sc

Hence, it follows from t (diff〈τ, υ〉(t, s)) ∼ s (diff〈τ, υ〉(t, s)) that t ∼ s.
(1)⇒(3): We assume that t ∼ s, i.e., btc ↔∗R∞

bsc. By induction on the
number of rewriting steps between btc and bsc and by transitivity of ∼, it suffices
to show that

btc→R∞ bsc implies t u ∼ s u

25

If the rewrite step btc→R∞ bsc is not at the top level, then neither s↓βη nor
t↓βη can be λ-expressions. Therefore, s↓βη u and t↓βη u are in βη-normal form
and there is an analogous rewrite step bt uc→R∞ bs uc using the same rewrite
rule. It follows that t u ∼ s u.

If the rewrite step btc→R∞ bsc is at the top level, btc→ bsc must be a rule
of R∞. This rule must come from a productive clause of the form bCθc = bC ′θ ∨
t′θ ≈ s′θc where t′θ = t and s′θ = s. Without loss of generality, we assume that
the selected literals in C = C ′ ∨ t′ ≈ s′ ∈ N correspond to those in Cθ. By the
definition of productive clauses and by Lemma 20 (i) and (iv), t ≈ s is strictly
eligible in bCθc, and so is t′ ≈ s′ in C. Moreover, t and s have a functional type,
and hence t′ and s′ have either a functional or a polymorphic type. Hence, there
is this ArgCong inference:

C ′ ∨ t′ ≈ s′
ArgCong

(C ′ ∨ t′ x ≈ s′ x)σ

where x is a fresh variable and σ is at least as general as θ.
By part (ii) of Lemma 20, a productive clause is never redundant; hence Cθ

is not redundant with respect to GΣ(N) and therefore C is not redundant with
respect to N . Hence, the conclusion (C ′ ∨ t′ x ≈ s′ x)σ of the above inference
from C is in N ∪ Red(N). Therefore, the ground instance bC ′θ ∨ t u ≈ s uc of
b(C ′ ∨ t′ x ≈ s′ x)σc is either contained in bGΣ(N)c or it is entailed by clauses
in bGΣ(N)c. Thus, it is true in R∞, because R∞ is a model of bGΣ(N)c. By
Lemma 12, bC ′θc is false in R∞. So, bt uc ≈ bs uc must be true in R∞. ut

Lemma 22. Let s be a ceiling logic term and θ, θ′ ground substitutions, such
that xθ ∼ xθ′ for all variables x and αθ = αθ′ for all type variables α. Then
sθ ∼ sθ′.

Proof. In this proof, we consider all terms to be λ-terms, not βη-equivalence
classes. The lemma however holds for βη-equivalence classes as well because for
the relation ∼ only the βη-normal form matters.

Definition (⊕). We extend the syntax of terms with a new polymorphic
function symbol ⊕ : Πα. α→ α→ α. We will omit the type argument of ⊕ for
brevity. We have two reduction rules for ⊕: ⊕ t s→ t and ⊕ t s→ s.

The computability path order (≺CPO) [21] guarantees that

• f(t̄) �CPO v if f ∈ Σ and for some i, ti �CPO v due to rule FbB, and
• (λx. t) u �CPO v if t[x 7→ u] �CPO v due to rule @β,

thus this order is compatible with the ⊕-reduction rules and β-reduction. Since
this order is moreover well-founded, these reduction rules terminate. Since the
reduction rules describe a finitely branching term rewrite system, for any term
there is a maximal number of reduction steps possible (Kőnigs Lemma).

Definition (term-ground). A term is term-ground if it does not contain free
(term) variables. It may contain polymorphic type arguments.

26

Definition (S). We define an auxiliary function S that essentially measures
the size of a term, but assigns size 1 to term-ground terms.

S(x) = 1 for (free or bound) variables x
S(t) = 1 for term-ground terms t

S(f〈τ̄〉) = 1 for a non-term-ground expression f〈τ̄〉
S(λx. t) = 1 + S(t) for non-term-ground λ-expressions λx. t
S(t1 t2) = S(t1) + S(t2) for non-term-ground applications t1 t2

We prove sθ ∼ sθ′ by induction on s, θ, and θ′ using the left-to-right lexicographic
order on the triple (n1(s), n2(s), n3(s)) ∈ N3, where

• n1(s) is the maximal number of β⊕-reduction steps starting from sσθ,θ′ ,
where σθ,θ′ is the substitution mapping each term variable x to ⊕ xθ xθ′.
• n2(s) is the number of term variables occurring more than once in s.
• n3(s) = S(s).

Strictly speaking, n1 also depends on θ and θ′, but we write n1(s) instead of
n1(s, θ, θ′) for brevity.

Case 1: s is term-ground. Then the lemma is trivial.

Case 2: s contains k ≥ 2 free term variables. Then we can apply the induction
hypothesis twice and use the transitivity of ∼ as follows. Let x be one of the free
term variables in s. Let ρ = {x 7→ xθ} the substitution that maps x to xθ and
ignores all other variables. Let ρ′ = θ′[x 7→ x].

We want to invoke the induction hypothesis on sρ and sρ′. This is justified
because sσθ,θ′ ⊕-reduces to sρσθ,θ′ and to sρ′σθ,θ′ . Hence, n1(s) > n1(sρ) and
n1(s) > n1(sρ′).

This application of the induction hypothesis gives us sρθ ∼ sρθ′ and sρ′θ ∼
sρ′θ′. Since sθ = sρθ, sρθ′ = sρ′θ, and sρ′θ′ = sθ′, this implies sθ ∼ sθ′ by
transitivity of ∼, as illustrated in this diagram:

sρ sρ′

sθ ∼
IH

sρθ′ = sρ′θ ∼
IH

sθ′

θ θ′ θ θ′

Case 3: s contains a free term variable that occurs more than once. Then we
rename variable occurrences apart by replacing each occurrence of each term
variable x by a fresh variable xi, for which we define xiθ = xθ and xiθ′ = xθ′.
Let s′ be the resulting term. Since sσθ,θ′ = s′σθ,θ′ , we have n1(s) = n1(s′). All
term variables occur only once in s′. Hence, n2(s) > 0 = n2(s′). Therefore, we

27

can invoke the induction hypothesis on s′ to obtain s′θ ∼ s′θ′. Since sθ = s′θ
and sθ′ = s′θ′, it follows that sθ ∼ sθ′.

Case 4: s contains only one free term variable x, which occurs exactly once.

Case 4.1: s is of the form f〈τ̄〉 t̄ for some symbol f, some types τ̄ and some
terms t̄. Then let u be the term in t̄ that contains x. We want to apply the
induction hypothesis to u, which can be justified as follows. Consider the longest
sequence of β⊕-reductions from uσθ,θ′ . This sequence can be replicated inside
sσθ,θ′ = (f〈τ̄〉t̄)σθ,θ′ . Therefore, the longest sequence of β⊕-reductions from sσθ,θ′
is at least as long, i.e., n1(s) ≥ n1(u). Since both s and u have only one term
variable occurrence, we have n2(s) = 0 = n2(u). But n3(s) > n3(u) because u is
a non-term-ground subterm of s.

Applying the induction hypothesis gives us uθ ∼ uθ′. By definition of b c, we
have

b(f〈τ̄〉 t̄)θc = fm〈bτ̄ θc〉bt̄θc and
b(f〈τ̄〉 t̄)θ′c = fm〈bτ̄ θ′c〉bt̄θ′c

where m is the length of t̄. By congruence of ≈ in the floor logic, it follows that
sθ ∼ sθ′.

Case 4.2: s is of the form x t̄ for some terms t̄. Then we observe that, by
assumption xθ ∼ xθ′. By applying Lemma 21 repeatedly, we have xθ t̄ ∼ xθ′ t̄.
Since x occurs only once, t̄ is term-ground and hence sθ = xθ t̄ and sθ′ = xθ′ t̄.
Therefore, sθ ∼ sθ′.

Case 4.3: s is of the form (λz. u) for some term u. Then we observe that to
prove sθ ∼ sθ′, it suffices to show that sθ (diff sθ sθ′) ∼ sθ′ (diff sθ sθ′) by
Lemma 21. Via βη-conversion, this is equivalent to uρθ ∼ uρθ′ where ρ = {z 7→
diff〈τ, υ〉 (sθ↓βη) (sθ′↓βη)} where τ → υ is the type of sθ. To prove uρθ ∼ uρθ′,
we apply the induction hypothesis on uρ.

It remains to show that the induction hypothesis is applicable on uρ. Consider
the longest sequence of β⊕-reductions from uρσθ,θ′ . Since zρ starts with the
diff symbol, zρ will not cause more β⊕-reductions than z. Hence, the same
sequence of β⊕-reductions can be applied inside sσθ,θ′ = (λz. u)σθ,θ′ , proving
that n1(s) ≥ n1(uρ). Since both s and uρ have only one term variable occurrence,
n2(s) = 0 = n2(uρ). But n3(s) = S(s) = 1 + S(u) because s is non-term-ground.
Moreover, S(u) ≥ S(uρ) = n3(uρ) because ρ replaces a variable by a ground
term. Hence, n3(s) > n3(uρ), which justifies the application of the induction
hypothesis.

Case 4.4: s is of the form (λz. u) t0 t̄ for some terms u, t0, and t̄.
We apply the induction hypothesis on s′ = u{z 7→ t0} t̄. To justify it, consider

the longest sequence of β⊕-reductions from s′σθ,θ′ . Prepending the reduction

28

sσθ,θ′ →β s
′σθ,θ′ to it gives us a longer sequence from sσθ,θ′ . Hence, n1(s) >

n1(s′).
The induction hypothesis gives us s′θ ∼ s′θ′. Since ∼ is invariant under

β-reductions, it follows that sθ ∼ sθ′. ut

Definition of the ceiling logic The interpretation R∞ defined above is an
interpretation in monomorphic first-order logic. Let Uτ be its universe for type
τ and and J its interpretation function. When defining the universe U↑ of the
ceiling model, we need to ensure that it contains subsets of function spaces, since
J ↑ty(→)(D1,D2) must be a subset of the function space from D1 to D2 for all
D1,D2 ∈ U↑. But the floor universes Uτ consist of equivalence classes of floor
logic terms with respect to the rewrite system R∞, not of functions.

Towards this end, we define a family of functions Eτ that give a meaning to
the elements of each floor universe Uτ . As in the floor model, there will be a
one-to-one correspondence of ground ceiling types and ceiling domains. We write
D↑τ for the domain corresponding to the ground type τ .

We define Eτ and D↑τ in a mutual induction and prove that Eτ is a bijection
simultaneously. We start with non-function types τ (non-function meaning that
τ is not of the form τ1 → τ2 for any τ1, τ2):

D↑τ = Uτ

Eτ : Uτ −�→ D↑τ is the identity

We proceed by defining Eτ→υ and D↑τ→υ for function types τ → υ. We assume that
Eτ , Eυ, D↑τ , and D↑υ have already been defined and that Eτ , Eυ are bijections.
To ensure that Eτ→υ will be bijective, we first define an injective function
E0
τ→υ : Uτ→υ −�→ D↑τ −�→ D↑υ, define D↑τ→υ as its image E0

τ→υ(Uτ→υ), and finally
define Eτ→υ as E0

τ→υ with its codomain restricted to D↑τ→υ.

E0
τ→υ : Uτ→υ −�→ D↑τ −�→ D↑υ

E0
τ→υ(JbscKR∞

)
(
Eτ
(
JbucKR∞

))
= Eυ

(
Jbs ucKR∞

)
This is a valid definition because each element of Uτ→υ is of the form JbscKR∞
for some s and each element of D↑τ is of the form Eτ

(
JbucKR∞

)
for some u.

This function is well defined if it does not depend on the choice of s and u.
To show this, we assume that there are other ground terms t and v such that
JbscKR∞

= JbtcKR∞
and Eτ

(
JbucKR∞

)
= Eτ

(
JbvcKR∞

)
. Since Eτ is bijective,

we have JbucKR∞
= JbvcKR∞

. Applying Lemma 22 to the term x y and the
substitutions {x 7→ s, y 7→ u} and {x 7→ t, y 7→ v}, it follows that

Jbs ucKR∞
= Jbt vcKR∞

indicating that E0
τ→υ is well defined.

It remains to show that E0
τ→υ is injective as a function from Uτ→υ to D↑τ −�→

D↑υ. Assume two wellformed ground ceiling terms s and t such that for all
wellformed ground ceiling terms u, we have Jbs ucKR∞

= Jbt ucKR∞
. By Lemma 21,

29

it follows that JbscKR∞
= JbtcKR∞

, which concludes the proof that E0
τ→υ is

injective.
We define D↑τ→υ and Eτ→υ as follows:

D↑τ→υ = E0
τ→υ(Uτ→υ)

Eτ→υ : Uτ→υ −�→ D↑τ→υ, a 7→ E0
τ→υ(a)

This ensures that Eτ→υ is bijective and concludes the inductive definition of D↑
and E . In the following, we will usually write E instead of Eτ , since the type τ
is determined by first argument of Eτ .

We define the ceiling universe as U↑ = {D↑τ | τ ground}. Moreover,

J ↑ty(κ)(D↑τ̄) = Uκ(τ̄) for all κ ∈ Σ↑ty

completing the type interpretation I↑ty = (U↑, J ↑ty).
We define the ceiling logic interpretation function as

J ↑(f,D↑ῡm) = E(J (f ῡm0))

for all f : Πᾱm. τ .
Finally, we need to define the designation function L , which takes a ceiling

logic valuation ξ and a λ-expression as arguments. Given a valuation ξ, we choose
a grounding substitution θξ such that

D↑αθξ = ξ(α) and E(JbxθξcKR∞
) = ξ(x)

for all variables x and all type variables α. Such a substitution can be constructed
as follows: We can fulfill the first equation in a unique way because there is
a one-to-one correspondence between ground types and ceiling domains. Since
E−1(ξ(x)) is an element of a floor domain and R∞ is term-generated, there is
a ground term t with JtKξR∞

= E−1(ξ(x)). Choosing one such t and defining
xθξ = dte gives us a grounding substitution θξ with the desired property.

We define
L(ξ, (λx. t)) = E(Jb(λx. t)θξcKR∞

)

To prove that this is well-defined, we assume that there is another substitution θ′ξ
with the properties D↑αθ′ξ = ξ(α) for all α and E(Jbxθ′ξcKR∞

) = ξ(x) for all x.
Then we have αθξ = αθ′ξ for all α due to the one-to-one correspondence of ceiling
domains and types. We have JbxθξcKR∞

= Jbxθ′ξcKR∞
for all x because E is

injective. By Lemma 22 it follows that Jb(λx. t)θξcKR∞
= Jb(λx. t)θ′ξcKR∞

, which
proves that L is well-defined.

This concludes the definition of the ceiling interpretation R↑∞ = (U↑, J ↑,L).
It remains to show that R↑∞ is proper. In a proper interpretation, the denotation
JtKR↑

∞
of a term t does not depend on the representative of t modulo βη, but

since we haven’t shown R↑∞ to be proper yet, we cannot rely on this. That is
why we use λ-terms in the following three lemmas and we mark all βη-reductions
explicitly.

The ceiling interpretation R↑∞ = (U↑, J ↑,L) relates to the floor interpretation
R∞ as follows:

30

Lemma 23. For all ground ceiling logic λ-terms t:

JtKR↑
∞

= E(Jbt↓βηcKR∞
)

Proof. By induction on t.
Assume that JsKR↑

∞
= E(Jbs↓βηcKR∞

) for all proper subterms s of t.
If t is of the form f〈τ̄〉, then

JtKR↑
∞

= J ↑(f,D↑τ̄)

= E(J (f0,Ubτ̄c))

= E(Jf0〈bτ̄c〉KR∞
)

= E(Jbf〈τ̄〉cKR∞
)

= E(Jbf〈τ̄〉↓βηcKR∞
) = E(Jbt↓βηcKR∞

)

If t is an application t = t1 t2, where t1 is of type τ → υ, then

Jt1 t2KR↑
∞

= Jt1KR↑
∞

(Jt2KR↑
∞

)
IH
= Eτ→υ(Jbt1↓βηcKR∞

)(Eτ (Jbt2↓βηcKR∞
))

Def E
= Eυ(Jbt1 t2↓βηcKR∞

)

If t is a λ-expression, then

Jλx. uKξR↑
∞

= L(ξ, (λx. u))

= E(Jb(λx. u)θξ ↓βηcKR∞
)

= E(Jbλx. u↓βηcKR∞
)

ut

We need to show that the interpretation R↑∞ = (U↑, J ↑,L) is proper. In
the proof, we will need to employ the following lemma, which is essentially
the well-known substitution lemma. This lemma holds in general for proper
interpretations [32, Section I.2.6.1], but we must prove it here for our particular
interpretation because we have not shown that our interpretation is proper yet.

Lemma 24 (Substitution lemma). For all ceiling logic λ-terms t, ceiling
types τ and grounding substitutions ρ:

JτρKI↑ty = JτKξ
I↑ty

and JtρKR↑
∞

= JtKξR↑
∞

where ξ(α) = JαρK
I↑ty

for all α and ξ(x) = JxρKR↑
∞

for all x.

Proof. First, we prove that JτρK
I↑ty

= JτKξ
I↑ty

by induction on the structure of τ . If
τ = α is a type variable,

JαρKI↑ty = ξ(α) = JαKξ
I↑ty

If τ = κ(ῡ) for some type constructor κ and types ῡ,

Jκ(ῡ)ρKI↑ty = Jty(κ)(JῡρKI↑ty)
IH
= Jty(κ)(JῡKξ

I↑ty
) = Jκ(ῡ)Kξ

I↑ty

31

Next, we prove JtρKR↑
∞

= JtKξR↑
∞

by induction on the structure of t. If t = y,
then by the definition of the denotation of a variable

JyρKR↑
∞

= ξ(y) = JyKξR↑
∞

If t = f〈τ̄〉, then by the definition of the term denotation

Jf〈τ̄〉ρKR↑
∞

= J ↑(f, Jτ̄ ρKI↑ty)
IH
= J ↑(f, Jτ̄Kξ

I↑ty
) = Jf〈τ̄〉KξR↑

∞

If t = u v, then by the definition of the term denotation

J(u v)ρKR↑
∞

= JuρKR↑
∞

(JvρKR↑
∞

)
IH
= JuKξR↑

∞
(JvKξR↑

∞
) = Ju vKξR↑

∞

If t is a lambda-expression:

J(λz. u)ρKR↑
∞

= J(λz. uρ′)KR↑
∞

where ρ′(z) = z and ρ′(x) = ρ(x) for x 6= z

= L(ξ′, (λz. uρ′)) by the definition of term denotation
where ξ′ is arbitrary

= E(Jb(λz. u)ρθξ′ ↓βηcKR∞
) by definition of L

= E(Jb(λz. u)ρ↓βηcKR∞
) because (λz. u)ρ is ground

∗
= L(ξ, λz. u) by definition of L and Lemma 23
= Jλz. uKξR↑

∞
by the definition of term denotation

The step (*) is justified as follows: By definition of L , L(ξ, λz.u) = E(Jb(λz. u)θξ ↓βηcKR∞
),

where θξ is a substitution such that D↑αθξ = ξ(α) for all α and E(Jbxθξ ↓βηcKR∞
) =

ξ(x) for all x. By the definition of ξ and by Lemma 23, ρ is such a substitution.
Hence, L(ξ, λz. u) = E(Jb(λz. u)ρ↓βηcKR∞

). ut

Lemma 25. The interpretation R↑∞ = (U↑, J ↑,L) is proper.

Proof. We have to show that J(λx. t)KξR↑
∞

(a) = JtKξ[x 7→a]
R↑

∞
for all λ-expressions

(λx. t), all substitutions ξ, and all a.

Jλx. tKξR↑
∞

(a) = L(ξ, λx. t)(a) by definition of J KR↑
∞

= E(Jb(λx. t)θξ ↓βηcKR∞
)(a) by definition of L

where E(JbzθξcKR∞
) = ξ(z) for all z

and D↑αθξ = ξ(α) for all α

= E(Jb(λx. t)θξ s↓βηcKR∞
) by definition of E

where E(JbscKR∞
) = a

= E(Jbt(θξ[x 7→ s])↓βηcKR∞
) by β-reduction

= Jt(θξ[x 7→ s])KR↑
∞

by Lemma 23
= JtKξ[x7→a]

R↑
∞

by Lemma 24

ut

32

Lemma 26. R↑∞ is a term-generated model of GΣ(N).

Proof. By Lemma 23, we have JtKR↑
∞

= E(JbtcKR∞
) for all ground ceiling logic

λ-terms t. By Lemma 25, this statement does not depend on the choice of
representative and hence holds also for βη-equivalence classes t. Since E is a
bijection, it follows that a ground (dis)equation [¬] s ≈ t is true in R↑∞ if and
only if b[¬] s ≈ tc is true in R∞. Hence, a ground clause C is true in R↑∞ if and
only if bCc is true in R∞.

By Lemma 20, R∞ is a model of bGΣ(N)c, i.e., all clauses bCc ∈ bGΣ(N)c
are true in R∞. Hence, all clauses C ∈ GΣ(N) are true in R↑∞ and therefore R↑∞
is a model of GΣ(N).

It remains to show that R↑∞ is term-generated. Let a ∈ D↑τ . Then E−1(a) ∈
Ubτc. Since R∞ is term-generated, we have a ground term t of the floor logic
with JtKR∞

= E−1(a). By Lemma 23, we have JdteKR↑
∞

= E(JtKR∞
) = a. Hence,

R↑∞ is term-generated. ut

Lemma 27. R↑∞ is a model of N.

Proof. Let C ∈ N . We want to show that C is true in R↑∞ for all valuations ξ.
Since R↑∞ is term-generated by Lemma 26, for each variable x, there is a ground
term sx such that JsxKR↑

∞
= ξ(x). Let ρ be the substitution that maps every free

variable x in C to sx. Then ξ(x) = JsxKR↑
∞

= JxρKξR↑
∞

for all x. By treating the
type variables of C in the same way, we can also achieve that ξ(α) = JαρKξ

I↑ty
for

all x. By Lemma 24, JtρKR↑
∞

= JtKξR↑
∞

for all terms t and JτρK
I↑ty

= JτKξ
I↑ty

for all
types τ . Hence, Cρ and C have the same truth value in R↑∞ for ξ. Since Cρ is
ground and therefore true in R↑∞ by Lemma 26, C is true as well. ut

We summarize the results of this section in the following theorem.

Theorem 28 (Refutational completeness). Let N be a clause set saturated
up to redundancy and containing the extensionality axiom. Then N has a model
if and only if ⊥ /∈ N .

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then
the interpretation R∞ (that is, T ∅Σ /R∞) is a model of bGΣ(N)c according to
part (iii) of Lemma 20. By Lemma 26, R↑∞ is a term-generated model of GΣ(N).
By Lemma 27, it is a model of N. ut

5 Extensions

The calculus can be extended to make it more practical. The familiar simpli-
fication machinery can be adapted to higher-order terms by considering green
contexts instead of arbitrary contexts. Optional inference rules provide lightweight
alternatives to the FluidSup rule and the extensionality axiom.

Two of the rules below are based on “orange subterms.” A λ-term t is an
orange subterm of a λ-term s if s = t; or if s = f〈τ̄〉 s̄ and t is an orange subterm
of si for some i; or if s = x s̄ and t is an orange subterm of si for some i; or if

33

s = (λx.u) and t is an orange subterm of u. In f (g a)(yb)(λx.hc(gx)), the orange
subterms include b, c, x, g x, h c (g x), and all the green subterms. Following
the convention introduced in Section 2.1, this notion is lifted to βη-equivalence
classes via representatives in η-short β-normal form. We write t = s<<x̄n. u>> to
indicate that u is an orange subterm of t, where x̄n are the variables bound in
the orange context around u. If n = 0, we write t = s<<u>>.

Once a term s<<x̄n. u>> has been introduced, we write s<<x̄n. u′>>η to denote
the same context with a different subterm u′ at that position. The η subscript
is a reminder that u′ is not necessarily an orange subterm of s<<x̄n. u′>>η due to
potential applications of η-reduction. For example, if s<<x. g x x>> = (λx. g x x),
then s<<x. f x>>η = (λx. f x) = f.

Demodulation, which destructively rewrites using an equality t ≈ t′, is avail-
able at green positions. A variant rewrites inside λ-expressions:

t ≈ t′ C<s<<x̄. tσ>>>
λDemodExt

t ≈ t′ C<s<<x̄. t′σ>>η> s<<x̄. tσ>> ≈ s<<x̄. t′σ>>η
where s<<x̄. tσ>>↓βη is a λ-expression or an applied variable. The term tσ may
refer to the bound variables x̄. Side condition: The second premise is larger than
(�) the second and third conclusion. This ensures that this premise is redundant
with respect to these conclusions and may be removed. The double bar indicates
that the conclusions collectively make the premises redundant and can replace
them. The third conclusion, which is entailed by the extensionality axiom and
t ≈ t′, can be omitted if the corresponding extensionality axiom instance, for
λx. s<<x̄. tσ>> and λx. s<<x̄. t′σ>>η, is smaller than the second premise. An instance
of the rule, where g z is rewritten to f z z under a λ binder, follows:

g x ≈ f x x k (λz. h (g z)) ≈ c
λDemodExt

g x ≈ f x x k (λz. h (f z z)) ≈ c (λz. h (g z)) ≈ (λz. h (f z z))

Lemma 29. λDemodExt is sound and preserves refutational completeness of
our calculus.

Proof. Soundness of the first conclusion is obvious. Soundness of the second and
third conclusion follows from congruence using the two premises.

Preservation of completeness is justified by redundancy. In particular, we
must justify the deletion of the second premise by showing that it is redundant
with respect to the conclusions. By definition, it is redundant if for every ground
instance C<s<<x̄. tσ>>>θ ∈ GΣ(C<s<<x̄. tσ>>>), its floor encoding bC<s<<x̄. tσ>>>θc
is entailed by bGΣ(N)c, where N are the conclusions of λDemodExt.

The first conclusion cannot help us to prove redundancy because s<<x̄.tσ>>θ↓βη
might be a λ-expression and then bs<<x̄. tσ>>θc is a constant that is completely un-
related to btσθc in the floor logic. Instead, we use the θ-instances of the second and
the third conclusion. By Lemma 8, bC<s<<x̄. t′σ>>η>θc has subterm bs<<x̄. t′σ>>ηθc.

34

If this subterm is replaced by bs<<x̄. tσ>>θc, we obtain bC<s<<x̄. tσ>>>θc. Thus,
the floor encoding of the θ-instances of the second and the third conclusion entail
the floor encoding of the θ-instance of the second premise by congruence. Due to
the side condition that the second premise is larger than the second and third
conclusion, by stability under substitutions, the θ-instances of the second and
the third conclusion must be smaller than the θ-instance of the second premise.
This shows that the second premise is redundant and can be removed. ut

The next simplification rule can be used to prune arguments to variables
that can be expressed as functions of the remaining arguments. For example, the
clause C[y a b (f b a), y b d (f d b)], in which y occurs twice, can be simplified to
C[y′ a b, y′ b d]. The rule can also be used to remove the repeated arguments in
y b b 6≈ y a a, the static argument a in y a c 6≈ y a b, and all four arguments in
y a b 6≈ z b d. It is stated as

C
PruneArg

C{y 7→ (λx̄j . y
′ x̄j−1)}

where y′ is a fresh variable, the minimum number k of arguments passed to
any occurrence of y in the clause C ↓βη is at least j, and there exists a term t
containing no variables bound in the clause such that sj = t s̄j−1 sj+1 . . . sk for all
terms of the form y s̄k occurring in the clause. For example, clauses with a static
argument correspond to the case t := (λx̄j−1 xj+1 . . . xk. u), where u is the static
argument (containing no variables bound in t) and j is its index in y’s argument
list. The repeated argument case corresponds to t := (λx̄j−1xj+1 . . . xk. xi) where
i is the index of the repeated argument’s mate.

Lemma 30. PruneArg is sound and preserves refutational completeness of
our calculus.

Proof. The rule is sound because it simply applies a substitution to C. It preserves
completeness of our calculus because the premise is redundant with respect to the
conclusion. This is because the sets of ground instances of premise and conclusion
are the same. Let

ρ = {y′ 7→ (λx̄j−1 xj+1 . . . xk. y x̄j−1 (t x̄j−1 xj+1 . . . xk) xj+1 . . . xk)}

We will show that C{y 7→ (λx̄j . y
′ x̄j−1)}ρ = C, which proves that the sets of

ground instances of premise and conclusion are the same. Consider an occurrence
of y in C. By the side conditions of PruneArg, any occurrence will have the
form y s̄k (with possibly more irrelevant arguments after that), where sj =
t s̄j−1 sj+1 . . . sk. Hence,

(y s̄k){y 7→ (λx̄j . y
′ x̄j−1)}ρ = (y′ s̄j−1 sj+1 . . . sk)ρ

= y s̄j−1 (t s̄j−1 sj+1 . . . sk) sj+1 . . . sk

= y s̄k

Therefore, C{y 7→ (λx̄j . y
′ x̄j−1)}ρ = C, which is what we needed to show. ut

35

We created an algorithm that efficiently computes the correct value for term
t in the definition of PruneArg. The algorithm will not find all possible values
for the term t, but our informal tests show that it manages to discover most cases
of prunable arguments that occur in practice.

The algorithm works by maintaining the mapping from functional variables
and the indices of their expected arguments to the set of terms describing the ways
i-th argument can be expressed using the remaining ones. For each occurence of a
functional variable, set of terms expressing an argument using only the remaining
ones is computed. Those sets are then intersected to determine whether there
exists a t from the definition of PruneArg. Variables bound outside the scope
of the occurence of the free variable are replaced by skolems that correspond to
the de Bruijn index of the bound variable, for uniform handling of constants and
loosely bound variables. For example, the occurence λ.x 0 a (λ.f 0) is skolemized
to λ.x sk0 a (λ.f 0).

The following example clarifies the way in which the algorithm works. Suppose
that x a (fa) b and λ.x 0 (f0) b are the only occurrences of the variable x. If we
enumerate the arguments of x with 2,1 and 0 (following de Bruijn notation) and
take ω to be the set of all terms that can be created for given signature, initial
mapping is:

2 1 0
x ω ω ω

After computing the ways each argument can be computed using the remaining
ones for the first occurence and intersecting the sets we get:

2 1 0
x {a} {f a, f 2} {b}

Lastly, after computing the corresponding sets for the second occurence we
get

2 1 0
x ∅ {f 2} {b}

Final value of the mapping shows us we can remove argument 1, since it
functionally depends on argument 2. Similarly, we can remove argument 0, since
its value is always b. Note that once the argument is removed, every occurence
of it in the values of the mapping should be removed as well.

36

Following the literature [35, 62], we provide a rule for negative extensionality:

C ∨ s 6≈ s′
NegExt

C ∨ s (sk〈ᾱm〉 ȳn) 6≈ s′ (sk〈ᾱm〉 ȳn)

where sk is a fresh n-ary Skolem symbol, ᾱm, ȳn are the type and term variables
occurring free in the the literal s 6≈ s′, and s 6≈ s′ is eligible in the premise.
Negative extensionality can also be applied as a simplification rule to all literals
in the initial problem.

The next rule aims at creating opportunities for applying NegExt:

C ∨ s[ūn] 6≈ s[ū′n]
NegCongFun

C ∨
∨
j uj 6≈ u′j

Side conditions: The shared context s[] is maximal, the type of at least one uj
is a function or a type variable, and s[ūn] 6≈ s[ū′n] is eligible in the premise.

One reason why the extensionality axiom is so prolific is that both sides of its
maximal literal, y (diff〈α, β〉y z) 6≈ z (diff〈α, β〉y z), are fluid terms. An incomplete
alternative is to omit the axiom and instead generate less explosive instances
dynamically, based on the unapplied functions that occur at green positions in
the problem. The rule is stated as

D<t> C<s>
ExtInst

(t (diff〈α, β〉 t s) 6≈ s (diff〈α, β〉 t s) ∨ t ≈ s)σ

where s, t are neither fluid nor variables, and σ is the most general unifier of
s’s and t’s types and α→ β, for fresh α, β. Moreover, the following restrictions
apply, mimicking the unification performed by the calculus’s core inference rules:
(1) t occurs in a literal of the form t ≈ t′ and Sup’s conditions 5 to 9 are met;
or (2) C<s> = D<t>, the terms s and t occur as subterms at the same green
position p on opposite sides of the same literal, and EqRes’s order restriction
is satisfied for that literal; or (3) C<s> = D<t>, the terms s and t occur in
different literals of the forms s ≈ v′ and t ≈ v, and EqFact’s order and eligibility
restrictions are satisfied for u′ := s and u := t. Intuitively, ExtInst generates
extensionality instances that might help repair unification mismatches in the
core rules. This approach is complete for first-order problems, since they do not
need extensionality, and might be complete for other interesting fragments (e.g.,
second-order logic or ground higher-order logic).

Superposition can be generalized to orange subterms as follows:

D′ ∨ t ≈ t′ C ′ ∨ [¬] s<<x̄. u>> ≈ s′
λSup

(D′ ∨ C ′ ∨ [¬] s<<x̄. t′>>η ≈ s′)σρ
Sup’s side conditions apply. We also require that x̄σ = x̄ and that the variables
x̄ do not occur in yσ for all variables y in u. Moreover, let Py = {y} for all type
and term variables y 6∈ x̄. For each i, let Pxi be recursively defined as the union

37

of all Py such that y occurs free in the λ-expression that binds xi in s<<x̄. u>>σ or
that occurs free in the corresponding subterm of s<<x̄. t′>>ησ. The substitution ρ
is defined as {xi 7→ ski〈ᾱi〉 ȳi for each i}, where ȳi are the term variables in Pxi
and ᾱi are the type variables in Pxi and the type variables occurring in the type
of the λ-expression binding xi. This substitution introduces Skolem terms to
represent bound variables that would otherwise escape their binders. The rule
can be justified in terms of paramodulation and extensionality, with the Skolem
terms standing for diff terms. An instance of the rule follows:

n ≈ zero ∨ div n n ≈ one prod K (λk. div (succ k) (succ k)) 6≈ one
λSup

succ sk ≈ zero ∨ prod K (λk. one) 6≈ one

Intuitively, the term prod K (λk. u) is intended to denote the product
∏
k∈K u,

where k ranges over a finite set K of natural numbers.

Lemma 31. λSup is satisfiability-preserving.

Proof. Let N be a clause set and E be the conclusion of a λSup inference from
N. It suffices to show that if N is satisfiable, then N ∪ {E} is satisfiable, because
the converse is trivial. Let I1 be a model of N. We need to construct a model of
N ∪ {E}. By the definition of models, the extensionality axiom holds in I1:

I1 |= y (diff〈α, β〉y z) 6≈ z (diff〈α, β〉y z) ∨ y ≈ z

In the following, we will omit the type arguments of diff, since they can be derived
from the type of the arguments.

For each i, let vi be the λ-expression binding xi in the term s<<x̄. u>>σ in the
λSup rule. Let v′i the corresponding term, in which the relevant occurrence of
uσ is replaced by t′σ. We define a substitution π recursively as

xiπ = diff (viπ) (v′iπ) for all i

We extend the model I1 further to a model I2, interpreting the symbol ski
such that I2 |= ski〈ᾱi〉 ȳi ≈ diff (viπ) (v′iπ) for each i. The arguments of ski have
been defined to coincide with the free type and term variables in diff (viπ) (v′iπ),
allowing us to extend I1 to I2 in this way.

By assumption, the premises of our λSup inference are true in I1 and hence
in I2. We want to show that the conclusion (D′ ∨ C ′ ∨ [¬] s<<x̄. t′>>η ≈ s′)σρ is
also true in I2. Let ξ be a valuation. If I2, ξ |= (D′ ∨ C ′)σρ, we are done. So we
assume that D′σρ and C ′σρ are false in I2 under ξ. In the following, we omit
‘I2, ξ |=’, but all equations (≈) are meant to be true in I2 under ξ.

Assuming D′σρ and C ′σρ are false, the premises imply that tσρ ≈ t′σρ
and [¬] s<<x̄. u>>σρ ≈ s′σρ. Due to the way we extended I1 to I2, we have
I2 |= wπ ≈ wρ for any term w. Hence, we have tσπ ≈ t′σπ. By congruence, this
and tσ = uσ imply that vkπ (diff (vkπ) (v′kπ)) ≈ v′kπ (diff (vkπ) (v′kπ)), where k
is the length of the tuple x̄, i.e., vk is the innermost λ-expression surrounding u.
The extensionality axiom then implies vkπ ≈ v′kπ.

38

It follows directly from the definition of π that for all i

viπ (diff (viπ) (v′iπ)) = si<<vi+1π>>
v′iπ (diff (viπ) (v′iπ)) = si<<v′i+1π>>

for some context si<< >>. The subterms vi+1π of si<<vi+1π>> and v′i+1π of si<<v′i+1π>>
may be below applied variables but not below λ-expressions. Since substitutions
avoid capture, in vi and v′i, π only substitutes xj with j < i, but in vi+1 and v′i+1,
it substitutes all xj with j ≤ i. By an induction using these equations, congruence
and the extensionality axiom, we can derive from vkπ ≈ v′kπ that v1π ≈ v′1π.
Since I2 |= wπ ≈ wρ for any term w, we have v1ρ ≈ v′1ρ. By congruence, it
follows that s<<x̄. u>>σρ ≈ s<<x̄. t′>>ησρ. With [¬] s<<x̄. u>>σρ ≈ s′σρ, it follows
that ([¬] s<<x̄. t′>>η ≈ s′)σρ.

Hence, the conclusion of the λSup inference is true in I2. ut

Finally, duplicating superposition is a lightweight alternative to FluidSup:

D′ ∨ t ≈ t′ C ′ ∨ [¬] s<y ūn> ≈ s′
DupSup

(D′ ∨ C ′ ∨ [¬] s<z ūn t′> ≈ s′)ρσ
where n ≥ 1, ρ = {y 7→ λx̄n. z x̄n (w x̄n)}, and σ ∈ CSU(t, w ūnρ) for fresh
variables w, z. The order and eligibility restrictions are as for Sup. The rule
can be understood as the composition of an inference that applies ρ and of a
paramodulation inference into the subterm w ūnρ of s<z ūnρ (w ūnρ)>. DupSup
is general enough to replace FluidSup in Examples 4 and 5 but not in Exam-
ple 6. We conjecture that DupSup, in conjunction with an extended Sup rule
that considers the green subterms of ūn, constitutes a complete alternative to
FluidSup for fluid subterms of the form y ūn if the types of t, all uj , and y ūn
are not functions or type variables.

6 Implementation

Zipperposition [27,28] is an open source superposition prover written in OCaml.2
Originally designed for polymorphic first-order logic (TF1 [20]), it was later
extended with an incomplete higher-order mode based on pattern unification [51].
Bentkamp et al. [11] extended it further with a complete λ-free higher-order
mode. As a prototype, we have now implemented a Boolean-free higher-order
mode based on our calculus.

We use a metaorder induced by a λ-free KBO [9]. We use weight 1 for lam
and dbi with the precedence lam � · · · � dbk � · · · � db1 � db0. We currently
use � as the nonstrict term order but could improve precision by employing a
more precise computable approximation of %.

Except for FluidSup, the core calculus rules already existed in Zipperposition
in a similar form. To retrieve candidate right premises for FluidSup, we created
2 https://github.com/c-cube/zipperposition

39

https://github.com/c-cube/zipperposition

an index of all fluid green subterms in the active clause set. Among the proposed
higher-order optional rules, we implemented NegExt, λSup, a mildly incomplete
variant of λDemodExt without the third conclusion, and a variant of the Prune-
Arg rule that removes most functional dependencies that occur in practice.

For unification, we started with Jensen and Pietrzykowski’s procedure [39].
The procedure is not ideal because it computes a nonminimal set of unifiers; for
example, given the flex–flex constraint y a

?
= z b, it generates not only the most

general unifier {y 7→ (λw. y′ w b), z 7→ y′ a} but also infinitely many superfluous
unifiers. It is not clear whether Snyder and Gallier’s procedure [61] would behave
better. To support polymorphism, we extended Jensen and Pietrzykowski’s
projection rule to check type unifiability instead of equality and their iteration
rule to consider the possibility that a type variable is instantiated with a function
type. On the other hand, polymorphism allows us to avoid the enumeration of
types in the iteration rule.

To interleave the unification with other computation, our unification procedure
returns a possibly infinite stream of subsingletons (sets of cardinality 0 or 1)
computed on demand. It can even cope with nonterminating unification problems
that do not yield any unifiers, by representing them as an infinite stream of empty
sets. We use this procedure for inference rules, keeping simpler pattern-style
unification for simplification rules. The inference rules turn the possibly infinite
streams of unifiers into possibly infinite streams of clauses—the conclusions of
inferences. To consume these streams fairly while giving flexibility to heuristics,
we designed a priority queue that associates a weight with each stream. This
queue is used in the main given clause loop to store new streams resulting from
inferences and to extract clauses, which are then moved to the passive clause set.

The implemented heuristic extracts as many clauses from the stream queue as
there are streams in the queue. In the first order case all streams have exactly one
element and will hence be worked off immediately, yielding a graceful strategy. In
addition, to ensure fairness of both heuristics, every sixth iteration of the main
loop, a clause is extracted from all streams in the queue (The number 6 was
arbitrarily chosen). During the other five iterations, the heuristic proceeds in the
following way: determine the stream with the lowest weight and extract a clause
from it; increase the stream weight by a penalty and put it back in the queue;
repeat until you have enough clauses or no stream remains in the queue. Empty
streams are discarded.

The penalty used to increase the stream weight when a clause is extracted is
1 for most streams, but higher for streams resulting from FluidSup inferences
to tame the explosion of this rule. Moreover, clauses such as the extensionality
clause can also carry a penalty, which decreases the chances of being selected as
the given clause. This clause penalty is passed on to streams and clauses when
performing inferences.

Based on informal experiments, we developed or tuned a few general heuris-
tics of Zipperposition. Definition unfolding, in conjunction with β-reduction,
transforms many higher-order TPTP problems into first-order problems. We
also modified KBO’s weight generation scheme to take symbol frequencies into

40

account and modified other heuristics to prioritize clauses containing symbols
present in the conjecture.

7 Evaluation

We evaluated our prototype implementation of the calculus in Zipperposition with
other higher-order provers and with Zipperposition’s modes for less expressive
logics. All of the experiments presented in this section were performed on StarExec
nodes equipped with Intel Xeon E5-2609 0 CPUs clocked at 2.40GHz. Provers
were invoked with a CPU time limit of 300 s. The raw data are available online.3

We used both standard TPTP benchmarks [63] and Sledgehammer-generated
benchmarks. From the TPTP, we selected all 709 TFF (monomorphic and poly-
morphic first-order) problems without arithmetic and all 597 TH0 (monomorphic
higher-order) problems without first-class Booleans and arithmetic. We parti-
tioned the TH0 problems into those containing no λs (TH0λf, 545 problems)
and those containing λs (TH0λ, 52 problems). The Sledgehammer benchmarks,
corresponding to Isabelle’s Judgment Day suite [23], were regenerated to target
Boolean-free higher-order logic. They comprise 1253 problems, divided in two
groups based on the number of Isabelle facts (lemmas, definitions, etc.) selected
for inclusion in each problem: either 256 (SH256) or 16 facts (SH16). Each group
is further divided into two subgroups based on the processing of λ-expressions:
SH256-λ and SH16-λ preserve λ-expressions, whereas SH256-ll and SH16-ll en-
code them as λ-lifted supercombinators [50] to make the problems accessible to
λ-free higher-order provers.

We chose Leo-III 1.3 and Satallax 3.3 as representatives of the state of the
art. These are cooperative higher-order provers that can be set up to regularly
invoke first-order provers as terminal proof procedures. Leo-III can be used on its
own or as a metaprover (Leo-III-meta) with CVC4, E, and iProver as backends.
Satallax can be used on its own or as a metaprover (Satallax-meta) with E. We
also included Ehoh [66], the λ-free higher-order mode of E 2.3. For Zipperposition,
we included its first-order and λ-free modes (FOZip and λfreeZip) as well as
a mode that performs an applicative encoding [66, Section 2] before invoking
the first-order mode (@+FOZip). We experimented with three variants of our
calculus implementation. λZip-full is designed to be refutationally complete. λZip-
pragmatic disables FluidSup and the extensionality axiom, and uses a lightweight
higher-order unification algorithm instead of Jensen and Pietrzykowski’s proce-
dure. Finally, λZip-competitive is a variant of λZip-pragmatic that is further
tuned for small problems requiring a substantial amount of higher-order reasoning.

A summary of our experiments is presented in Figure 1. To enhance read-
ability, we highlight in bold the winning system for each column excluding the
metaprovers. We observe that Leo-III-meta emerges as winner on all benchmark
sets, but λZip-pragmatic and λZip-competitive compare very well with Leo-III
and Satallax. In contrast, λZip-full cannot seem to keep its FluidSup rule and ex-
tensionality under control. More research into heuristics design appears necessary.
3 http://matryoshka.gforge.inria.fr/pubs/lamsup_results.tgz

41

http://matryoshka.gforge.inria.fr/pubs/lamsup_results.tgz

TFF TH0λf TH0λ SH256-ll SH16-ll SH256-λ SH16-λ

Leo-III 85 387 42 234 323 228 338
Satallax – 400 42 495 371 516 384
Ehoh – 396 – 671 397 – –
FOZip 238 – – – – – –
@+FOZip 194 398 – 495 389 – –
λfreeZip 233 401 – 603 401 – –
λZip-full 178 388 27 394 351 385 348
λZip-pragmatic 227 416 27 560 386 567 387
λZip-competitive 216 418 40 413 351 399 357

Leo-III-meta 252 438 44 706 412 688 416
Satallax-meta – 427 42 491 372 513 385

Figure 1: Number of proved problems

It is disappointing that on Sledgehammer problems (SH256 and SH16), we
obtain better performance by using λfreeZip with λ-lifting than using λZip with
native λs. On TH0λf problems, the situation is reversed. This seems to suggest
that λ reasoning is rarely needed for Sledgehammer problems. Clearly, this is
another area where research into heuristics design could be beneficial.

8 Discussion and Related Work

Bentkamp et al. [11] introduced four calculi for λ-free higher-order logic organized
along two axes: intensional versus extensional, and nonpurifying versus purifying.
The purifying calculi flatten the clauses containing applied variables, thereby
eliminating the need for superposition into variables. As we extended their work
to support λs, we found the purification approach problematic and quickly gave it
up because it needs x to be smaller than xt, which is impossible to achieve with a
term order on βη-equivalence classes. We also gave up our attempt at supporting
intensional higher-order logic. Extensionality is the norm for higher-order unifica-
tion [31] and is employed in the TPTP THF format [64] and in proof assistants
such as HOL4, HOL Light, Isabelle/HOL, Lean, Nuprl, and PVS. Bentkamp et
al. viewed their approach as “a stepping stone towards full higher-order logic.”
It already included a notion analogous to green subterms and an ArgCong rule,
which help cope with the complications occasioned by β-reduction.

Our superposition calculus joins the family of proof systems for higher-order
logic. Closely related are Andrews’s higher-order resolution [1], Huet’s constrained
resolution [37], Jensen and Pietrzykowski’s ω-resolution [39], Snyder’s higher-
order E-resolution [60], Benzmüller and Kohlhase’s extensional higher-order
resolution [14], and Benzmüller’s higher-order unordered paramodulation and
RUE resolution [13]. A noteworthy variant is Steen and Benzmüller’s higher-order
ordered paramodulation [62], whose order restrictions undermine refutational
completeness but yield good empirical results. Other approaches are based on

42

analytic tableaux [7,44,45,56], connections [2], sequents [48], and satisfiability
modulo theories [8]. Andrews [3] and Benzmüller and Miller [15] provide excellent
surveys of higher-order automation.

The main advantage of our calculus is that it gracefully generalizes the highly
successful first-order superposition rules without sacrificing refutational complete-
ness. It also includes a powerful simplification rule, PruneArg, that could be
useful in other provers. Among the drawbacks of our approach are the need to
solve flex–flex pairs eagerly and the explosion caused by the extensionality axiom.
We believe that this is a reasonable trade-off, especially for large problems with a
substantial first-order component, such as those originating from proof assistants.

Our prototype λZipperposition joins the league of higher-order automatic
theorem provers. We briefly list some of its rivals. TPS [4] is based on the
connection method and expansion proofs. LEO [14] and Leo-II [17] implement
variants of RUE resolution. Leo-III [62] is based on higher-order paramodulation.
Satallax [24] implements a higher-order tableau calculus guided by a SAT solver.
Leo-II, Leo-III, and recent versions of Satallax integrate first-order provers as
terminal procedures. AgsyHOL [48] is based on a focused sequent calculus guided
by narrowing. Finally, there is ongoing work by the developers of CVC4, veriT,
and Vampire to extend their provers to higher-order logic [8, 18].

Half a century ago, Robinson [57] proposed to reduce higher-order logic to
first-order logic via a translation. Tools such as Sledgehammer [55], MizAR [65],
HOLyHammer [43], and CoqHammer [29] have since popularized this approach
in proof assistants. Such translations must eliminate the λ-expressions, typically
using SKBCI combinators or λ-lifting [50], and encode typing information [19].
Most translations are implemented outside provers, but hybrid approaches are
also possible [30]. For example, the Vampire developers are experimenting with a
combinator-based representation of higher-order unifiers [18], which would allow
them to reuse most first-order data structures and algorithms unchanged.

9 Conclusion

We presented a superposition calculus for a Boolean-free fragment of extensional
polymorphic higher-order logic. With the notable exception of a functional exten-
sionality axiom, it gracefully generalizes standard superposition. Our prototype
prover Zipperposition shows promising results on TPTP and Isabelle benchmarks.
In future work, we plan to pursue five main avenues of investigation.

We first plan to extend the calculus to support Booleans and Hilbert choice.
Booleans are notoriously explosive. We want to experiment with both axiomati-
zations and native support in the calculus. Native support would likely take the
form of a primitive substitution rule that enumerates predicate instantiations [2],
delayed clausification rules [33], and rules for reasoning about Hilbert choice.

We want to investigate techniques to curb the explosion caused by functional
extensionality. The extensionality axiom reintroduces the search space explosion
that the calculus’s order restrictions aim at avoiding. Maybe we can replace it by
more restricted inference rules without compromising refutational completeness.

43

We will also look into approaches to curb the explosion caused by higher-order
unification. Our calculus suffers because it needs to solve flex–flex pairs. Existing
procedures [39, 61] enumerate redundant unifiers. This can probably be avoided
to some extent. It could also be interesting to investigate unification algorithms
that would delay imitation/projection choices via special schematic variables,
inspired by Libal’s concise representation of regular unifiers [47].

We clearly need to fine-tune and develop heuristics. We expect heuristics to be
a fruitful area for future research in higher-order reasoning. Proof assistants are
an inexhaustible source of easy-looking benchmarks that are beyond the power
of today’s provers. Whereas “hard higher-order” may remain forever out of reach,
there is a substantial “easy higher-order” fragment that awaits automation.

Finally, we plan to implement the calculus in a state-of-the-art prover. A
suitable basis for an optimized implementation of our calculus would be Ehoh, the
λ-free higher-order version of the E prover developed by Vukmirović et al. [66].

Acknowledgment. Simon Cruanes patiently explained Zipperposition’s internals and
allowed us to continue the development of his prover. Christoph Benzmüller and Alex-
ander Steen shared insights and examples with us, guiding us through the literature
and clarifying how the Leos work. Maria Paola Bonacina and Nicolas Peltier gave us
some ideas on how to treat the extensionality axiom as a theory axiom, ideas we have
yet to explore. Mathias Fleury helped us set up regression tests for Zipperposition.
Ahmed Bhayat, Tomer Libal, and Enrico Tassi shared their insights on higher-order
unification. Andrei Popescu and Dmitriy Traytel explained the terminology surrounding
the λ-calculus. Haniel Barbosa, Daniel El Ouraoui, Pascal Fontaine, and Hans-Jörg
Schurr were involved in many stimulating discussions. Christoph Weidenbach made
this collaboration possible. Ahmed Bhayat, Mark Summerfield, and the anonymous
reviewers suggested several textual improvements. We thank them all.

Bentkamp, Blanchette, and Vukmirović’s research has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 713999, Matryoshka). Bentkamp and
Blanchette also benefited from the Netherlands Organization for Scientific Research
(NWO) Incidental Financial Support scheme. Blanchette has received funding from the
NWO under the Vidi program (project No. 016.Vidi.189.037, Lean Forward).

References

[1] Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
[2] Andrews, P.B.: On connections and higher-order logic. J. Autom. Reason. 5(3),

257–291 (1989)
[3] Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.)

Handbook of Automated Reasoning, vol. II, pp. 965–1007. Elsevier and MIT Press
(2001)

[4] Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A
theorem-proving system for classical type theory. J. Autom. Reason. 16(3), 321–353
(1996)

[5] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with
selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)

44

[6] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–99. Elsevier
and MIT Press (2001)

[7] Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J.
Autom. Reason. 47(4), 451–479 (2011)

[8] Barbosa, H., Reynolds, A., Fontaine, P., Ouraoui, D.E., Tinelli, C.: Higher-order
SMT solving (work in progress). In: Dimitrova, R., D’Silva, V. (eds.) SMT 2018
(2018)

[9] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix
order for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-26. LNCS,
vol. 10395, pp. 432–453. Springer (2017)

[10] Bentkamp, A.: Formalization of the embedding path order for lambda-free higher-
order terms. Archive of Formal Proofs (2018), http://isa-afp.org/entries/
Lambda_Free_EPO.html

[11] Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
lambda-free higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS, vol. 10900, pp. 28–46. Springer (2018)

[12] Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
lambda-free higher-order logic (technical report). Technical report (2018), http:
//matryoshka.gforge.inria.fr/pubs/lfhosup_report.pdf

[13] Benzmüller, C.: Extensional higher-order paramodulation and RUE-resolution. In:
Ganzinger, H. (ed.) CADE-16. LNCS, vol. 1632, pp. 399–413. Springer (1999)

[14] Benzmüller, C., Kohlhase, M.: Extensional higher-order resolution. In: Kirchner,
C., Kirchner, H. (eds.) CADE-15. LNCS, vol. 1421, pp. 56–71. Springer (1998)

[15] Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H.
(ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254.
Elsevier (2014)

[16] Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type
theory. Log. J. IGPL 18(6), 881–892 (2010)

[17] Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover
Leo-II. J. Autom. Reason. 55(4), 389–404 (2015)

[18] Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: Konev, B.,
Urban, J., Rümmer, P. (eds.) PAAR-2018. CEUR Workshop Proceedings, vol.
2162, pp. 2–16. CEUR-WS.org (2018)

[19] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic
and polymorphic types. Log. Meth. Comput. Sci. 12(4) (2016)

[20] Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with
rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE-24. LNCS, vol. 7898, pp.
414–420. Springer (2013)

[21] Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive
path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203,
pp. 461–479. Springer (2017)

[22] Blanqui, F., Jouannaud, J.P., Rubio, A.: The computability path ordering. Log.
Meth. Comput. Sci. 11(4) (2015)

[23] Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer (2010)

[24] Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer (2012)

[25] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church–Rosser theorem.
Indag. Math 75(5), 381–392 (1972)

45

http://isa-afp.org/entries/Lambda_Free_EPO.html
http://isa-afp.org/entries/Lambda_Free_EPO.html
http://matryoshka.gforge.inria.fr/pubs/lfhosup_report.pdf
http://matryoshka.gforge.inria.fr/pubs/lfhosup_report.pdf

[26] Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688
(2003)

[27] Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induc-
tion, and Beyond. Ph.D. thesis, École polytechnique (2015)

[28] Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS, vol. 10483, pp. 172–188. Springer (2017)

[29] Czajka, Ł., Kaliszyk, C.: Hammer for Coq: Automation for dependent type theory
(2018)

[30] Dougherty, D.J.: Higher-order unification via combinators. Theor. Comput. Sci.
114(2), 273–298 (1993)

[31] Dowek, G.: Higher-order unification and matching. In: Robinson, J.A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1009–1062. Elsevier and
MIT Press (2001)

[32] Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer (2002)
[33] Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed

clause normal form transformation. Information and Computation 199(1–2), 3–23
(2005)

[34] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press (1993)

[35] Gupta, A., Kovács, L., Kragl, B., Voronkov, A.: Extensional crisis and proving
identity. In: Cassez, F., Raskin, J. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 185–200.
Springer (2014)

[36] Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)
[37] Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI-73. pp.

139–146. William Kaufmann (1973)
[38] Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput.

Sci. 1(1), 27–57 (1975)
[39] Jensen, D.C., Pietrzykowski, T.: Mechanizing ω-order type theory through unifica-

tion. Theor. Comput. Sci. 3(2), 123–171 (1976)
[40] Jouannaud, J.P., Rubio, A.: Rewrite orderings for higher-order terms in eta-long

beta-normal form and recursive path ordering. Theor. Comput. Sci. 208(1–2),
33–58 (1998)

[41] Jouannaud, J.P., Rubio, A.: Polymorphic higher-order recursive path orderings. J.
ACM 54(1), 2:1–2:48 (2007)

[42] Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: The TPTP typed higher-order form with
rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR-2016.
CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

[43] Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light.
Math. Comput. Sci. 9(1), 5–22 (2015)

[44] Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Hähnle, R., Posegga, J.
(eds.) TABLEAUX ’95. LNCS, vol. 918, pp. 294–309. Springer (1995)

[45] Konrad, K.: HOT: A concurrent automated theorem prover based on higher-order
tableaux. In: Grundy, J., Newey, M.C. (eds.) TPHOLs ’98. LNCS, vol. 1479, pp.
245–261. Springer (1998)

[46] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer (2013)

[47] Libal, T.: Regular patterns in second-order unification. In: Felty, A.P., Middeldorp,
A. (eds.) CADE-25. LNCS, vol. 9195, pp. 557–571. Springer (2015)

[48] Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur,
D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 61–75. Springer
(2014)

46

[49] Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor.
Comput. Sci. 192(1), 3–29 (1998)

[50] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35–60 (2008)

[51] Miller, D.: A logic programming language with lambda-abstraction, function
variables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

[52] Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370
(1987)

[53] Nieuwenhuis, R., Rubio, A.: Basic superposition is complete. In: Krieg-Brückner,
B. (ed.) ESOP ’92. LNCS, vol. 582, pp. 371–389. Springer (1992)

[54] Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443.
Elsevier and MIT Press (2001)

[55] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe,
G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair
(2012)

[56] Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 4, pp. 151–170. Edinburgh University Press (1969)

[57] Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie, D.
(eds.) Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press (1970)

[58] Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bach-
mair and Ganzinger’s ordered resolution prover. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS, vol. 10900, pp. 89–107. Springer (2018)

[59] Schulz, S.: System description: E 1.8. In: McMillan, K.L., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 735–743. Springer (2013)

[60] Snyder, W.: Higher order E-unification. In: Stickel, M.E. (ed.) CADE-10. LNCS,
vol. 449, pp. 573–587. Springer (1990)

[61] Snyder, W., Gallier, J.H.: Higher-order unification revisited: Complete sets of
transformations. J. Symb. Comput. 8(1/2), 101–140 (1989)

[62] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS, vol. 10900, pp. 108–116.
Springer (2018)

[63] Sutcliffe, G.: The TPTP problem library and associated infrastructure—from CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

[64] Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development
of automated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.)
CADE-22. LNCS, vol. 5663, pp. 116–130. Springer (2009)

[65] Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

[66] Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, Springer (2019)

[67] Waldmann, U.: Automated reasoning II. Lecture notes, Max-Planck-Institut
für Informatik (2016), http://resources.mpi-inf.mpg.de/departments/rg1/
teaching/autrea2-ss16/script-current.pdf

[68] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
140–145. Springer (2009)

47

http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf

	Superposition with Lambdas (Technical Report)
	1 Introduction
	2 Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Skolemization
	2.4 Axiomatization of Booleans

	3 The Calculus
	3.1 Term Order
	3.2 The Inference Rules
	3.3 Rationale for the Rules
	3.4 Redundancy Criterion

	4 Refutational Completeness
	4.1 Outline of the Proof
	4.2 Candidate Interpretation
	4.3 Lifting Lemmas
	4.4 Construction of the First-Order Model
	4.5 Construction of the Higher-Order Model

	5 Extensions
	6 Implementation
	7 Evaluation
	8 Discussion and Related Work
	9 Conclusion

