MACHINE LEARNING FOR INSTANCE SELECTION IN SMT SOLVING

DANIEL EL OURAOUI®, JASMIN BLANCHETTE > ®, PASCAL FONTAINE ¢ ®,
AND CEZARY KALISZYK ®

“ CLEARSY, Paris, France
e-mail address: daniel.el-ouraoui@clearsy.com

®Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
e-mail address: j.c.blanchette@vu.nl

¢ Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
e-mail address: jasmin.blanchette@inria.fr

4 University of Liége, Liége, Belgium
e-mail address: Pascal.FontaineQuliege.be

¢ University of Innsbruck, Innsbruck, Austria
e-mail address: cezary.kaliszyk@uibk.ac.at

ABSTRACT. Satisfiability modulo theories (SMT) solvers are powerful tools used to check
specifications of critical systems and to discharge proof obligations in proof assistants. For
many such applications, quantifiers are necessary to express the problems. SMT solvers
often fail to find proofs when many quantifiers occur in the input problem. To support
quantifiers, SMT solvers rely on instantiation, and use heuristic techniques to generate
instances. Often, thousands of instances are generated, and since the vast majority of them
are useless, they impede the solver.

In this article, we use machine learning to predict the usefulness of an instance to
decrease the number of instances generated and processed by the SMT solver. To this
end, we propose a meaningful way to characterize the state of an SMT solver, we collect
instantiation learning data, and we integrate a predictor in the core of a modern SMT
solver. This ultimately leads to more efficient SMT solving for quantified problems. To
our best knowledge, this is the first use of machine learning for instance selection in the
context of SMT.

1. INTRODUCTION

Formal verification is a mean to ensure safety of computer programs and complex systems
such as in transport, hardware design, and energy. Verification methods rely heavily on
mathematical and logical methods to formally reason about the behavior of these systems.
In particular, satisfiability modulo theories (SMT) solvers are often used as backends to
discharge the numerous formulas emerging from verification. SMT solvers are able to check the
satisfiability of large logical formulas written in expressive languages containing uninterpreted
symbols as well as interpreted operators for various theories, such as arithmetic symbols and
data-structure handling operators.

Preprint submitted to © D. El Ouraoui, J. Blanchette, P. Fontaine, and C. Kaliszyk
Logical Methods in Computer Science @ Creative Commons

https://orcid.org/0000-0002-8367-0936
https://orcid.org/0000-0003-4700-6031
https://orcid.org/0000-0002-8273-6059
http://creativecommons.org/about/licenses

2 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

SMT solvers particularly excel at dealing with ground (i.e., quantifier-free) formulas.
When proof obligations contain quantified formulas, SMT solvers rely on instantiation,
replacing quantified subformulas by sets of ground instances handled by the ground solver
at the core of the SMT solver. Four main quantifier instantiation techniques have been
developed: enumerative [RBF18|, trigger-based [dMBO07,DNS05], conflict-based [RTdM14],
and model-based [GAMO09]. Among these, only conflict-based instantiation computes instances
that are guaranteed to be relevant (i.e., conflicting instances). It is, however, incomplete and
must be used in combination with other methods. The three other techniques are highly
heuristic and generate a large number of useless instances. As a result, the solver’s search
space explodes. Quickly finding the right instances—that is, reducing the number of useless
instances given to the ground solver—is imperative if we want to substantially improve the
solver’s efficiency.

Machine learning techniques have already been successfully used to guide the search
in automated reasoning, notably for premise selection in first-order automatic theorem
provers [JU17,PU18|. Here we propose, for the first time, to use machine learning to improve
quantifier instantiation within an SMT solver, veriT. A predictor is invoked after each
instantiation round to evaluate the potential usefulness of each generated instance. Based on
the prediction, instances are either given to the ground solver, delayed, or discarded. Since
quantifier instantiation involves thousands of instances for problems that should be solved by
the solver within a few seconds, the predictor needs to be fast. We opted for the XGBoost
toolkit [CG16] with the binary classification objective. We propose and implemented features
that are meaningful for SMT solving (Section 4.2). The instantiation problem must be
encoded to apply machine learning to it (Section 4.3). For a successful integration of machine
learning into the SMT instantiation procedure, it is necessary to fine-tune when, where, and
to what extent it is used (Section 4.6).

We conducted our experiments in veriT [BAODFO09| (Section 5). The solver implements
the instantiation techniques mentioned above except model-based instantiation. We provide
the solver including the machine learning aspect, with source code, under a permissive license.
Our experimental evaluation exhibits that the number of generated instances is substantially
decreased using this approach. We furthermore show that our prototype implementation
leads to an increased success rate on problems from the SMT-LIB (the reference library
of SMT problems), allowing our prototype implementation in veriT to match in efficiency,
after learning, the best provers according to recent SMT-COMP results. The approach is
exclusively developed for unsatisfiable benchmarks. This means that the problems available
for learning are essentially the unsatisfiable problems from the SMT-LIB that are already
within the solving capability of the veriT SMT solver.

A preliminary version of this work was presented at the AITP workshop 2019 [BOFK19|.

2. BACKGROUND

2.1. Notations. The logic used in the context of SMT is first-order logic with equality. We
assume the reader is familiar with the notions of function, predicate, term, (quantified and
ground) formula, literal, free variable, and substitution. The notation a,, denotes the tuple

!The reviewers can access the file here https://github.com/delouraoui/these/blob/main/veriTML. tar.
xz. A Zenodo repository with all software and data related to this document will be referred here in the final
version of this article.

https://github.com/delouraoui/these/blob/main/veriTML.tar.xz
https://github.com/delouraoui/these/blob/main/veriTML.tar.xz

ML FOR INSTANCE SELECTION IN SMT 3

(a1,...,an) with n > 0. We also write a when n is clear from the context. We use the symbol
= for syntactic equality on terms and ~ for the equality predicate. The names a,b,c,f, g, p
are reserved for function symbols; P, R for predicate symbols; x,y, z for variables; r, s,t,u
for terms; and ¢, 1) for formulas. The symbol = denotes logical entailment. The notation
t[Z,,] stands for a term whose free variables are included in the tuple of distinct variables Z,,.
Then ¢[8,] is the ground term obtained by simultaneously substituting §,, for Z, in ¢. If x is
a vector, x[i] stands for the ith element of the vector.

J

P
Ground solver

Instances —>
/ /Conflict C|aUSE\
Instantiation Theory solver SAT solver
module

\Assignmenk; Boolean model

-

-

FIGURE 1. The classic SMT core architecture

2.2. SMT. A general introduction to SMT can be found in Barrett et al. [BSST09]. Briefly,
the core of an SMT solver (Figure 1) is a propositional satisfiability (SAT) solver [BHvMWO09|
extended to more expressive logics with a theory solver. The input formula is abstracted to a
Boolean formula, given to the SAT solver. The SAT solver provides a model for this Boolean
abstraction, and the corresponding literals are checked for satisfiability by the theory solver.
This architecture allows the theory solver to check the satisfiability of a conjunctive set of
literals rather than arbitrary Boolean combinations. If the set of literals is unsatisfiable, the
Boolean abstraction is refined through the addition of a propositional conflict clause to the
SAT solver, and the process is repeated. If the set of literals is satisfiable, then the input
formula is also satisfiable and a model can be output. If the theory is decidable, the theory
solver always terminates, and if we further assume that conflict clauses contain only abstract
Boolean variables from the input formula, the whole process eventually terminates, after the
addition of a finite number of conflict clauses. If the formula is unsatisfiable, a proof can be
provided.

Example 1. Consider a quantifier-free first-order formula
a~bA (f(a) #f(b) vV (R(a) A —|R(b))).
When given as input to an SMT solver, it is abstracted into the propositional formula

Pamb A (TPf(a)~f(b) V (PR(a) A “PR(B)))

where py denotes the Boolean abstraction of the atom £. The embedded SAT solver might
provide a first propositional model, satisfying pa~p and —pga)~f(p)- Since the set of literals
{a~b,f(a) #£f(b)} is unsatisfiable, the theory reasoner would then inform the SAT solver
that this model is unacceptable by adding conjunctively to the original formula a conflict
clause —pa~p V Pi(a)~fi(b)- Neat, the SAT solver would provide another propositional model,
now satisfying Pa~b, PR(a), and “PReb), that would be refuted by the theory reasoner through
the addition of yet another conflict clause —pa~b V PRy V PR(b)- Finally, the SAT solver
would conclude that the formula is unsatisfiable.

4 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

The above process describes the internals of an SMT solver for a decidable theory and for
quantifier-free problems—that is, the ground SMT solver. If the ground formula is satisfiable,
the ground solver comes up with a satisfiable conjunction of literals.

When formulas contain quantifiers, these quantified formulas are also abstracted as
Boolean propositions. Dealing with them requires another feedback loop around the ground
solver.

2.3. Instantiation in SMT. Quantifier reasoning is handled by an additional layer (on
the left of Figure 1), called the instantiation module. It is built on top of the ground
SMT architecture described above. The ground SMT solver only sees a quantifier-free
abstraction of the input—that is, the input where the quantified formulas are abstracted to
fresh propositional formulas, after Skolemization.

The instantiation module in SMT is based on the foundational works of Skolem and
Herbrand. Briefly, in refutation mode Skolemization makes it possible to remove in a
satisfiability-preserving way all quantifiers with an existential meaning through the introduc-
tion of witnesses—i.e., fresh Skolem constants and functions. The other kind of quantifiers
can be removed thanks to Herbrand theory, which states that a first-order Skolem formula is
unsatisfiable if and only if there is a finite unsatisfiable conjunctive set of Herbrand instances.
An Herbrand instance of a formula Vzy ... x,. p[Z,] is ¢[s,], where 5, is a tuple of arbitrary
ground terms built using the symbols available in the formula. We refer to classical logic
introductory books (e.g., Fitting [Fit90]) for a detailed presentation of Skolem and Herbrand
theory.

In the context of SMT, the ground solver first produces a ground first-order assignment
where quantified formulas appear as propositions. Then the instantiation module provides
instances of the quantified formulas with terms from the Herbrand universe, which consists of
all possible ground terms in the formula’s signature. These instances will refine the ground
abstraction of the formula, and the process is repeated. Formally, given a set of ground
literals E (the ground assignment) and a set of quantified formulas @, the instantiation
problem consists of finding a set of ground instances H of @) such that EUH = L. Thisis a
semidecidable problem in pure first-order logic with equality.

Example 2. Consider the ground assignment E = {=P(a),-R(b),R(a)} and the quantified
formula ¢ = Va.P(x)V—R(x). The instantiation problem consists of finding a set of instances
H of ¢ that is inconsistent together with E. Since the only terms in the Herbrand universe
are a and b, Herbrand theory tells us that it is sufficient to consider H to comprise the two
ground instances P(a) V =R(a) and P(b) V =R(b). Actually, the ground instance P(a) V =R(a)
1s conflicting. This sole instance together with E leads to a contradiction, whereas the other
mstance is useless.

Many approaches have been developed to tackle the instantiation problem, including enu-
merative [RBF18|, trigger-based [dMB07, DNS05], and conflict-based [RTdM14] instantiation.
We will briefly describe them below, since they are relevant for our work and experimental
evaluation. We will not discuss model-based quantifier instantiation [GAMO09|, since usually
it can advantageously be replaced by a combination of the other approaches, especially if the
objective is to refute formulas [RBF18|.

ML FOR INSTANCE SELECTION IN SMT 5

Enumerative instantiation. Thanks to Herbrand theory, any quantified formula V. ¢[z]
can be seen as an infinite conjunction /\, ¥ [t] over all Herbrand terms ¢. Then the compactness
theorem states that there is always a finite unsatisfiable subset for any unsatisfiable set
of formulas. Thus, to get a complete method, it suffices to blindly but fairly enumerate
Herbrand instances to address the problem of instantiation.

Trigger-based instantiation. Rather than blindly instantiating using arbitrary Herbrand
terms, trigger-based instantiation extracts sets of patterns (terms with free variables) from
quantified formulas. These patterns, called triggers, are matched with ground terms belonging
to F, and the corresponding instances are generated. For example, consider the formula
V. f(g(z)) ~ x. A suitable trigger is f(g(x)). With such a trigger, trigger-based instantiation
would generate an instance with « — ¢ when matched with £ = {a ~ f(b), b ~ g(c)}, since
f(g(c)) implicitly belongs to the terms used in E. Several strategies have been developed to
efficiently select and match triggers [{MBO07, DNS05, DCKP16, BRK15].

Conflict-based instantiation. Reynolds et al. [RTdM14] introduced conflict-based instanti-
ation to improve the performance of SMT solvers on quantified unsatisfiable problems. This
approach repeatedly considers each quantified formula VZ. ¢ in @ and checks for the existence
of a substitution o for the set of variables Z such that E' = —po. These substitutions can be
found using the congruence closure with free variables algorithm [BFR17|. In Example 2, the
formula P(a) V —R(a) is a conflicting instance and would be obtained from E and ¢ using
the algorithm.

The veriT solver implements the three instantiation methods described above. It first
tries conflict-based instantiation; if this fails, it tries trigger-based instantiation; and if this
also fails, it resorts to enumerative instantiation.

Conflict-based instantiation always produces useful instances that contradict the assign-
ment set E. On the other hand, it can only find conflicts with one clause at a time. In other
words, if it is necessary to use two or more instances to contradict an assignment F, finding
those instances is beyond the scope of the method. Completeness requires using trigger-based
and enumerative instantiation, but they are highly prolific and often lead the ground solver
into a large search tree by adding many new instances and terms, most of them irrelevant.

3. THE QUEST FOR RELEVANT INSTANCES

Trigger-based and enumerative-based instantiation are highly heuristic and generate a large
number of instances. If the number of instances grows, the number of ground assignments
and their size also grow. The task of instantiation may consequently become even more
complicated due to this amount of irrelevant information. Reducing the number of irrelevant
instances at the source prevents this effect, leading to improvements in efficiency and
increasing the number of solved problems. We investigate machine learning for this purpose.

Supervised learning needs a set of clearly labeled examples as training set. To figure out
if an instance is relevant—that is, if it is useful to solve the problem—the proof produced by
the solver can be analyzed a posteriori. The veriT solver produces fine-grained proofs. It is
easy to prune these proofs of all the lemmas or generated instances that do not really play a
role in deducing the unsatisfiability. By inspecting a proof, it is thus possible and inexpensive
to determine which instances were useful. This is an approximation, because an instance

6 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

might not appear as essential in a proof, although there might exists another proof in which
the same instance is relevant. The approximation has the benefit of being inexpensive.

Comparing the number of instances produced in a typical run of the solver and the ones
appearing in the pruned proof, only around 10% of the produced instances are part of the
pruned proof, and only 1%, are generated by conflict-based instantiation. This means that
around as few as 10% of the instances added by the instantiation module are actually useful.
A good classifier would eliminate some of the 90% of useless generated instances.

Let us illustrate this on a simple problem—a simplified version of the SMT-LIB benchmark
UF/misc/set10.smt2—that will also serve as a running example.

Example 3. Consider the following set of axioms, where the LI,MN, C, € are uninterpreted
symbols abstractly representing union, intersection, inclusion, and membership, respectively,
and are written in infix notation:

o1 =Vayz. (reyNyCz)=z €z
2 =Vay. ~(zCy)=3z.2€x Nz ¢y
w3 = Vayz. (reylUz)~(xeyVa € z)

Let us further fiz a set of ground literals E = {—((alUb) C c¢),a C ¢,b C c}, where a,b,c are
constant symbols, and a set of quantified formulas Q = {1, 2, p3}. We want to solve the
instantiation problem E'U H |= L, where H is the set of ground instances of Q that must be
generated.

Table 1 enumerates the instantiation rounds that would take place in the veriT solver,
leading to a contradiction. The second column provides the set of literals in an assignment
produced by the ground solver at round i, and the third column specifies the quantified
formula from Q instantiated using the substitutions in the last column. The instances with
substitutions 011 and o132 are conflict-based; all others are generated by either trigger or
enumeration-based instantiation. The instances associated with o are formulas with one
quantifier that is subsequently Skolemized. The constant sk comes from the Skolemization
of w2 after instantiation with oo3. For simplicity, we do not mention the other Skolem
constants that are generated for the other, useless instances. Rounds 8 and 4 are induced
by a branching of the solver on the literal sk € b. As a result, at round 4, conflict-based
instantiation produces the instance sk € b Ab C ¢ = sk € ¢, making the problem inconsistent
at the ground level.

TABLE 1. Instantiation rounds of £ U Q)

Round i Literals E; Formula Substitution
0’271:{1"—>a,y'—>c}
1 {-((@aub)Cc),aCc, b c} V2 022 ={x— b, y—c}

0273:{x'—>al_|b,y'ﬁc}
o4 ={x+—a, y—c}
o35 ={x+—b, y—c}
o926 ={x+—alb, y— c}
©3 031 = {x +— sk, y+—a, z— b}
3 EyU{~(sk € b), sk € a} 1 o110 ={z sk, y—a, z—c}
4 EsU{sk € b, =(sk € a)} 1 o12={x sk, y—b, z+—c}

2 | FBiu{ske (alb), ~(skec)}t| #?

ML FOR INSTANCE SELECTION IN SMT 7

Looking at the instances column on the right, we can observe that some instances are
redundant (094, 025, 026) or useless (02,1, 022) to solve the problem. A pruned proof would
contain only instances 023, 031, 01,2, and o1,1. An ideal instantiation module would thus
only instantiate the formulas in Table 2.

While it is fairly easy to filter out redundant instances, simply by checking whether the
instance has already been added to the ground solver, recognizing and discarding irrelevant
instances is a difficult task. We next show how to train and use a machine learning model to
detect irrelevant instances.

4. A LEARNING APPROACH TO INSTANTIATION

To successfully use machine learning algorithms in our new context, we need to overcome a
few difficulties. First, the training data is very unbalanced, since there are ten times more
irrelevant instances than relevant ones. Second, the machine learning method will have to
learn from a small number of examples, around 100000 examples extracted from a small
set of problems. Essentially, the training set is reduced to the problems available in the
SMT-LIB repository of benchmarks. Third, the prediction should be inexpensive, so that it
can be quickly applied to the large number of generated instances.

Among the many available supervised machine learning algorithms, boosted decision
trees [CG16] seem to be particularly appropriate for the above context and have already
proved helpful in other theorem proving settings [JU17,PU18|. We describe here how the
predictor is trained to guide the instance selection inside veriT.

4.1. Encoding SMT as a classification problem. Traditional machine learning algorithms
work on features—numeric values that characterize the inputs. The role of the learning
algorithm is essentially to identify and classify regions of this space of features. The features
are the crucial elements linking the application to the machine learning algorithm. Applying
such machine learning algorithms to new applications thus boils down to adequately represent
the knowledge of the application using vectors of features in a Euclidean space and finding
appropriate parameters for the algorithms. In other words, the goal of the features is to
provide a representation that is as faithful as possible, to link the original application to the
input of the machine learning technique. Being faithful is not always possible, due to many
technical reasons. For example, there is no discrete approach to faithfully encode first-order
logic formulas. The issue is that there is no uniform representation that makes it possible to
establish an equivalence between two formulas under renaming.

Ideally, to reduce overfitting, it might seem more appropriate to approximate the problem
by taking abstract quantities such as the depth and size of terms or the used symbols as
features, rather than the terms as they appear in the problem. Unfortunately, after multiple

TABLE 2. Pruned instantiation rounds of £ U @)

Round i Literals E; Formula Substitution
1 {=((aub)Cc),aCc, b c} 2 o3 ={x—alb, y—c}
2 EiU{sk € (alb), =(skec)} 3 031 = {x +— sk, y+—a, z— b}
3 EyU{~(sk € b), sk € a} 1 o110 ={z sk, y—a, z—c}
4 EyU{sk € b, =(sk € a)} 01 o12={x sk, y—b, z+—c}

8 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

attempts, we could find no effective combination of such quantities during our experiments.
Therefore, we have chosen to use a hybrid approach based mainly on syntactic encoding as
well as on a combination of abstract quantities. In the following subsection, we develop this
idea further and suggest an approach to encode the SMT formulas as integer vectors.

4.2. Designing features. The characterization of instantiation problems via feature vectors
for the learning algorithm requires preliminary modeling work. The role of the learning
algorithm is essentially to partition the feature space into regions. The features are the
crucial elements linking the application—here, the instantiation problem in SMT—to the
learning algorithm. Previous work [KUV15] in the context of automatic proof studied various
types of features which have notably been used in combination with learning approaches
based on decision trees [PU18|.

Although effective, these approaches cannot directly be used for SMT solvers, since they
are mainly developed for prover architectures based on saturation systems, such as tableaux
and superposition. Because the architecture of SMT solvers is quite far from these solvers, it
is necessary to rethink the modeling of the problem, while taking inspiration from previous
studies. The features developed in this work are more specifically inspired from those used
in ENIGMA [JU17] and rlCoP [KUMO18|. This section presents the encoding of terms,
formulas, and satisfiable instances of the original problem into a feature vector space, to be
processed by the classifier.

An SMT solver such as veriT works on terms of first-order logic, which are internally
represented as directed acyclic graphs (dags). This representation saves memory and simplifies
some algorithms. Duplicated subterms share the same memory space. In short, dags are a
kind of compressed representation of abstract syntax trees.

The instantiation problem is essentially expressed with terms of first-order logic. Thus,
to inform the learning algorithm for SMT instantiation, it is necessary to represent those
terms in an appropriate way for the learning algorithm. This step is not trivial, since it
essentially means dags representing terms must be encoded into integer vectors of a priori
fixed size. In this representation, the particular function and predicate symbols used in terms
will in some way play an important role.

Learning methods based on syntactic term encoding appear to be effective when problem
benchmarks use a domain of coherent symbols. That is, the problem family sticks to a set of
common symbols, and there are no (or very few) multiple definitions of the same notions
with various symbols in a problem family. This is the case for formulas stemming from proof
assistants such as Isabelle and Mizar. Since this is our main target application domain, we
believe sensitivity to renaming is an acceptable drawback of our approach.

Our encoding is based on sets of sequences of symbols extracted from each term in the
input problem. These symbol sequences correspond to the symbols met in the subtraversals
from root to leafs of the syntax tree representation of terms. It appears experimentally that
the best results are obtained by computing the feature vectors based on sequences of lengths
one, two, and three. This experimental observation corroborates the works of Jakubtv and
Urban [JU17|, who use sequences of length three only.

Each of the obtained sequences represents a feature, and the number of occurrences of a
sequence is the value associated with the feature. The classifier might consider a sequence
appearing several times as more important than a sequence appearing just once. For example,
encoding the term f(a, b) results in the feature set f,a, b, (f,a), (f,b).

ML FOR INSTANCE SELECTION IN SMT 9

/\ N\
x/ \sk ®/ \G)

FIGURE 2. Tree representation of the literal (z Lisk) C ¢
g g
f f f

f
z Y ® ®

FIGURE 3. Tree representation of the literal g (f x) (f y)

The names of variable and Skolem symbols are not really meaningful. Therefore, our
encoding abstracts variables with a specific ® symbol and Skolem symbols with ©. The
examples below illustrate the encoding for terms of first-order logic.

Example 4. Figure 2 shows the tree representation of the term (x Usk) C ¢ where x is a
variable and sk is a Skolem symbol. The tree on the left is the original term, and the tree
on the right is the processed tree, after replacing variables and Skolem constants by their
respective placeholders.

Table 3 shows the extracted features from this term together with their value. The first
column provides the length of the term traversals. The value is the number of times the
sequence of symbols appears in all subtraversals of length at most three.

Example 5. Figure 3 presents the tree representing the term g (f x) (f y), before and after
processing. Table 4 lists the features and their values.

TABLE 3. Features of the tree of Figure 2

Length | Feature | Value
C 5
L 3
1 O] 3
® 2
(C,u) 2
(C,c) 1
2 (U, ®) 1
U,0) 1
3 (E7|_|7 ®) 1
C,00)] 1

10 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

The size of the feature vectors is fixed; our experience has shown that vectors with a
dimension around 2 MB constitute a good compromise. This size allows us to store enough
features for the problems encountered in our experiments, this parameter can be reevaluated
for different problems.

To transform each sequence of symbols—that is, each feature—into an index into the
feature vector, we use the djb2 hash function:

Int64 djb2(char *str)

{
unsigned long hash = 5381;
int c;
while (c = *str++)
hash = ((hash << 5) + hash) + c;
return hash;
}

The function allows us to associate with each symbol a natural integer. The transformation
of symbol sequences into features is calculated by the recursive formula

1
Up+1 = Un * knJr + Sn,

where n ranges from 0 to 2, u, the prefix of u,41 of length n, k is a large prime number,
and s, is the hash value of the nth symbol of the sequence. In the case of a sequence fy of
length 1, the calculated feature corresponds to the hash value of the symbol modulo the
size of the vector. For a sequence (fo, f1) of length 2, we calculate the feature as follows:
u; = hash(fy) * k& + hash(f1). And the calculation of a sequence (fy, f1, f2) of length 3 is
up * k% + hash(fz). Once the calculation is finished, each feature is brought back in the
dimension of the vectors space by applying the modulo operator.

In practice, the features space is segmented so that features from, for example, the set of
ground literals F, the instances, or abstract quantities (e.g., size and depths of terms) are
distinguished from each other. For this purpose, a simple offset is used when calculating
the features. For example if the sequence u; is extracted from the set £ of equations, we
add a fixed offset, di, multiplied by a certain interval: u; + dj * 262139 PF2DEQO: is that
important besides the fact that it is a large integer? DEO2PF: Yes to reduce clash with
encoding. Greater is the integer more sequences you can encode x PF2CK: This is a prime

TABLE 4. Features of the tree of Figure 3

Length | Feature | Value
C 5
L 3
! O] 3
® 2
(C,u) 2
9 (C,c) 1
(U, ®) 1
U, 0) 1
3 (E7|_|7®) 1
C,00)] 1

ML FOR INSTANCE SELECTION IN SMT 11

number, again why is that a good choice? Otherwise, if the sequence comes from an instance,
then the offset value will be different. This trick allows us to partition each vector so that the
machine learning algorithm can identify the source of the information. In the next section
we look in more detail at the modeling of the problem of instantiation in SMT. PF2DEO,
PF2CK: this section is a mystery to me, there are too many magical numbers and it is not
explained what is important about those numbers (e.g. large prime, near 23!,...). The mod
stuff seemed applied at the wrong places. I do not understand why multiplying by a large
prime number is useful. Edit: Daniel and I simplified a bit, but I am still not totally at ease
with it. Cesary if you see how we can purify, please tell us.

4.3. Problem description. The features described in the previous section form the basis
of the machine learning approach for the SMT instantiation problem. The input of the
instantiation module is essentially a ground model—i.e., a set E of literals that satisfy
the ground part of the formula and a set Q of quantified formulas. The instantiation
module considers the various quantified formulas ¥[Z,] in @, and possibly computes some
substitution o = Z,, +— ¢, corresponding to a generated instance ¥[Z,|o = ¢[t,]. For the
learning algorithm, the relevant feature vector is

(features(F), features(¢[Z,)), features(Z, — t,))

where the function features translates into a vector of features the relevant input elements
for the instantiation module as well as the result. The core idea here is to inform the learning
algorithm of the input and the result of each instantiation task, as well as whether it was
fruitful.

In practice, each feature vector has a fixed length, usually a large natural number
(Section 4.2). Most vectors computed for an instance contain only a small subset of symbol
sequences. A sparse vector would seem to be an ideal representation, because only the
nonzero values of the vector are stored, in a lossless way. Although this representation rather
faithfully translates the state of the solver for an instantiation task, it appears in practice to
still be too expensive. Too much information is recorded, and as a consequence, large models
are produced by the learning algorithm. Because of these large models, the learning phase is
very expensive, and even worse, the prediction is also expensive.

To reduce the amount of information, we only consider the triggers (Section 2.3) associated
with the quantified formula instead of the whole quantified formula ¥[Z,]. Thus, in Example 3,
instead of considering the entire formula w9 = Vay. =(x Cy) = Jz. 2 € z A z ¢ y, only its
trigger =(x C y) is considered. Note that even for enumerative instantiation, we use the
triggers as suitable extracts of formulas for the purpose of computing features. Moreover,
rather than taking into account all the terms in F, we select only one element per congruence
class according to E. In other words, if two terms ¢; and to are such that F = t; ~ to, only
one is selected, namely, the representative of the congruence class in the congruence closure
algorithm. This new representation of the state allows us to associate with each instance
produced by the instantiation module a vector of features of considerably reduced size and
that encapsulates the essential information to perform quantifier instantiation.

To improve the classifier predictions, some amount of abstract information about the
structure of the terms is added to each feature vector. More specifically, for each state, we
compute the size, the average and maximum depth of the terms appearing in the substitution,
the number of Skolem constants, the total number of terms, the number of triggers, the
average depth of the triggers and the terms related to the substitution as well as the sum of

12 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

TABLE 7. The features for
the triggers in Example 6

TABLE 5. The features for
the substitution in

Example 6
ID | Feature | Value
ID | Feature | Value 5 ® 2
1 a 1 9 - 1
2 C 1 7 C 1
8| (-,0C) 2
9| (C,®) 2
TABLE 6. The features for 0] (~C,®) 2
the equal terms in
Example 6
ID | Feature | Value
3 a 1
4 C 1

the sizes of the equivalence classes in E of each term of the substitution. The example below
illustrates concretely the characterization of the state in the feature vector.

Example 6. Consider the instance 021 from Ezample 3. The quantified formula is @2, and
the substitution is 091 represented by Table 5. There are no equalities in Ey1. Thus, there
are mo other terms equal to a or ¢ according to Eq. The feature vector corresponding to
the literals, presented in Table 6, contains only features for a and c. PF2DEQO: I do not
understand that. There are many terms in Ey... DFEOZPF: The only term you can use for
instanciation here are the terms in table 4... PF2DEQ: Why so? Nothing prevents you
to use a Ub, that also appears in Ey, right? DEO2PF: Ok, after reading again the paper,
I think I remember what I wanted to say. I wanted to say that there is only "a" single in
its equivalent class and "c" single in its class. Then there are only these two terms that can
be chosen modulo equality? But for example, if we had a = ¢, for example, we would have
only one value "a" with value 2 (as in example 7) in the table 4. Is it clearer now...? ...
PF2DEQO: we are getting close: why don’t we have a b as a term somewhere Notice that
Tables 5 and 6 differ by the feature identifiers, since the IDs for the substitution part and
for the literals part are disjoint (Section 4.2). The only trigger in w2 is =(z C y), shown in
Table 7. The feature vector is thus made up of all Tables 5 to 7, together with the abstract
features mentioned above.

Example 7. To illustrate the features corresponding to literals, consider now the second
round of Example 3, but assume that literals a ~ sk and b % a also belong to Fy. The

TABLE 9. The features of

TABLE 8. The features of .
the equal terms in

the disequal terms in

Example 7 Example 7
ID | Feature | Value ID | Feature | Value
3 a 2
11 a 1 y c 7
12 b 1 73 5 7

ML FOR INSTANCE SELECTION IN SMT 13

terms equal to substituted terms yield the features in Table 9 because of the equality a ~ sk.
Furthermore, there is now one disequality which produces the features in Table 8. The trigger
table is as in the previous example.

4.4. Machine learning. Machine learning algorithms are tools based on mathematical and
statistical approaches. Initially developed to solve a wide range of problems from observations,
these approaches make it possible to learn tasks without having any real prior knowledge
of the application domain. The machine learning process generally comprises two phases.
The first one is called the learning phase, when a predictive model is built from a finite set
of observations. In our context, this consists of collecting examples of instances as defined
in the previous section, annotate them as useful or useless, and then train the algorithm
to build a predictive model from these observations. The second phase is the evaluation or
prediction phase, when the predictive model built in the learning phase is used as a classifier
to evaluate new observations.

Predictions can be of two kinds. We may want to use the machine learning algorithm as
a classification engine, where each observation must be assigned to a class. In the training
phase, observations are given together with the class they actually belong to. Alternatively,
we may want the machine learning algorithm to predict the value of some function associated
with the observation. In the training phase, observations are given together with the value of
the function.

Depending on the available data, some learning methods are more suitable than others. If
the set of annotated observations is sufficiently large, it is possible to use a supervised learning
approach. The most popular learning methods that use this principle are the support vector
machine approach [CL11, Vap00|, the k nearest neighbor method, artificial neural network
systems (also called deep learning when they are composed of several sublayers) [LBH15],
decision trees |[DP09], and boosting [FSA99]|. We settled for boosted decision trees [CG16].

Another popular method in machine learning is reinforcement learning. This approach
is based on a reward system. Each choice made by the algorithm is evaluated by a reward
function, which judges the right choices positively. This approach is unsupervised—i.e., no
prior observation is necessary. The system is embedded in the program, or the application,
and is designed to learn the “best” decisions dynamically, throughout its execution. A very
well-known example of this approach is AlphaGo [SSST17|, known for having beaten in May
2017 the go champion Ke Jie after playing a large number of virtual games. This approach
has also been successfully integrated into the leanCoP [OB03] automatic prover, resulting in
the rlCoP [KUMOL18] prover which, after several uses, starts overperforming the nonlearning
prover.

Thus, whatever the objective, or the type of application of the machine learning method,
it is essential to have a large number of different observations. The better the examples
are, the more accurate and efficient the produced model will be to perform predictions on
new observations. A predictive model is said to generalize the problem if it gives correct
answers based on a wide range of new observations. On the contrary, we want to avoid
overfitting, a phenomenon that tends to occur when the training set of observations is too
small or too specific. In case of overfitting, the obtained model is very good on the train set
of observations, but the predictions on new observations are poor.

14 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

max_size =1 ‘

ﬂ» nb_symb_E > 2 ‘

ﬂ»‘ nb_symb = 3
t
NN nb_sk >=1

true
false

R—

false

FIGURE 4. A decision tree

4.5. Decision trees. In this article, we use a supervised learning approach, based on decision
trees. More precisely we use the XGBoost [CG16| algorithm, which is a relatively sophisticated
approach combining two learning methods: decision trees and boosting. Moreover, the learning
process is improved by a gradient descent approach to optimize the search for predictive
models. We provide here, without going into details, an intuition on the internals of this
algorithm.

Overall, decision trees are simple probabilistic tools that allow us to make a choice
according to several factors. The trees are composed of nodes, branches, and leaves. Each
node describes the distribution of the random variable to be predicted PF2ALL: I am not
at all easy with “Each node of the tree describes the distribution of the random variable to
be predicted”, but I need somebody more comfortable with Al and stats to fix this. Cezary?,
each branch corresponds to a choice, and each leaf corresponds to a value for the prediction.
PF2ALL: I do not understand this sentence, I suggest removing: There are as many branches
as there are values to predict. The tree is then built according to the observations in the
training set. Here, we want to predict if a particular instance is useful or not. For this,
we build a binary tree, whose depth depends on the number of features collected in the
observations.

Example 8. To predict an instance usefulness, we could for example rely on the mazximum
size max_size of the terms obtained in the substitution, the number nb_symb_E of symbols
that appear in E, the number nb_symb of different symbols, and the number nb_sk of Skolem
symbols. These features are simplistic but will help us explain how decision trees work. Assume
we have the decision tree in Figure 4, and we want to predict the usefulness of instance w209 1
of Example 3. We compute the features for w2021 and get max_size = 1, nb_symb_E = 2,
nb_symb = 2, PF2DFEQO: is it??? DFEO2PF: no you right, nb_symb the number of ground
symbols is 3 {a, b, ¢} PF2DEQO: I am still confused: in nb_symb_E, nb_symb don’t you
count also the nary symbols like U and nb_sk = 0. Following the path in the tree in Figure 4,
we reach a leaf labeled by 0 and conclude that the instance po021 is not useful.

ML FOR INSTANCE SELECTION IN SMT 15

The particularity of the XGBoost algorithm is that it does not build a single tree but
several. This is the boosting principle, which is based on the following hypothesis: A set
of weak classifiers gives us a strong classifier. A weak classifier is a classifier that alone is
not capable of producing usable predictions; by contrast, a strong classifier is a classifier
capable of interpreting the entire feature domain of the input problem. Generally, each
classifier is specialized on a restricted subdomain of features. However, when several of these
classifiers are combined, the boosting principle states that the interpretation of the sum of
these predictions is more efficient than that of a single strong classifier. In practice, the
prediction is thus obtained through a voting system between the classifiers. In the XGBoost
algorithm, each weak classifier is a decision tree.

The XGBoost algorithm relies on a gradient descent to optimize each tree produced
during the training phase, making the predictions of each new tree forest increasingly accurate
while learning. For more details, we refer to the original XGBoost paper [CG16| and to the
seminal paper on random forests [Bre01].

4.6. Integrating the predictor into veriT. The previous subsection explains how the
XGBoost learning algorithm works. In this subsection, we will focus on the integration of
the algorithm into veriT.

Evaluating usefulness. The predictive model produced by the XGBoost algorithm is a
collection of decision trees. The accuracy of the predictions depends on two parameters:
the first is the depth of each of these trees, and the second is the number of trees. The
distribution of features for each of the trees is random, meaning that a single tree does not
contain all the features of the problem; however, the algorithm distributes the features so
that the tree forest can evaluate any input containing the features seen during the learning
phase.

Ideally, to minimize prediction times, it would be desirable to train models with few
and shallow trees in proportion to the total number of features contained in our set of
observations. In our case, the constraint on the prediction time is strong. Indeed, since
we want to evaluate the usefulness of each instance, it is important to not delay the solver
during this filtering phase. In Section 5, we will determine empirically what number of trees
and what maximum tree depth to use.

Given a feature vector x corresponding to an instance, each tree Mj returns a score
M (x), which is a real value in the interval (—oo,00). To process the predictions of the
predictive model, we must first sum the set of values returned by each tree, then pass this
value in a nonlinear “activation” function, which lets us bring this sum in a real interval
(0,1). The sigmoid function for computing the prediction from a forest of n decision trees for
the feature vector x is as follows:

1
1 4+ e~ 2 Mr(x)’

xgb predict(x) =

It yields a real value between 0 and 1, 0 corresponding to a seemingly useless instance, and
1 to a seemingly useful instance. It is this function which is used to evaluate each feature
vector.

16 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

Leveraging predictions. We have described the mechanisms to evaluate an instance
through a feature vector. It is now important to understand how to leverage these predictions
to help the solver solve new problems.

To fully exploit the capabilities of the classifier, we must design a system able to determine
whether the symbols present in the instance we want to evaluate are symbols known by the
classifier. To go further, it is possible to classify all the features appearing in the model by
order of importance. A feature is more important than another if it appears more often and
higher in the model’s trees. XGBoost lets us extract from a model an association table of
value of importance for each feature of the model. Thus, on a new observation, the feature
vector computed from the method described above will contain a number, possibly null, of
features present in the model. Using the association table generated from the model, we can
compute for each collected observation an importance value. This value can then be used to
evaluate the relevance of each prediction. Thus, if the importance of the features of a vector
corresponding to an observation is low, the prediction might be of poor quality and will be
considered uninformative.

Given a feature vector x corresponding to an instance, we compute its importance imp(x)
as the average of all feature importance values in x. If this value is less than a certain
parameter \, the prediction computed by xg predict(x) is considered uninformative, and
the instance is not filtered. The prediction function that is used for filtering is the following:

predict(x) xgb predict(x) if imp(>.<) >\

1 otherwise
where the factor A depends on the number of Skolem symbols present in the instance,
more precisely 80 times the number of Skolem symbols. This value has been determined
experimentally and gives good results in practice.

Instance selection. We will now present the approach implemented in veriT to filter the
instances produced by the instantiation module, generated from the strategies by trigger
or by enumeration. At each instantiation cycle, all the produced instances are stored in a
queue, as well as their score, calculated as described above. Instances with a score higher
than 0.5 are added to the ground solver. The others are kept, to be reevaluated in the next
round. In some cases, the predictions may be low for all instances. Therefore, if the filtering
limit value is not reevaluated, the solver may simply abandon the problem due to a lack
of instances. We have observed that in these cases it is better to recalibrate the selection
filter and restart the selection. Thus, in practice, when the average score of the instances is
too low, a new filtering value is computed, and instances are reconsidered for addition to
the ground solver against this new value. This is called recovery, or rescue of instances. In
practice, the recovery value is computed as follows:

o(H)
10 |

where mean(H) and o(H) are respectively the mean and standard deviation of the set of
scores of the instances, and 0.26/10 is an adjustable value that appears to work well in
practice.

Algorithm 1 gives an overview of the procedure. H is a global queue containing all the
instances that have been generated in previous cycles but have not yet been selected for addi-
tion to the ground solver. Each new set of instances is generated using the TriggerEnum(Q)

rescue value(H) = |mean(H) — 0.26

ML FOR INSTANCE SELECTION IN SMT 17

function, which implements the instantiation module using the triggers and enumeration
based strategies.

If the H queue is small (lines 2 and 3 of Algorithm 1), or if instances are not rele-
vant, the algorithm asks the instantiation module to produce new instances via a call to
TriggerEnum((@). More precisely, the condition irrelevant(H) in Algorithm 1 (line 2) is
true if the instantiation cycle has not produced any new instances, and none of the instances
of H have been selected. Otherwise, it means that the instances generated in the previous
cycle can be used, and it is not necessary to generate new ones yet. The algorithm will then
try to filter the instances. First, the algorithm evaluates the score of each instance (lines 4 to
6), using the function predict(features(y)), where features(y) computes the vector of
features for an instance . If an instance scores above 0.5, the algorithm stores the instance
in S for future addition to the ground solver. Finally, if no instance has been selected by the
previous filtering pass on lines 4 to 6, the algorithm triggers the rescue process (lines 7 to 10),
which filters the instances with a weaker condition rescue value(H) that is necessarily
smaller than 0.5. On line 10, H is cleaned of the selected instances.

Input: @ set of quantified formulas
Output: S selected instances
S=0
if |[H| <100V irrelevant(H) then
H = H UTriggerEnum(Q)
foreach ¢ € H do
if predict(features(p)) > 0.5 then
S=S5U{y}
if S =(then
foreach ¢ € H do
if predict(features(y)) > rescue_value(H) then
S =SU{e}
H=H\S
return S

© 0N Ok W N =

e e
N = O

Algorithm 1: Instance selection

In this section, we have presented the instance selection algorithm used in veriT to evaluate
each of the instances produced by the triggers-based and enumeration-based instantiation
strategies. In the next section, we will present the results obtained with the implementation
presented above.

5. EVALUATION

To evaluate the benefit of the techniques presented here, we first compare the number of
instances necessary to solve the problem with and without instance selection. Then we study
the time and success rates with several variants of our implementation. Experiments have
been conducted in the SMT solver veriT, on machines with 2 Intel Xeon Gold 6130 with 16
cores/CPU and 192 GiB RAM. We ran our experiments using the benchmarks in the UF
category of a recent edition of the SMT-LIB, PF2DEOQ: Is there a chance to update this?
consisting of 7572 problems: 771 labeled as satisfiable, 3442 labeled as unsatisfiable, and

18 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

3359 labeled as unknown. All the information necessary to reproduce the experiments is
available on the web page https://members.loria.fr/DElOuraoui/smtml.html.?

For the experiments, we use a proof-producing version of veriT. In the learning phase, we
compare the full output proof with the proof pruned of irrelevant instances to discriminate
useful instances from useless ones. An instance produced in the run is tagged as useful if
it occurs in the pruned proof. The problems that require only conflict-based instances in
their proofs are not used in training. Since we want to filter out instances generated by
trigger and enumeration-based instantiation, we also ignore the useful instances generated by
conflict-based instantiation (which amount to about 30% of the instances), for the remaining
benchmarks. In the rest of the discussion here, we only consider numbers without conflicting
instances. Around 90% of the remaining instances are useless. Rather than oversample the
useful instances, we use a higher learning rate to balance the dataset. (We are thankful to
Jan Jakubuv and Josef Urban for recommending this.)

We first run veriT without learning assistance on all the problems with a 60 seconds
time limit. Filtering out the problems that are solved using conflicting instantiation only,
there remain 1865 problems. We randomly divided this into a training set consisting of 70%
of the problems and a test set consisting of the remaining 30%.

The presented approach is based on pattern (symbol sequences) frequency occurrence of
appearing more recurrently in a problem. Such an approach may seem weak at first, but
can be very useful in the context of computer-aided proof, especially when used as support
for the user. Indeed, when working on formal proofs, via tools such as Isabelle, Coq, or
Atelier B, the set of symbols is generally quite limited: The same set of predicates, functions,
and constants appear in many proof obligations. The user has to solve a large number of
proofs, by regularly calling automatic solvers such as SMT solvers. We therefore imagine
here a system capable of integrating with this type of tool, and capable of getting hints or
observations from the easy proof obligations to tackle the more complicated ones. When
the number of observations is large enough to produce a robust model, the model is used
by the SMT solver as a filter to select good instances when checking the most challenging
proof obligations. Incrementally, any new observations can be added to the knowledge base
to produce a new model more robust than the previous one, so that the solver becomes more
and more efficient on new problems.

The evaluations presented in this section aim to simulate this behavior. We incrementally
run two models. A first model is produced from a set of observations extracted via the
problems that the SMT solver is able to solve without instance filtering. In a separate step,
a second model is produced from observations extracted from solved problems from a version
of the solver that uses instance filtering, and whose predictions are based on those of the
first model. The version of veriT that uses the instance selection algorithm trained on the
problems by the first run will be referred to as veriT(M). Similarly, veriT(M?) is the version
of veriT that uses the instance selection algorithm with a model trained with the problems
solved by veriT(M). There are 1914 benchmarks used in the process. PF2DEO: why 19147
I am confused with the above number of 1865. DEO2PF: this is the exact partition of the
training set and test set used in our exps JB2DEO: I'm also confused. 0.3 or 0.7 * 1865 #
1914. And I'm confused by “in the process™ do you mean for learning (0.7) or for evaluation
(0.3)? Please help us converge here. We also consider a portfolio strategy veriT (P4 M-+M?),

2We will use Zenodo for the final version.

https://members.loria.fr/DElOuraoui/smtml.html

ML FOR INSTANCE SELECTION IN SMT 19

which runs veriT, then veriT(M?), and last veriT(M), each time with one third of the time
limit.

1x108 F s

100000 | >

10000 | -
o
£
(=
S
<

3 1000 L]

g E E
E
=
]
>

100 L -

10 L .

1 il Ll M| Ll R | L

1 10 100 1000 10000 100000 1x106
veriT with learning
used instances . f(t) t g(t)

F1GURE 5. Comparison of the numbers of generated instances by the veriT
configurations with and without learning on the 1914 benchmarks

Figure 5 compares veriT and veriT(M) on the UF SMT-LIB benchmarks (the 1914
benchmarks). A point in the Figure 5 is read, along the z-axis, as the number of generated
instances by veriT(M), and, along the y-axis, as the number of instances generated by veriT.
The fewer instances generated, the better we consider the solver. Keep in mind, however,
that if a necessary instance is filtered out, the solver might be unable to prove the problem.

The figure shows the results of the solvers on the entire data set (training and test). In
the plot, a cluster of points is forming along the line corresponding to the equation f(z) = 2z.
This means that learning saves about half of the instantiations on average. The comparison
on the test set only, in Figure 6, produces a plot comparable to Figure 5 but with a fewer
points.

These results suggest that our approach is suitable to substantially reduce the number
of useless instances. We now show that it also allows the solver to prove more problems.
We first present the results obtained on the UF category benchmarks, by subcategories. In
these comparisons, only the UF subcategories containing a sufficient number of problems are
presented in the tables below. All these tables compare the number of unsatisfiable problems
solved, in a given time limit, for the different versions of the veriT SMT solver.

We compare these different versions of veriT to the results obtained by the two solvers
that obtained the best results, before veriT, at the 2019 and 2020 SMT-COMP, in this

20 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

1x108

100000 |-

10000 L

1000 |

veriT without learning

100

10 |

1 I I
1 10 100

Il
1000 1x10©

veriT with learning

10000 100000

used instances t a(t

FIGURE 6. Comparison of the numbers of generated instances by the veriT
configurations with and without learning on the test set only

TABLE 10. Results on the problem set without the problems used to train

veriT(M)
Sledgehammer Grass Barrett Total
(3675 problems) | (204 problems) | (2371 problems) | (6250 problems)
veriT 609 196 822 1627
veriT(M) 612 195 829 1636

category, which are respectively the SMT solver CVC4 [DRK " 14| and the automatic theorem
prover Vampire [KV13]. We use version 4.2.2 of Vampire with the dedicated option used
for the SMT-COMP, and without help of Z3 since the evaluations do not involve theory
reasoning. Finally, the lines labeled “portfolio” show a portfolio strategy, using veriT with
various configurations (like those used in SMT-COMP), with and without the learning
strategies. CVC4 and Vampire use a portfolio approach: The execution of many different
strategies on the same problem in a fraction of the time gives generally much better results
than running a single configuration for the entire time.

The problems used to train the models are removed from the benchmarks used for
the evaluation. Thus Table 10 above compares veriT to veriT(M) under a time limit of
180 seconds on the UF benchmarks without the problems used to train the model used by
veriT(M). Table 11 does the same for veriT and veriT(M?).

Table 12 investigates a portfolio approach including veriT(M) and veriT(M?), again
under a time limit of 180 seconds. For this evaluation, the problems used to train the
veriT(M) model and the veriT(M?) model have been removed. This configuration is the

ML FOR INSTANCE SELECTION IN SMT 21

TABLE 11. Results on the problem set without the problems used to train

veriT(M?)
Sledgehammer Grass Barrett Total
(3669 problems) | (192 problems) | (2379 problems) | (6240 problems)
veriT 609 183 836 1628
veriT(M?) 614 184 842 1640
TABLE 12. Results on the problem set without the problems used to train
veriT(0+M+M?)
Sledgehammer Grass Barrett Total
(3529 problems) | (122 problems) | (2180 problems) | (5831 problems)
veriT 470 114 638 1222
veri T (0+M—+M?) 482 116 652 1250
veriT + portfolio 667 121 727 1515
veriT(0+M-+M?) 721 121 752 1595
+ portfolio

TABLE 13. Results on the benchmarks in the UF category of the SMT-LIB

30s [60s [120s [180 s
veriT 2896 | 2913 | 2923 | 2929
veriT (M) 2907 | 2917 | 2925 | 2936
veriT(M?) 2916 | 2927 | 2935 | 2944
veriT (0+M—+M?) 2936 | 2959 | 2969 | 2975
veriT + portfolio 3181 | 3215 | 3228 | 3234
veriT(P+M+M?) + portfolio | 3190 | 3247 | 3312 | 3322
Vampire smtcomp mode 3154 | 3165 | 3175 | 3197
CVC4 portfolio 3311 | 3345 | 3393 | 3404

one that exhibits the best results. We can also observe that veriT(()+M-+M?) can solve 28
more problems than veriT. Even better results are observed with the portfolio version of
veriT((+M+M?), which solves 80 more problems than the regular portfolio approach used
at the SMT-COMP competition.

Tables 13 and 14 show the results obtained on all the problems of the UF category. For
these evaluations, no problems have been removed. Table 13 gives a comparison of all the
configurations of veriT with the two solvers CVC4 and Vampire for various time limits: 30,
60, 120, and 180 seconds.

Since our target application is mainly proof assistants, it should also produce good
results under short time limits. Table 15 uses a time limit of JB2DEO: How many seconds?
607 seconds and provides separate numbers for different benchmark categories. In particular,
we notice the substantial positive influence of machine learning for instance filtering for the
Sledgehammer category, which best represents our target application.

The conclusion of these evaluations is that a solver using a learning approach can solve
problems more efficiently than classical SMT solvers, especially with a high time limit. The
evaluation with the other solvers is only informative. Moreover, using an SMT solver with this

22 D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

TABLE 14. Results on the benchmarks in the UF subcategory of the

SMT-LIB
Sledgehammer | Misc | Grass | Barrett
veriT 1072 14 431 1412
veriT(M) 1073 14 431 1418
veriT(M?) 1079 14 | 431 | 1420
veriT(0+M+M?) 1093 14 | 434 | 1434
veriT + portfolio 1276 14 439 1505
veriT(0+M-+M?) + portfolio 1333 14 | 440 | 1535
Vampire smtcomp mode 1389 15 436 1481
CVC4 portfolio 1366 14 440 1584
TABLE 15. Comparative results on the SMT-LIB UF category, with a 60 s
time limit
veriT | veriT(M) | veriT(M?) | veriT()+M+M?)
veriT 0 39 32 15
veriT (M) 47 0 33 1
veriT(M?) 48 41 0 10
veriT(0+ M+M?) | 64 42 44 0

type of approach for the SMT-COMP competition would be unfair, since the trained solver
somehow remembers the formulas it has already seen, and takes shortcuts in its search space,
selecting the right instances. The point is rather here that an SMT solver with a machine
learning method for instance selection can learn from previous successes and consequently
solve even more problems. Within a moderately efficient solver, the learning approach would
somewhat compensate for the absence of a large number of carefully hand-tuned heuristics
and strategies, such as those implemented in state-of-the-art solvers.

Table 15 shows the gain and loss with respect to the number of solved problems for
the versions veriT, veriT(M), veriT(M?), and veriT()+M+M?). Each numeric table
cell compares two solver configurations: It provides the number of problems lost by the
configuration associated with the column compared with the configuration associated with the
row. Alternatively, a cell can also be read as the number of problems won by the configuration
of the row compared with the configuration of the column. For example, veriT(M) solves 47
problems that veriT does not solve, whereas veriT solves 39 problems that veriT(M) does
not solve. Bear in mind that the 39 problems are problems that have not been used to train
veriT (M), since only the problems solved by veriT are used to train veriT(M). Using a
portfolio is a way to compensate for the loss of some problems by the instantiation algorithm,
which inevitably has a negative impact for some problems.

6. RELATED WORK

Machine learning has been considered to guide several other aspects of automatic provers
and proof assistants. Premise selection [AHKT14] or relevance filtering [BGK™'16] is the
problem of selecting a reasonably small subset of a larger lemma base to pass to an automatic
prover to prove a given conjecture. Various machine learning techniques including gradient

ML FOR INSTANCE SELECTION IN SMT 23

boosted trees [PU18| and deep learning [ISA*16] have been tried for this problem, and
some provers include relevance filtering procedures. Machine learning has also been applied
to predict the satisfiability and equivalence of expressions [ACKS17| and even to directly
synthesize proofs in simpler logics [SS18|. Finally, machine learning has been used to
directly guide automatic theorem proving procedures. This was first done for the selection of
extension steps in tableau provers [UVv11]|, more recently combined with Monte Carlo proof
search [KUMO18]. For the superposition calculus, the selection of next clauses to process has
been tried in the E prover [LISK17], including learned watchlist guidance [GJU19|. Actual
synthesis of substitutions using deep learning approaches has been tried in the Holophrasm
prover [Whal6|; however, only very small useful terms could be generated. To our knowledge,
none of the existing approaches considers learning useful instances.

7. CONCLUSION

When proving quantified formulas, SMT solvers use instantiation techniques that create a
lot of instances, and only small proportion of them are useful. The useless instances hurt the
efficiency of the solver. We have here presented a method to combine instantiation techniques
with machine learning for instance filtering. Our experiments demonstrate that machine
learning techniques can be used successfully to train an SMT solver to improve itself on a
coherent set of problems. We believe that our methods are helpful for an SMT solver to
learn from its success, when used as a backend of an application generating many formulas
involving the same concepts. This is typically the case for verification applications. Learning
from the easy problems can then help tackling the more challenging ones.

As future work, we could improve the characterization of the state of an SMT solver.
This can be done both by improving the features or by relying on a neural network to find a
better representation automatically. Our first experiments show that our way to compute the
integers associated with features (using hashes) leads to many clashes, and addressing this
might lead to better results. We also plan to investigate more syntax-independent features,
which would also help an SMT solver transfer knowledge learned from one set of problems to
other problems stemming from different areas. Other learning techniques could be tried as
well. Finally, selecting good instances is also an important problem in more sophisticated
logics—e.g., higher-order logic.

Acknowledgments. We thank Hans-Jorg Schurr for his comments. The work has received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No. 713999, Matryoshka and
No. 714034, SMART). Experiments were carried out using the Grid’5000 testbed (https:
//www.grid5000.fr/), supported by a scientific interest group hosted by Inria and including
CNRS, RENATER, and several universities as well as other organizations. We are thankful
to the reviewers of a preliminary version of this work [BOFK19] for their comments.

REFERENCES

[ACKS17] Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles A. Sutton.
Learning continuous semantic representations of symbolic expressions. In Doina Precup and
Yee Whye Teh, editors, ICML 2017, volume 70, pages 80-88. PMLR, 2017.

https://www.grid5000.fr/
https://www.grid5000.fr/

24

[AHK™14]

[BAODF09)

[BFR17]

[BGK*16]

[BHVMWO09)

[BOFK19]

[Bre01]

[BRK " 15]

[BSST09)

[CG16]

[CL11]

[DCKP16]

[dMBO7]

[DNS05]

[DPOY]
[DRK*14]
[Fit90]
[FSA99]

[GAMOY)]

[GJU19]

D. EL OURAOUI, J. BLANCHETTE, P. FONTAINE, AND C. KALISZYK

Jesse Alama, Tom Heskes, Daniel Kiihlwein, Tsivtsivadze Evgeni, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52(2),
2014. doi:10.1007/s10817-013-9286-5.

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT:
an open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, CADFE-22, volume
5663 of LNCS, pages 151-156. Springer, 2009. doi:10.1007/978-3-642-02959-2_12.

Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence closure with free variables.
Technical report, Inria, 2017. URL: https://hal.inria.fr/hal-01442691.

Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kiihlwein, and Josef
Urban. A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning, 57(3):219-244,
2016. doi:10.1007/s10817-016-9362-8.

Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. I0S Press, 2009.

Jasmin Christian Blanchette, Daniel El Ouraoui, Pascal Fontaine, and Cezary Kaliszyk. Machine
learning for instance selection in SMT solving. In Thomas Hales, Cezary Kaliszyk, Ramana
Kumar, Stephan Schulz, and Josef Urban, editors, AITP 2019, 2019.

Leo Breiman. Random forests. Machine Learning, 45:5-32, 2001. doi:10.1023/A:
1010933404324.

Kshitij Bansal, Andrew Reynolds, Tim King, Clark Barrett, and Thomas Wies. Deciding local
theory extensions via E-matching. In Daniel Kroening and Corina S. Pasdreanu, editors, CAV
2015, volume 9207 of LNCS. Springer, 2015. doi:10.1007/978-3-319-21668-3_6.

Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825-885. IOS Press, 2009. doi:10.3233/FAIA201017.

Tianqgi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev
Rastogi, editors, KDD 2016, pages 785-794. ACM, 2016. doi:10.1145/2939672.2939785.
Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. doi:10.1145/1961189.
1961199.

Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Adding decision
procedures to SMT solvers using axioms with triggers. J. Autom. Reasoning, 56(4):387-457,
2016. doi:10.1007/s10817-015-9352-2.

Leonardo de Moura and Nikolaj Bjgrner. Efficient E-matching for SMT solvers. In Frank
Pfenning, editor, CADE-21, volume 4603 of LNCS, pages 183-198. Springer, 2007. doi:
10.1007/978-3-540-73595-3_13.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365—473, 2005. doi:10.1145/1066100.1066102.

Steinberg Dan and Colla Phillip. CART: Classification and regression trees. In Xindong Wu
and Vipin Kumar, editors, The Top Ten Algorithms in Data Mining, volume 9 of Data Mining
and Knowledge Discovery Series, page 179. CRC Press, 2009.

Morgan Deters, Andrew Reynolds, Tim King, Clark W. Barrett, and Cesare Tinelli. A tour of
CVC4: How it works, and how to use it. In FMCAD 2014. IEEE, 2014. doi:10.1109/FMCAD.
2014.6987586.

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, Berlin, 1990.
Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. J. JSAI,
14(771-780):1612, 1999.

Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, CAV 2009, volume 5643
of LNCS, pages 306-320. Springer, 2009. doi:10.1007/978-3-642-02658-4_25.

Zarathustra Goertzel, Jan Jakubuv, and Josef Urban. ENIGMAWatch: ProofWatch meets
ENIGMA. In Serenella Cerrito and Andrei Popescu, editors, TABLEAUX 2019, volume 11714
of LNCS, pages 374-388. Springer, 2019. doi:10.1007/978-3-030-29026-9_21.

http://dx.doi.org/10.1007/s10817-013-9286-5
http://dx.doi.org/10.1007/978-3-642-02959-2_12
https://hal.inria.fr/hal-01442691
http://dx.doi.org/10.1007/s10817-016-9362-8
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.3233/FAIA201017
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1007/s10817-015-9352-2
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1109/FMCAD.2014.6987586
http://dx.doi.org/10.1109/FMCAD.2014.6987586
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/978-3-030-29026-9_21

[ISA*16]

[JU17]

[KUMO18]

[KUV15]

[KV13]

[LBH15]

[LISK17]

[0B03]

[PU18]

[RBF18]

[RTdM14]

[SS18]

[SSSt17]

[UVv1l]

[Vap00]

[Whal6]

ML FOR INSTANCE SELECTION IN SMT 25

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Een, Frangois Chollet, and Josef
Urban. DeepMath—Deep sequence models for premise selection. In Daniel D. Lee, Masashi
Sugiyama, Ulrike V. Luxburg, Isabelle Guyon, and Roman Garnett, editors, NIPS 2016, pages
2235-2243. Curran Associates, 2016.

Jan Jakubuv and Josef Urban. ENIGMA': efficient learning—based inference guiding machine.
In Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke,
editors, CICM 2017, volume 10383 of LNCS, pages 292-302. Springer, 2017. doi:10.1007/
978-3-319-62075-6_20.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Mirek Olsak. Reinforcement learning
of theorem proving. In Samy Bengio, Hanna Wallach, Hugo Larochelle, Kristen Grauman,
Nicold Cesa-Bianchi, and Roman Garnett, editors, NeurlPS 2018, pages 8835-8846. Curran
Associates, 2018.

Cezary Kaliszyk, Josef Urban, and Jiri Vysko¢il. Efficient semantic features for automated
reasoning over large theories. In Qiang Yang and Michael Wooldridge, editors, IJCAI 2015,
pages 3084-3090. AAAI Press, 2015.

Laura Kovacs and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, CAV 2013, volume 8044 of LNCS. Springer, 2013.
doi:10.1007/978-3-642-39799-8_1.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In Thomas Eiter and David Sands, editors, LPAR-21, volume 46 of EPiC Series
in Computing, pages 85—105. EasyChair, 2017. doi:10.29007/8mwc.

Jens Otten and Wolfgang Bibel. leanCoP: Lean connection-based theorem proving. J. Symb.
Computation, 36(1-2):139-161, 2003. doi:10.1016/50747-7171(03)00037-3.

Bartosz Piotrowski and Josef Urban. ATPboost: Learning premise selection in binary set-
ting with ATP feedback. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, ed-
itors, IJCAR 2018, volume 10900 of LNCS, pages 566-574. Springer, 2018. doi:10.1007/
978-3-319-94205-6_37.

Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative instantiation.
In Dirk Beyer and Marieke Huisman, editors, TACAS 2018, volume 10806 of LNCS, pages
112-131. Springer, 2018. doi:10.1007/978-3-319-89963-3_7.

Andrew Reynolds, Cesare Tinelli, and Leonardo de Moura. Finding conflicting instances of
quantified formulas in SMT. In Koen Claessen and Viktor Kuncak, editors, FMCAD 2014,
pages 195-202. IEEE, 2014. doi:10.1109/FMCAD.2014.6987613.

Taro Sekiyama and Kohei Suenaga. Automated proof synthesis for the minimal propositional
logic with deep neural networks. In Sukyoung Ryu, editor, APLAS 2018, volume 11275 of
LNCS, pages 309-328. Springer, 2018. doi:10.1007/978-3-030-02768-1_17.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 550(7676):354-359, 2017.

Josef Urban, Jifi Vyskod¢il, and Petr gtépének. MaLeCoP: Machine learning connection prover.
In Kai Briinnler and George Metcalfe, editors, TABLEAUX 2011, volume 6793 of LNCS, pages
263-277. Springer, 2011.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Statistics for Engineering and
Information Science. Springer, 2000. doi:10.1007/978-1-4757-3264-1.

Daniel Whalen. Holophrasm: A neural automated theorem prover for higher-order logic. CoRR,
abs/1608.02644, 2016. arXiv:1608.02644.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

http://dx.doi.org/10.1007/978-3-319-62075-6_20
http://dx.doi.org/10.1007/978-3-319-62075-6_20
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.29007/8mwc
http://dx.doi.org/10.1016/S0747-7171(03)00037-3
http://dx.doi.org/10.1007/978-3-319-94205-6_37
http://dx.doi.org/10.1007/978-3-319-94205-6_37
http://dx.doi.org/10.1007/978-3-319-89963-3_7
http://dx.doi.org/10.1109/FMCAD.2014.6987613
http://dx.doi.org/10.1007/978-3-030-02768-1_17
http://dx.doi.org/10.1007/978-1-4757-3264-1
http://arxiv.org/abs/1608.02644

	1. Introduction
	2. Background
	2.1. Notations
	2.2. SMT
	2.3. Instantiation in SMT

	3. The quest for relevant instances
	4. A learning approach to instantiation
	4.1. Encoding SMT as a classification problem
	4.2. Designing features
	4.3. Problem description
	4.4. Machine learning
	4.5. Decision trees
	4.6. Integrating the predictor into veriT

	5. Evaluation
	6. Related work
	7. Conclusion
	References

