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Abstract

Graphics processing units (GPUs) have become of major importance for high-
performance computing due to their high throughput. To get the best possible
performance, GPU programs are frequently optimized. However, every opti-
mization carries the risk of introducing bugs. In this thesis, we present a frame-
work for the theorem prover Lean to formally verify transformations of GPU
programs. Our formalization generalizes the concepts of GPU programming and
follows a layered approach. We define an abstract programming language that
captures the essential primitives of GPU programming and construct a logic to
relate two implementations of a program. The abstract language forms the basis
to formalize Many-Core Levels (MCL), a GPU programming language with a
focus on optimizations.
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Chapter 1

Introduction

In recent years, there has been increased interest in using graphics processing
units (GPUs) to perform computations instead of using the central processor
unit (CPU). GPUs offer a high computational power at a lower cost. The
increased performance, compared to CPUs, comes from a high level of paral-
lelism at the hardware level. With the change in hardware also comes a change
in the programming paradigm: a developer is exposed to the parallelism and
must make use of it to gain performance. Programs written for CPUs must be
rewritten to run on GPUs. To this day, GPU programming remains a complex
challenge.
One challenge of GPU programming is to write error-free programs. Parallelism
in GPUs is achieved by running multiple threads at once. The parallel nature
makes it harder to check programs for errors. Threads progress independently
and must coordinate to access shared resources. An uncoordinated access can
cause undefined behavior, which is generally undesirable. The GPU cannot find
such faults at runtime, because checking for it would decrease the performance.
Another challenge of GPU programming is to get the highest performance. The
most naive implementation of a program is often not the best performing one.
Among others, the architecture of the hardware and the type of workload can
influence how the best performance can be achieved.
One approach to gain performance is to stepwise refine a program with the aid
of the compiler, e.g. using Many-Core Level (MCL) [1]. MCL is an academic
language to program many-core processors for optimal GPU utilization. It
captures the architecture and behavior of a GPU in a hardware description. The
compiler uses the hardware description and program to suggest optimizations
to the developer. The developer can react to it by manually rewriting the
program. This process can be repeated iteratively. The benefit of this approach
is that the developer is in charge of the program transformation and can use
domain-specific knowledge during the optimization.
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The problem with program transformations is that every rewrite can introduce
bugs or change the behavior of the program against the intention of the devel-
oper. Even trivial transformation might lead to subtle differences during the
execution. One approach to test the program is to run it on a test set and com-
pare its outputs. However, this is likely not to cover all cases. Furthermore, the
nondeterministic nature of GPUs does not even guarantee conclusive evidence
about the cases covered by the test set.
One approach to increase confidence in programs is to use formal methods to
systemically check them for flaws. There already exists research on the formal
verification of GPU programs. Tools such as GPUVerify [2] and PUG [3] can be
used to identify common programming mistakes; however, they have limitations:

• They focus on the verification of a single program and do not make use of
previous program versions.

• They are automated and cannot verify all programs.

• The tools are often not verified themselves. Hence, a flaw in the tool would
invalidate its results.

In this thesis, we address the issue of verifying GPU program transformations.
We develop a prototype of a framework to formally check that a change in
the program does not introduce bugs and preserves the existing behavior. In
particular, our work pursues the following objectives:

• Our framework should produce formal proofs for the correctness of pro-
gram transformations that are checked by a theorem prover.

• The framework must be flexible enough to support arbitrary program
transformations. That is, the framework must not restrict itself to partic-
ular transformations in favor of automation.

• The focus lies on proving program transformations interactively by hand,
with the help of theorems. This forms the basis to eventually perform
fully automated verifications. However, the latter is out of reach of this
thesis.

• The input language for our framework is MCL. We aim to model a rea-
sonable subset of the language specification.

• We investigate how to generalize the concepts of GPU programs based
on MCL, such that our framework can be adapted to other programming
languages.

Our work is a useful addition to the current research because we provide a
complementing method of verification, which reasons about transformations.
By proving a few use cases we show that the approach is feasible.

2



1.1 Structure of This Thesis

In Section 2.1, we explain how GPUs work and what the challenges of GPU
programming are. Furthermore, we explain the programming paradigm stepwise
refinement that is embraced by MCL.
We use the interactive theorem prover Lean (Section 2.2) as the basis for our
framework. It provides us with the environment to formalize the programming
languages and what program transformations are. Furthermore, it can be used
as a proof system to carry out the proofs interactively.
Section 2.3 discusses the technical background of program verification. For the
verification of program transformations, we rely on Hoare logic, which is a formal
system to reason about program correctness. We use a relational version of the
Hoare logic that reasons about two programs instead of one.
In Section 3.3, we define our own abstract programming language called Parlang
that captures the essential primitives of GPU programs. Having this abstract
programming allows us to reason about the behavior of GPU programs, without
having to deal with the complexity of a real programming language. We model
the syntax and operational semantics in Lean. Section 3.4 defines a relational
Hoare logic for Parlang and investigates how to reason about GPU program
transformations.
In Section 3.5, we formalize the programming language MCL. We define its
semantic in terms of Parlang to make use of theorems that have been defined
on the latter. Section 3.6 adapts the relational Hoare for Parlang to MCL.
Furthermore, we define additional theorems that are specific to MCL.
In Chapter 4 we show how applicable our framework is by proving the transfor-
mation of programs. Chapter 5 discusses related work and Chapter 6 draws a
conclusion and provides an outlook.

1.2 Reproducibility

The practical part of this work has been checked by the Lean theorem prover.
The formalization including some use cases is available at
github.com/fischerman/GPU-transformation-verifier.
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Chapter 2

Background

2.1 GPU Programming

Nowadays, GPUs play an important in high-performance computing due to their
design for compute intensive applications [4]. They contain many processing
units working in parallel connected to a large memory. A GPU is a throughput
oriented machine that achieves its high performance by executing the same
instruction on multiple data elements. Therefore, typically, each unit only works
on part of the data. To that end, arrays are partitioned and distributed among
the threads by the developer. To increase performance there are typically no
runtime checks to catch concurrency issues.

2.1.1 Architecture of GPUs

A GPU is a coprocessor that is driven by the CPU, called the host. The latter
initializes the input data and transfers it to the GPU. It then starts the workload
on the GPU. The piece of code that runs on the GPU is called the kernel. The
host program can start multiple kernels in parallel and in sequence (which may
work on the same data). As such, the host program serves as a coordinator for
dependent GPU workload.
GPU architectures evolve rapidly with new advances in technology and devel-
opers needs. To maintain a stable environment for developers, programs are
typically written in high-level languages, such as CUDA [5] and OpenCL [6].
We distinguish between the device layer and the programming abstraction layer.
All program statements are translated to hardware instructions by the compiler,
the runtime environment or a hardware scheduler. However, this additional
layer comes at a price. To get the best performance of a GPU, aspects of the
device layer should be considered when writing programs. Depending on the
language the device layer is exposed to different degrees.
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Figure 2.1: A typical GPU device architecture (adapted from [2]).

The core paradigm of a GPU is high-degree data-parallelism. When workload
is scheduled on the GPU, the host defines how many threads run the kernel in
parallel. Threads run independently of each other and have local memory that
is only accessible to them. They are assigned a unique thread identifier (ab-
breviated tid), which allows threads to take different control paths. A common
use case is to divide and distribute an array among the threads. The thread
identifier is used to compute the respective index ranges of the array.
Figure 2.1 depicts a generic GPU device architecture. A GPU consists of many
multiprocessors (abbreviated MP). Each multiprocessor accommodates a set
of processing elements (abbreviated PE), which perform arithmetic operations.
Each PE has dedicated registers and they all share access to the physical shared
memory (also called on-chip scratchpad). The slots contain meta-data of the
scheduled threads, such as the instruction counter. Additionally, all multipro-
cessors have access to the large off-chip device memory.
On the programming abstraction layer, threads are organized in groups as de-
picted in Figure 2.2. On invocation, the host program determines the kernel
code, the kernel arguments and the number of threads in the group. This group
configuration influences how threads are scheduled on the device layer, what
memory they can access and how they can communicate.
The global memory is shared between all groups and resides in the device mem-
ory. Memory space is allocated and initialized by the host program. For ex-
ample, the host program may transfer two input arrays to device memory and
allocate one output array to perform an array multiplication. To make the arrays
accessible to the kernel they can be provided as arguments. If one group writes
to a global memory location while others read from it, the behavior is undefined.
It is the programmer’s responsibility to avoid such conflicting accesses.
Furthermore, each thread has thread-local memory, which is only accessible to
the respective thread. The thread-local memory resides in the registers and the
device memory. How many registers a kernel has is automatically decided at
compile time. It can be manually overwritten but is limited by the physical
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number of registers. The remaining thread-local memory, which does not fit in
registers, is allocated in the slower device memory (but is not part of the global
memory). This is referred to as spilling.
Additionally, all threads in a group have access to the shared virtual memory, or
just called shared memory. This can be used to exchange data within a group.
Without further restrictions, a developer has to assume that threads progress
independently. To allow coordinated access to shared memory, threads within
a group can synchronize using a barrier instruction. When a thread reaches a
barrier it stalls until all threads in the group reach this instruction (execution
barrier). Furthermore, accesses to the memory that happen before the barrier
are visible to other threads in the group after the barrier. Threads in different
groups have no ability to synchronize.
Groups are scheduled on multiprocessors by the runtime environment, following
a few rules. Threads within a group are always scheduled on the same multi-
processor. This ensures that they have a shared memory and can synchronize.
If there are more threads than processing elements (which by itself is valid) the
scheduler decides which threads run at which time. However, a multiprocessor
may accommodate multiple groups at the same time. Whether this is possible
is determined by the following factors:

Slots: The MP must have enough slots to fit all threads.

Physical shared memory: The physical shared memory must be large enough
to accommodate the shared virtual memory of all groups that are sched-
uled on the MP.

Registers: The requested number of registers of all groups combined must not
exceed the available number of registers in the MP. How many registers a
group needs depends on the number of threads relative to the number of
PEs. If the number of threads is 10 times as high as the number of PEs,
each PE must have the capacity to accommodate registers for 10 threads.
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As such, for performance reasons, it may make sense to reduce the number
of requested registers per thread to fit more groups on an MP.

Whether a group is co-scheduled on the same multiprocessor does not affect the
(in)ability to synchronize between groups. Communication between groups is
only possible by means of sequential kernel execution or special atomic instruc-
tions.
To reduce circuit complexity all processing elements of a multiprocessor run
the same instruction at the same time (on the device layer). This is called
lockstep execution or Single-Instruction-Multiple-Threads (SIMT) architecture.
Groups are divided into sub-groups (also called warp [7]) and threads in the
same sub-group run in lockstep, while threads in different sub-group progress
independently. Because threads in the same group run the same kernel, only
one stream of instructions must be fetched and only one instruction counter
is required per sub-group. Special care must be taken when threads perform
conditional statements or loops. Consider this simple program where a is a
thread-local variable:

if (a) {
doThen();

} else {
doElse();

}

The truth value of the condition is dependent on a and therefore specific to each
thread. Hence, a few threads may go to the if-branch while the others go to the
else-branch. To do this in lockstep, all threads execute the same instruction;
however, threads get marked as active or inactive. If a thread is inactive an
operation has no effect, most notably the memory does not change. Suppose
the condition is true for some thread t. Then t will be active in the if-branch
and inactive in the else-branch. Consider the example of a loop:

int i = 0; -- thread-local variable
while (i < tid) {

i++;
}

Before every iteration, the condition is evaluated per thread and threads get
marked as active and inactive accordingly. A thread stays inactive if it is in-
active before entering the loop (cf. Figure 2.3). The loop terminates if, after
reevaluating the condition, all threads are inactive. The activeness is reset to
the state before the loop was entered. According to specification, a thread may
be inactive in iteration i and active again in iteration i+1. In our formalization,
we show that reactivation of threads to perform another loop-iteration always
coincides with faulty behavior.
Threads in the same group do not all run in lockstep if they do not fit into
a single sub-group. Some languages do not expose the concept of sub-groups,
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Figure 2.3: Illustrating lockstep execution with four threads. Red lines denote
inactive threads, green lines denote active threads. Thread 3 is inactive before
the loop.

whereas, for example, CUDA allows assignments from threads to sub-group.
In general, the SIMT architecture is transparent, but information about the
hardware might be used for optimal resource utilization [8]. We will use the
concept of lockstep in our semantics.

2.1.2 Challenges of GPU Programming

Highly concurrent programs are error-prone [9, 10]. We identify three com-
mon problems with GPU programs: non-termination, barrier divergence, and
interference.
Non-termination is the problem that a program may not terminate on certain
inputs. As opposed to interactive programs, the result of a GPU program is
obtained after termination. The problem is not specific to GPU programs, but
the concurrent nature of GPUs makes it harder to check for termination. Non
termination can arise from infinite loops.
The problem of barrier divergence arises when not all threads reach a barrier
instruction. A barrier is resolved when all threads in a group reach it. Oth-
erwise, the behavior is undefined [5]. That means that if a barrier is placed
inside an if branch, all threads must take the same branch. In the case of a
barrier inside a loop, all threads must either perform an iteration or exit the
loop. This reasoning becomes more complicated in the case of nested conditional
statements.
The problem of interference comes from uncoordinated accesses to shared mem-
ory. We consider an example with a shared variable a:

if (tid == 0) {
a = a + 1;

}
if (tid == 1) {

b = a;
}
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Thread 0 stores into a and thread 1 reads from the same variable. Without
assuming that these two particular threads run in lockstep, the order of the
load and store is undetermined. Hence, the program shows nondeterministic
behavior. The content of variable b either reflects thread 0’s changes or it
does not. This makes the programs result irreproducible which is generally
unwanted. However, syntactically this program is accepted by the compiler and
it runs properly on a GPU. The program can be changed to a deterministic
version by placing a barrier between the two if statements. The absence of
interference is called non-interference.
All of the problems above should be avoided when writing GPU programs. Our
formalization will consider all these problems as faulty behavior.

2.1.3 Stepwise Refinement with MCL

Many-Core Levels (MCL) [1], an academic language to program many-core pro-
cessors, has been designed to get optimal GPU utilization while giving the
developer the choice to retain portability. To that end, it makes the trade-off
between high-level and low-level abstraction explicit to the programmer. High-
level programs have good portability while low-level programs can yield better
performance. In MCL the developer has the choice to move to a lower level if
required.
An abstraction level is expressed as a hardware description. The levels form a
tree with the level perfect on top. The level perfect has no restrictions on
the number of threads in a group or the amount of shared memory. Under these
(unrealistic) conditions, a naive version of a kernel can be constructed. As an
example, we consider a kernel for matrix multiplication:1

perfect void matmul(int n, int m, int p,
float[n, m] c,
float[n, p] a, float[p, m] b) {

foreach (int i in n threads) {
foreach (int j in m threads) {

float sum = 0.0;
for (int k = 0; k < p; k++) {

sum = sum + a[i, k] * b[k, j];
}
c[i, j] += sum;

}
}

}

The matrices a, b and c are global with the respective dimensions n, m, and p.
The foreach instruction denotes parallelism. In this version, every thread is

1 MCL examples are adapted from https://github.com/JungleComputing/mcl/
tree/add-matmul-versions/input/mcpl/matrixmultiplication.
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responsible for computing a single value in the output matrix. i and j together
make up the thread identifier, that is used to access the respective parts of a,
b and c. This implementation ignores much of the concepts of a GPU, such
as groups and shared memory. In fact, they are not accessible on the level
perfect. We would have to move down one level (to gpu) where the same
program looks as follows:

gpu void matmul(...) {
const int nrThreadsM =

gpu.hierarchy.blocks.block.threads.max_nr_units;↪→

const int nrBlocksM = m / nrThreadsM;
foreach (const int i in n blocks) {

foreach (const int bj in nrBlocksM blocks) {
foreach (const int tj in nrThreadsM threads) {

const int j = bj * nrThreadsM + tj;
float sum = 0.0;
for (int k = 0; k < p; k++) {

sum += a[i,k] * b[k,j];
}
c[i,j] += sum;

}
}

}
}

A block in MCL refers to a group. The transformation to a lower level can be
performed automatically using the compiler, but by itself does not yield better
results. However, it has more potential for optimization. For example, the
level gpu introduces the concept of shared memory. In the above version of
matrix multiplication, threads in a group partially require the same data. They
can share that data through the shared memory, by distributing the store-
instructions among the threads.
The methodology that MCL embraces to optimize programs is called stepwise
refinement for performance [11]. The idea is to start with a naive implementa-
tion, as shown above with the matrix multiplication. In multiple steps, a part of
the program is rewritten by the programmer while preserving the input/output
behavior. Unlike compiler optimizations, the programmer is in control of the
rewrite. They can use domain knowledge, such as common patterns in the input
data, that cannot be inferred by a compiler. In the case of matrix multiplica-
tion, copying values to shared memory can reduce the number of accesses to the
slow global memory drastically.
The process of optimization is integrated with the transition to a lower abstraction-
level, as depicted in Figure 2.4. The programmer optimizes the program with
the aid of compiler feedback (inner loop on the right). For instance, the com-
piler might report an inefficient memory access pattern. By moving to a lower
abstraction level (outer loop) the programmer is given a more accurate descrip-
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Figure 2.4: Stepwise refinement in MCL (from [1]). The left box depicts the
outer process selection abstraction-level. The inner process manually optimize
is depicted by the right box.

tion of the hardware, and hence more potential for optimization. The rewrite to
a lower level can be performed by the compiler. However, this transformation
is not formally verified.
In MCL, the kernel is expressed as a function. At the top level, there are
multiple foreach-blocks that express group- and thread-parallelism. Executable
code must only exist in the innermost foreach-body. This code is executed on
the processing elements. The syntax follows a C-like imperative language. The
for-loop is used for non-parallel looping. Kernel code may call regular functions,
but there is no support for recursion2.
MCL supports multi-dimensional arrays. The size of each dimension is fixed
but can be dependent on a constant argument. Ergo, multiple arrays can be
syntactically fixed to the same size. There is no dynamic memory allocation
(inside of the kernel).

2 Recursion is not supported on most GPU architectures.
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2.2 Theorem Proving with Lean

Lean [12] is the theorem prover that we use to build our environment and
perform the proofs. It ensures that the purported proofs are correct and, in
turn, that the claim we make is true. Our main theorem will be the equivalence
of two MCL programs.
Lean is an interactive theorem prover (also called a proof assistant). It is not
designed to perform proofs efficiently and entirely automatically. Instead, the
user is equipped with a framework to engage automated tools and methods in
the proof work. However, unlike automated theorem provers, those tools are
not trusted and their output is verified.
The part of Lean that is responsible for verification is called the Lean kernel.3
The verification is based on dependent type theory, more precisely Calculus of
Constructions [13]. The idea of type theory is that every object we study has a
type. Examples of types are booleans and natural numbers (ℕ). A type can also
be constructed from other types, most notably to define functions. A definition
of addition of 1 on natural numbers can be formalized in one of those three
equivalent ways:

def add1 : ℕ → ℕ := λ n, n + 1
def add1' : ∀ (m : ℕ), ℕ := λ n, n + 1
def add1'' (n : ℕ) : ℕ := n + 1

A definition encapsulates a term under a name. Unfolding a definition is called
delta reduction. The colon is used (also in other places) to denote the type
of the defined object. The type of add1 is constructed from the type ℕ and
the function type constructor → (one of the foundations of Lean). While most
type constructors are defined using Lean (we see a few later), the meaning of
→ is predefined by the kernel. A term with the type α → β, where α and β
are arbitrary types, is a (side-effect free) function from α to β. A function is
defined as follows: λ a : α, (b : β), where b may depend on a. This is
called abstraction, i.e. we abstract a from the term b. To eliminate a lambda
expression the argument can be applied by appending it to the term. This is the
complement to abstraction and is called substitution or beta reduction. Each
occurrence of a in b is substituted by the applied argument.
Using function application the term add1 a can be reduced to a + 1, where
a is of type ℕ. The kernel ensures that the argument is of the correct type.
We consider a few examples. Type checking can be explicitly performed on
a term using the #check command (the reported results are depicted in the
comments). We define a few variables with their types using the variables
keyword:

variables (a : ℕ) (b : bool)

3 The Lean kernel and GPU kernel are unrelated.
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#check a -- ℕ
#check add1 -- ℕ → ℕ
#check add1 a -- ℕ
#check add1 b -- fails

The type of a is as expected. Also, the type of the function is according to
its definition. The third example is a type-correct function application. The
resulting type is the type of the function without the left-most argument. The
fourth example shows a failed type check, in which case Lean reports an error.
We provide a constant of type bool, but type ℕ is expected. This sort of
type-checking will also be used to verify proofs.
Function application is left associative. If the terms to be applied are compound,
they can be encapsulated in parentheses or preceded by a $. The following terms
are equivalent:

#check add1 7 (4 * (3 + 1))
#check add1 7 $ 4 * (3 + 1)
#check add1 7 $ 4 $ 3 + 1

Types, such as ℕ and bool, are terms themselves, hence they must also have a
type.

#check ℕ -- Type
#check Type -- Type 1
#check Type 1 -- Type 2

Following the types of types, we have an infinite but countable chain of types,
which are called type universes. Type is short for Type 0. Furthermore,
Type n is a synonym for Sort (n + 1), for every natural number n. We
learn later about the lowest type universe Sort 0 (or Prop).
List is a common structure to combine multiple elements of a type. We ignore
how they work for the most part here, but the type of the containing elements
is fixed by the type of list. Given a variable l, the type can, for example, be
list nat or list bool. list itself is not a type but a type constructor, as
can be observed by checking its type.

#check list -- Type → Type

list requires a type to construct a type. Suppose we want to define a function
that returns a list containing the same element twice. A definition on natural
numbers could look like this:

def list2 (n : ℕ) : list ℕ := [n, n]

The square brackets are constructor syntax for lists. If we need the same for
bool we could write another definition replacing ℕ by bool. However, nothing
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in list2 is specific to natural numbers. We can write a definition that works
for all types.

def list2' (α : Type) (n : α) : list α := [n, n]

Note that only the type has changed but not the term. We have introduced an
argument α which holds the type. The type of n is now dependent on α. Also,
the return type depends on α.
Lean can also be seen as a programming language. A term can be reduced using
the command #reduce, which implies that the term is type correct.

#reduce (λn, 4 + n) 7 -- 11

The reduction includes, but is not limited to, beta reduction and delta reduc-
tion. If two terms reduce to the same term they are called definitionally equal.
Definitional equivalence is the basis for proving equality.
Arguments that are required by multiple definitions can be abstracted into vari-
ables. If a variable is referenced in a definition, the Lean parser adds it as an
argument before any other argument. If multiple variables are referenced, the
arguments are in the order in which the variables are defined.4

variables (a : ℕ) (b : ℕ)

def f (c : ℕ) : ℕ := a + b * c
#reduce f 3 7 2 -- 17

The Lean parser has a powerful inference engine. Whenever a type or term can
be inferred we can replace it by an underscore. The parser tries to fill in those
blanks before the code is type-checked by the kernel, or fails with an error. The
type (including the colon) can also be dropped entirely if it can be inferred. An
underscore can also be used instead of a name when it’s not needed.

def add1 : _ := λn, n + 1
def add1' := λn, n + 1
def const7 : ℕ → ℕ := λ_, 7

When arguments of a definition should always be inferred they can be marked
as implicit. Implicit arguments use braces instead of parentheses. They are
skipped during function application and must be inferred from other arguments.
To demonstrate, in the definition of list2' the type variable can be made
implicit because it can be inferred from the argument n.

def list2'' {α : Type} (n : α) : list α := [n, n]
#reduce list2'' 5

4 In this thesis, we make intensive use of variables to reduce the size of listings. A list of
all variables, their types and their order are provided in the appendix.
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2.2.1 Inductive Types

The type system of Lean can be extended using inductive types [14]. An in-
ductive type extends the axiomatic system of the kernel by construction and
elimination of type instances. We start with the simplest inductive type – an
enumerative type:

inductive weekday
| monday
...
| sunday

Every pipe denotes a constructor for the type weekday, followed by its name.
An instance of this type can only be constructed from those constructors, i.e.
weekday has exactly seven instances. This property is called no junk. By
default, the constructor names are only accessible under the name of the in-
ductive type, e.g. weekday.monday. If no conflict arises, we will expose the
constructor names directly.
We can define inductive types more flexible by providing arguments to the con-
structors.

inductive weekday_in_month
| jan (day : weekday)
| feb (day : weekday)
...

We can create an instance of weekday_in_month by providing all arguments
to one of the constructors, e.g. jan sunday is an instance. If two instances
are built from different constructors (also w.r.t. their arguments) they are not
equal. For example, jan _ ≠ feb _ (for any weekday), as well as
jan sunday ≠ jan saturday. This property is called no confusion.
A constructor can also reference the type that it defines (hence the name induc-
tive type). We consider a definition of the natural numbers:

inductive nat
| zero
| succ (n : nat)

To construct a successor we already need an instance of the natural numbers.
Consequently, we can nest the constructors to create larger numbers.
A single definition can yield an entire inductive type family. That is, the type
itself carries arguments. A good example is list, which by itself is not a type
but a type constructor.

inductive list (T : Type) : Type
| nil {} : list
| cons (hd : T) (tl : list) : list
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We have to provide the type for the elements of the list to make it a type, e.g.
list nat. The empty curly braces in the constructor nil instruct Lean to
infer T from the context, rather than from its non-existent arguments. Type
arguments that are placed before the colon are fixed for all constructors and
recursive arguments. For example, observe that the argument tl does not
require T in its type. However, constructors may also take arguments from
other types within the type family. We consider the example vector that is
similar to list, but the length is part of the type.

inductive vector (T : Type) : ℕ → Type
| nil {} : vector 0
| cons {n} (hd : T) (tl : vector n) : vector (nat.succ n)

To create a vector of length 2, a vector of length 1 is required as an argument.
The first constructor can be used to create the initial empty vector. We adapt
the list notation (e.g. [a, b]), to define a notation for vectors: v[a, b].
Given an instance of an inductively defined type, the recursor of that type
(rec_on) can be used to eliminate the instance to some arbitrary type α. To
illustrate, we consider the unary representation of a natural number a as a string
(where we do recursion on a):

def unary (a : ℕ) : string := ℕ.rec_on a "" (λ _ r, "i" ++ r)
#eval unary 5 -- prints 'iiiii'

The recursor takes one argument per constructor (also known as minor premises).
If the constructor has arguments, the minor premise is a function from the ar-
gument values to α (unary ignores this argument). The function from the
inductive type to a (called major premise) is defined implicitly by the minor
premises. The constructor nat.succ has an argument of type ℕ. We get the
result of applying this argument to the major premise as a separate argument,
ergo the definition of unary is recursive.
Instead of using the recursor directly, Lean has the pattern matching syntax.
The same definition of unary looks as follows:

def unary : ℕ → string
| 0 := ""
| (n + 1) := "i" ++ unary n

Each pipe denotes a case. Cases must be exhaustive (no case missing) and are
evaluated top to bottom. Inductive type variables can be matched by their
constructors or as a whole in the form of a variable. The definition can be used
recursively, which is only possible in the context of pattern matching. Lean
tries its best to prove termination automatically. Pattern matching is more
convenient to read but not as powerful. We use it where possible but must still
work with the recursor on a few occasions.
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Lean ships with many inductive types as part of the standard library and also
proofs on those types. This includes ℕ (natural numbers), list, vector and
bool. We use the standard library when possible. Furthermore we use the
mathlib library for some additional proofs [15].
A function name can be hierarchical, where the names at each level are combined
by dots. If the part proceeding the dot is a type, there is alternative syntax
to apply the function on an instance of that type (which resembles methods in
object-oriented langauges). The instance is applied to the first argument with
the correct type.

def list.prepend (n : ℕ) (l : list ℕ) : list ℕ := n :: l
#reduce [1, 2].prepend 6 -- [6, 1, 2]

An inductive type with a single constructor (by default called mk) can alterna-
tively be defined as a structure. It packs all constructor arguments into a new
inductive type and additionally provides projections for all argument. If the
type of a term is known, it can be constructed using the anonymous constructor
(using angle brackets). For the latter, the arguments must be provided in the
order of their definition.

structure color := (red : ℕ) (green : ℕ) (blue : ℕ)
def yellow : color := ⟨255, 255, 0⟩
#reduce yellow.red -- 255

Alternatively, an instance can be constructed by explicitly naming the argu-
ments and optionally taking the unnamed arguments from an existing instance.

def yellow : color := { red := 255, green := 255, blue := 0 }
def white := { blue := 255, ..yellow }

Constructor arguments may depend on each other. A typical use-case is to
construct a data pair where the type of the second argument depends on the
value of the first argument. Lean has this type predefined including notation:

structure sigma {α : Type} (β : α → Type) :=
mk :: (fst : α) (snd : β fst)

variables (m : ℕ → Type) (e : m 1)
-- example usage: Σ refers to sigma
def a : (Σ n, m n) := ⟨1, e⟩

By defining our own inductive types and functions we can create the environ-
ment that is required to prove properties of GPU programs. Note that by
extending the type system we are changing the axiomatic system. In other
words, a flaw in one of the definitions invalidates all the proofs which use that
definition.
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2.2.2 Propositions and Proofs

The purpose of a theorem prover is to prove propositions. In this section, we
will look at how propositions are expressed and proven. Curry, Howard and de
Bruijn state that a dependent type system (such as Calculus of Constructions)
is isomorphic to a proof system; an observation called propositions as types [16].
The idea behind this paradigm is that we already have a type system that can
be repurposed as a proof system. Proofs in Lean follow this principle.
Propositions are expressed as types. An example proposition is p → q (where p
and q itself are propositions), which reads p implies q. Note that the arrow is the
same as for function definitions because it has the same meaning. Intuitively, a
function that takes a proof for p and returns a proof for q is a proof for p → q.
If the type has an instance, the proposition is true and the instance serves as the
proof. If it can be shown that no instance can be constructed, the proposition
is false. An instance can be explicitly constructed from a type-correct term.
Stating a proof can be done using the theorem keyword.

theorem name {p q r : Prop} (hpq : p -> q) (hqr : q -> r) :
p -> r := λ p, hqr (hpq p)

Theorems can have assumptions, which are instances of propositions provided
as arguments (as seen with hpq and hqr).
Propositions have their own type universe that has special properties. This
universe is called Prop, which is syntactic sugar for Sort 0 – the universe
below Type. We can define inductive types (or rather families) in this universe
to build up the logic. The following connectives are already defined in Lean:

structure and (a b : Prop) : Prop :=
intro :: (left : a) (right : b)

inductive or (a b : Prop) : Prop
| inl {} (h : a) : or
| inr {} (h : b) : or

inductive eq {α : Sort u} (a : α) : α → Prop
| refl : eq a

The three type constructors have the infix notations ∧, ∨, and = respectively. A
conjunction can only be instantiated if there is a proof for both conjuncts. The
proof for a disjunction can be written using either constructor.

theorem a {p q r : Prop} (hp : p) (hq : q) : p ∧ q := and.intro
hp hq↪→

theorem b {p q r : Prop} (hp : p) (hq : q) : p ∨ q := or.inl hp
theorem c {p q r : Prop} (hp : p) (hq : q) : p ∨ q := or.inr hq
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The definition of equality directly relates to definitional equality (by using the
same variable on both sides). To prove an equality (using the constructor refl)
both sides must be rewritten to be definitionally equal.
Inductive types of type Prop are called inductive predicates. Inductive predi-
cates can be defined, for example, to express properties on the type ℕ:

inductive even : ℕ → Prop
| zero : even 0
| two (n) : even n → even (n + 2)

2.2.3 Tactics

Proving theorems by writing out terms can be cumbersome and unreadable.
Lean provides a more convenient approach through tactics. Tactics are pro-
grams that construct proof terms. Instead of writing the terms explicitly, one
or multiple tactics build up the term dynamically [17].
To enter tactic mode the term is replaced by a begin-end block, in which we
instruct tactics to solve the goal. A tactic is given a list of goals and assumptions
plus optional user-defined parameters. It can transform the goal by constructing
a subterm but must not close the goal. It can also leave multiple (sub-)goals for
the user to be solved, e.g. splitting up a conjunctive. The goal true is solved
automatically, hence no more tactic is needed.
Lean includes a set of general-purpose tactics. To provide some intuition on
how to perform proofs we explain a few tactics.
apply applies the conclusion of a term (e.g. a theorem) to the goal and leaves
a subgoal for every premise. exact is similar to apply but fails if it creates a
new subgoal.

example (a b : ℕ) (h : a = b) : b = a := begin
apply eq.symm, -- goal is now a = b
exact h, -- no more goal

end

A goal can be rewritten using the tactic rw in combination with an equality term.
The tactic tries to match the left-hand side of the equation with a subterm of
the target and and replaces it with the right-hand side. By default, the target is
the goal. It can be changed to a hypothesis using the at directive. The rewrite
direction can be changed to right-to-left using ←. rw cannot rewrite terms that
contain a lambda-abstracted variable.

example (a b c : ℕ) (h₁ : a = b) (h₂ : c = b) : a = c := begin
rw h₁,
rw ← h₂,

end
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simp attempts to simplify the target using a set of rewrite rules. By default,
this set contains of all theorems that contain the attribute simp. It can be
extended with local hypothesis and other theorems. The tactic heuristically
rewrites the target and must not leave additional proof obligations. As opposed
to rw, simp can rewrite terms that are lambda-abstracted.

example (a : Prop) (h : a) : (a ∧ a) := begin
simp [h], -- rewrites a ^ a to a

-- and closes a with h
end

Many of the formal proofs in this thesis are omitted for readability but are
available in Lean in the appendant repository.
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2.3 Program Verification using Hoare Logic

Program verification is the act of systematically checking a program for given
properties [18]. The properties depend on the type of program. For sequential
programs, the properties are correctness of the result, termination, and absence
of failures. We formalize programs and the logic for correctness in Lean, in
order to perform the correctness proofs using the theorem prover.

2.3.1 while-program Syntax and Semantics

To illustrate program verification we use sequential programs instead of GPU
programs. We mechanize while-programs, which are entirely standard (e.g.
see [19]):

inductive program : Type
| skip {} : program
| compute : (state → state) → program
| seq : program → program → program
| ite : (state → Prop) → program → program → program
| while : (state → Prop) → program → program

compute is the only instruction that mutates state. The sequence con-
structor allows for composing programs, while ite (short for if-then-else) and
while are used to divert control flow. A sequence of instructions can be writ-
ten as instr₁ ;; ... ;; instrN. The expressions for the constructors
compute, ite and while are captured by Lean functions. This is called
shallow embedding; the details of the language are modeled using Lean as a
programming language. The alternative is deep embedding, where the syntax is
extended with definitions for expressions. Shallow embedding enable the reuse
all definitions available in Lean (such as the inductive type ℕ and all its lemmas).
Programs operate on state. We also define correctness of a program as assertions
on states. The state holds the values of all variables and is mechanized as a
function from variable name to value.

def state := string → ℕ

For simplicity, we consider all fields to store values of type ℕ. A field can be
updated using the following function:

def state.update (var : string) (val : ℕ) (s : state) :=
λ v, if v = var then val else s v

The operational semantics is a mapping from the syntax to its meaning. For
while-programs this is the behavior on state. There are multiple ways to define
the semantics. We use a big-step semantics, which relates a program, an initial
state and a resulting state (after termination):
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inductive exec : program → state → state → Prop
| skip {s} :
exec (skip) s s

| compute {f s} :
exec (compute f) s (f s)

| seq {p₁ p₂ s u} (t) (h₁ : exec p₁ s t)
(h₂ : exec p₂ t u) :
exec (seq p₁ p₂) s u

| ite_true {c : state → Prop} {p₁ p₀ s t} (hs : c s)
(h : exec p₁ s t) :
exec (ite c p₁ p₀) s t

| ite_false {c : state → Prop} {p₁ p₀ s t} (hs : ¬ c s)
(h : exec p₀ s t) :
exec (ite c p₁ p₀) s t

| while_true {c : state → Prop} {p s u} (t) (hs : c s)
(hp : exec p s t)
(hw : exec (while c p) t u) :
exec (while c p) s u

| while_false {c : state → Prop} {p s} (hs : ¬ c s) :
exec (while c p) s s

The cases of exec relate to the instructions of the while-program. Most
instructions have a single constructor in the inductive predicate. To prove the
valid execution of skip, the initial and resulting state must be equal. The
change of a compute-instruction must be reflected in the resulting state. A
sequence of instructions must be proven instruction by instruction, where the
initial state of the second instruction is the resulting state of the first instruction.
ite has two constructors: one for a true condition and one for a false condition
on the initial state. Respectively, the execution of either the if branch or the
else branch must be proven. Similarly, while has one constructor to perform
an iteration and one constructor to exit the loop. A valid derivation implies
that the program terminates.

2.3.2 Hoare Logic

The semantics can be used to prove the validity of a single initial and resulting
state. To prove correctness of a program, we are interested in many possible
states. We consider the example of a program that computes the quotient and
remainder by dividing x by y:5

def div : program :=
compute (λs, s.update "quo" 0) ;;
compute (λs, s.update "rem" $ s "x") ;;
while (λs, s "rem" ≥ s "y") (

compute (λs, s.update "rem" $ s "rem" - s "y") ;;

5 Example adapted from [18].
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compute (λs, s.update "quo" $ s "quo" + 1)
)

On the resulting state, rem should be smaller than y for all initial states. Fur-
thermore, the q * y + rem should be equal x. We can state this correctness
property as an assertion on state.

def postcondition := λs, s "q" * s "y" + s "rem" = s "x" ∧ s
"rem" < s "y"↪→

Using Hoare logic, this property can be proven for all valid executions.

def hoare (P : state → Prop) (p : program) (Q : state → Prop) :
Prop :=↪→

∀s t, P s → exec p s t → Q t

A proposition in Hoare logic is referred to as a Hoare triple. The three compo-
nents are a program and two assertions: precondition and postcondition. The
postcondition must be proven for all valid executions, where the initial state
fulfills the precondition. We introduce a notation for Hoare triples:

{* P *} p {* Q *}

The Hoare triple for div is defined as follows:

example : {* λ_,true *} div {* postcondition *}

The precondition is true. Hence, all (type-correct) initial states fulfill the
precondition.
The standard Hoare logic above only proofs partial correctness. The postcondi-
tion must only hold for executions that terminate. Given that in the program
div division by zero never terminates, the postcondition need not hold in this
case. Suppose a program p is incorrectly constructed, such that it never termi-
nates. In this case, a Hoare triple {* P *} p {* Q *} holds for all P and
Q. Hence, partial correctness proofs are not useful to identify problems related
to non-termination. A variation of the Hoare logic where termination has to be
proven (on states where the precondition holds) is called total correctness.

def hoare_tc (P : state → Prop) (p : program) (Q : state →
Prop) := ∀ s, P s → ∃ t, exec p s t ∧ Q t↪→

We use square brackets to denote total correctness:

[* P *] p [* Q *]

To prove total correctness of div, y must not be zero on the initial state.
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example : [* λs, s "y" ≠ 0 *] div [* postcondition *]

Proving a Hoare triple can be tedious. A fruitful approach is to break down the
proof based on the structure of the program. To that end, we define a set of
inference rules.

theorem seq_intro (P R Q p₁ p₂) : {* P *} p₁ {* Q *} →
{* Q *} p₂ {* R *} → {* P *} (p₁ ;; p₂) {* R *}

theorem skip_intro (P) : {* P *} skip {* P *}

theorem compute_intro (P f) :
{* λs, P (f s) *} compute f {* P *}

The sequence rule enables the introduction of intermediate assertions. Given
a program consisting of (at least) two instructions, an assertion can be placed
“between” the two instructions, serving as the precondition and postcondition
for the resulting Hoare triples respectively. This way, a sequence can be broken
down into the individual instructions. The intermediate assertions are usually
determined by the surrounding instructions. An example to prove a single
instruction is skip_intro. It requires that precondition and postcondition
are equal.

2.3.3 Relational Hoare Logic

Relational Hoare logic (RHL) is a variation of Hoare logic that allows the com-
parison of the behavior of two programs. It extends Hoare triples to Hoare
quadruples by adding an extra program.

{* P *} p₁ ~ p₂ {* Q *}

The programs may be completely independent but often fulfill the same purpose.
The assertions work on the states of both programs and can relate them as
well as constrain the individual states. Formally, we define RHL for while-
programs:

def rhl (P Q p₁ p₂) : ∀ s₁ s₂, P s₁ s₂ →
(∀ t₁, exec p₁ s₁ t₁ → ∃ t₂, exec p₂ s₂ t₂ ∧ Q t₁ t₂) ∧
(∀ t₂, exec p₂ s₂ t₂ → ∃ t₁, exec p₁ s₁ t₁ ∧ Q t₁ t₂)

This definition is an adaption of Nick Benton’s RHL semantics (based on big-
step semantics instead of denotational semantics) [20]. If two programs can be
related under the given assertion they co-terminate. That is, given two initial
states are related by the precondition, if any of the two programs terminates,
the other one has to terminate as well.
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RHL is a convenient basis for reasoning about program transformations. We,
therefore, relate a program with a refined version of the same program. Fol-
lowing the stepwise refinement of MCL programs, it is common to change a
program for better performance. The intention is to do this in an input-output
(I/O) preserving manner, i.e. given the same input, both programs should yield
the same output (or both not terminate). The assertion, in this case, is equality
for both precondition and postcondition. However, RHL is flexible enough to
express more advanced relations. For example, a variable can be renamed from
a in p₁ to b in p₂ (e.g. for readability) using the following condition:

def rename_eq : λ s₁ s₂, s₁ "a" = s₂ "b" ∧
∀ name, name ≠ "a" ∧ name ≠ "b" → s₁ name = s₂ name

We define inference rules for RHL. For an initial set of rules, the inference rules
for non-relational Hoare logic can be adapted to two programs.

theorem compute_intro (f₁ f₂) :
{* λs₁ s₂, P (f₁ s₁) (f₂ s₂) *} compute f₁ ~ compute f₂ {* P *}

theorem skip_intro : {* P *} skip ~ skip {* P *}

We call them double-sided instruction rules. They match the constructor of
while-programs in the most generic way. For simplicity we only show the
rules for two constructors. compute_intro does not require that both pro-
grams perform the same computation, which already allows for some useful
proofs. However, the rules require that the programs are structurally equal.
This limitation can be overcome by single-sided instruction rules.

theorem compute_left (f) :
{* λ s₁ s₂, P (f s₁) s₂ *} compute f ~ skip {* P *}

We call this rule single-sided, because it has a skip on one side. It is used to
reason about the left program without regarding the right program (or vice
versa). If the right side is not a skip instruction, it can be injected without
changing the assertions.

lemma skip_right : {* P *} p₁ ~ p₂ {* Q *} ↔ {* P *} p₁ ~ skip
;; p₂ {* Q *}↪→

Moreover, there are transformation rules, where at least one side is a more
complex program. These are a models of transformations in form of inference
rules. For example, the known branch rule:

theorem known_branch :
{* P *} p₁ ~ p₂ {* Q *} →
{* λ s₁ s₂, P s₁ s₂ ∧ c s₁*} ite c p₁ p₁' ~ p₂ {* Q *}
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We can change precondition and postcondition if one is the consequence of the
other (in different directions).

lemma consequence (h : {* P *} p {* Q *}) (hp : ∀s, P' s → P s)
(hq : ∀s, Q s → Q' s) : {* P' *} p {* Q' *}

This is useful for rewriting an assertion to the structure required by the inference
rules, e.g. the precondition of compute_intro.
There are multiple approaches to prove Hoare quadruples, which have different
trade-offs. Using consequence and instruction rules, both programs can be
decomposed individually (until no Hoare quadruple proof obligation remains).
The relationship of the two programs, as stated in the assertions, has to be
proven on the remaining proof obligations on states. Another approach is to
use transformation rules to reshape the structure to simplify the remaining
proof. We consider an example where p₂ is an arbitrary complex programs:

example : {* eq *}
compute (λs, s.update "c" 1) ;;
ite (λs, s "c" = 1) (

compute (λs, s.update "a" 7)
) p₂ ~>
compute (λs, s.update "a" 7) {* eq *}

Using instruction rules, the intermediate assertions grow with an increased com-
plexity of p₂. With the help of the transformation rule known_branch, rea-
soning of p₂ is not required. We do not provide a thorough comparison of the
approaches for while-programs here. However, in Chapter 4 we use different
approaches to solve relational proofs of Parlang and MCL programs.
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Chapter 3

Design

3.1 Layered Architecture

Hoare logic is commonly applied to while-programs that are purposely de-
signed to be simple, with only a few constructors. Many of the modern lan-
guage features can easily be transformed into while-programs without having
to change the semantics. For example, while loops, for loops, and do-while loops
can all be expressed as while loops without changing the I/O behavior of the
program. Generally speaking, many syntactical elements are auxiliary defini-
tions for convenience, which do not change the expressiveness of that language.
This allows the study of programs written in complex languages while reasoning
with the primitive building blocks. This type of abstraction helps to concen-
trate on the key properties of a model without the complexity that comes with
a practical language.
Our first modeling approach was heavily driven by the syntax and semantics of
MCL. The model covered structural elements (such as loops and branching) as
well as expressions of different types (e.g. addition and multiplication on integers
and floats). Furthermore, the model was designed to be type-safe by definition.
That is, programs were only syntactically valid if all variables are type correct,
e.g. an integer variable cannot be assigned a float value. The benefit is that the
model is fairly comprehensible and a good approximation of MCL. However, we
found that this model was too complex in the beginning and too much time
went into considerations of small details. Therefore, we have broken down the
model into two layers.
We first designed an abstract language called Parlang (Section 3.3), which is
comparable to while-programs, however, targeted towards GPU programs. It
resembles the characteristics of GPU architectures but it tries to be language
independent. We constructed an operational semantics for Parlang on which
we defined a relational Hoare logic. Although the language is abstract, we
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can prove some inference rules for the RHL. On top of Parlang, we construct
MCL (Section 3.5) by defining it in terms of Parlang. A benefit of the layered
approach is that we can lift many lemmas and definitions including RHL.
Another benefit of the layered architecture is, that Parlang can be used as a
basis for modeling other languages, such as CUDA. This saves overhead in the
verification of a different language.

3.2 Memory Model

We are mostly interested in the input-output behavior of a program. Therefore,
a crucial part of our design is how we store data. We generalize the storage
model such that it can be used for different types of memory.
On the hardware level, memory is typically accessed using numeric addresses, i.e.
pointers. Languages, such as MCL, allow access only through variable names.
We do not restrict the memory model to a particular address type. Instead,
we use a type variable (conventionally named ι) to abstract over the details of
the address type. To perform equality checks on addresses, we have to assume
that ι has decidable equality. If two addresses are not equal, they are distinct
and operations on the memory cells do not interfere with each other. Hence,
ι determines the granularity with which we access the memory – an aspect
that will become important for shared memory. Typically, individual bits of an
integer cannot be directly addressed while elements of an array can be addressed.
Every element (i.e. every address) in the memory can have an arbitrary but
fixed Lean type. Therefore, the type depends on the address. We use the type
variable τ to map from ι to that type. Finally, we define the memory:

def memory (τ : ι → Type) := ∀ (i : ι), τ i

We define two functions to get and update values respectively:

def memory.get (m : memory τ) (i : ι) : τ i := m i

def memory.update (m : memory τ) (i : ι) (v : τ i) : memory τ
:= function.update m i v

Furthermore, we define a few lemmas to eliminate update and get in terms.

lemma get_update_success : get (update m i val) i = val

lemma get_update_skip (h : i' ≠ i) :
get (update m i val) i' = get m i'
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3.3 Parlang

Parlang generalizes the models of GPU programs and simplifies their construc-
tion. This goes beyond the capabilities of the while-programs, that are de-
signed to model single-threaded programs. Although multiple threads can be
modeled as multiple independent executions of while-programs, the language
misses the primitive to synchronize threads and exchange data. Therefore, Par-
lang is fundamentally different from while-programs.
The Parlang semantics is limited to one thread group. Hence, synchronization
occurs between all threads. In turn, the relational Hoare logic on Parlang is
designed to relate a thread group to another thread group. The verification of
splitting up or merging thread groups is out of reach of Parlang. Section 3.4
explains the verification of multiple independent thread groups.
The semantics of Parlang should primarily distinguish two behaviors:

• Unique resulting state: The semantics has exactly one deterministic
result for an input state.

• Faulty behavior: The execution fails due to non-termination, barrier
divergence or interference on an input state (cf. Section 2.1.2).

We consider all undefined behavior to be faulty. Interference does not necessarily
cause a kernel to crash and might even give the intended output depending on
the interleaving of the threads. However, a single successful execution on a
particular GPU is no indication for a properly written program, i.e. the actual
program behavior is nondeterministic. Because we consider all cases where
thread interleaving causes different results invalid, Parlang is a deterministic
language.
The Parlang semantics is inspired by the synchronous, delayed visibility (SDV)
semantics [2]. It is based on lockstep execution, i.e. it advances instruction by
instruction for all threads. To capture non-interference, all reads and writes
between two barriers are recorded and analyzed for possible interference.
On the virtual layer, a kernel has access to three types of memory: global,
shared and thread-local. For simplicity, we limit ourselves to shared and thread-
local memory. If a kernel has allocated global memory, it is treated as shared
memory. It follows that the kernel arguments also reside in shared memory.
Because Parlang only works with a single thread group, the scope of global and
shared memory is equal – all threads can access them.
Parlang programs are build from two types: kernel and program. The
kernel is the code that is executed on the GPU. A program wraps the kernel
and defines the number of threads.
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3.3.1 State

Each thread is given a unique thread identifier. Conventionally, it is abbreviated
as tid. Given that the number of threads is denoted by n, a thread identifier
is of type fin n, i.e. a natural number that is smaller than n. If the upper
boundary is irrelevant, we sometimes use the type ℕ instead. Lean provides an
automatic coersion between fin n and ℕ. On multiple occasions, we use lists
and vectors to maintain state per thread. We use the function nth of those
datatypes to map from the thread identifier to the corresponding elements.
Thread i refers to the thread with the thread identifier i.
Each thread has a state that changes during execution. We aggregate this
information in a structure called thread_state.

structure thread_state {ι : Type} (σ : Type) (τ : ι → Type) :=
(tlocal : σ)
(shared : memory τ)
(loads : set ι := ∅)
(stores : set ι := ∅)

The field tlocal is the thread-local memory, that is only accessible by the
corresponding thread. We do not reason about the structure of tlocal in
Parlang. This is dependent on the concrete language, and can, for example, be
a map or an array-like structure. We abstract over the type of tlocal, which
we conventionally name σ (not related to Σ). The second field is a copy of the
shared memory, which is called shadow memory. It is the copy on which the
thread performs all its loads and stores on. We encapsulate those operations in
two functions, which are defined on thread_state.

def thread_state.store (f : σ → (Σi:ι, τ i))
(ts : thread_state σ τ) : thread_state σ τ :=
let ⟨i, v⟩ := f ts.tlocal in
{ shared := t.shared.update i v,
stores := insert i t.stores,
.. t}

def thread_state.load (f : σ → (Σi:ι, (τ i → σ)))
(ts : thread_state σ τ) : thread_state σ τ :=
let ⟨i, tr⟩ := f ts.tlocal in
{ tlocal := tr (t.shared.get i),
loads := insert i t.loads,
.. t }

To compute the address to store at, and the value to store, the thread-local
memory is provided as an argument in f. The return value of f is a Σ-type
where the type of the stored value is dependent on its address (based on the
type-map τ). Similar to store, for load, the address may be based on the
thread-local memory and the fetched value is provided as an argument to a
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nested function to compute the new thread-local state. The let statement is
used to decompose the Σ-type in f into its two fields. Apart from moving values
between shared and thread-local memory, we keep track of the addresses that
have been loaded and stored respectively between barriers. These are formalized
as sets loads and stores over ι, that are empty sets by default. We define
an access to be either a load or a store.

def thread_state.accesses (t : thread_state σ τ) : set ι
:= t.stores ∪ t.loads

Furthermore, we define compute to change the thread-local state.

def thread_state.compute (f : σ → σ)
(t : thread_state σ τ) : thread_state σ τ :=
{ tlocal := f t.tlocal, .. t}

We accumulate the thread states of all threads in state, abstracting over the
number of threads.

structure state {ι : Type} (n : ℕ) (σ : Type) (τ : ι → Type) :=
(threads : vector (thread_state σ τ) n)

3.3.2 Synchronization on State

Non-interference is required to pass a barrier. We formalize this condition on
state:

def syncable (s : state n σ τ) (m : memory τ) : Prop := ∀i:ι,
(∀ tid,

i ∉ (s.threads.nth tid).stores ∧
m i = (s.threads.nth tid).shared i)

∨
(∃ tid,

i ∈ (s.threads.nth tid).stores ∧
m i = (s.threads.nth tid).shared i ∧
(∀ tid', tid ≠ tid' → i ∉ (s.threads.nth tid').accesses))

The definition serves two purposes. Having an instance of syncable guaran-
tees non-interference on the state. It also guarantees that the memory argument
reflects all and only the changes that have been applied to the shadow memo-
ries. We say that state s synchronizes to memory m. To prove an instance of
syncable, we consider two possible cases for every addresses i. The first case
is that no thread stored at i and the values at i are equal between all threads.
We can choose any thread to get the value at i for the resulting memory. The
second case is that exactly one thread stored at i and this thread determines
the value at i for the resulting memory. All other threads must not have ac-
cessed i in this case. We consider benign interference to be interference [2]. If
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two threads store the same value at the same address the state is not synca-
ble. Although those programs show deterministic and valid behavior on most
platforms, for simplicity, we do not consider them valid. Allowing benign inter-
ference can be implemented using a variation of syncable. However, we have
not analyzed the implications on the dependent proofs.
Whenever the program passes a barrier, the thread state must reflect this fact.
This is encapsulated in sync.

def sync (g : memory τ) (t : thread_state σ τ) :
thread_state σ τ :=
{ shared := g,
loads := ∅,
stores := ∅,
.. t}

The update to the shadow memory makes the changes of all other threads visible
to this thread. Furthermore, it removes all accesses that happened before the
barrier. Note that sync should only be used in combination with syncable as
defined in the semantics.

3.3.3 Active Map

During execution, we need to keep track of which threads are active. We con-
ventionally use a vector of booleans over the number of threads n, named ac
(abbreviated from active map). We define the boolean value tt to denote an
active thread and ff to denote an inactive thread. We say some kernel k is ex-
ecuted on active map ac, meaning for every thread i the kernel k only changes
the state if ac.nth i is tt. Because we keep track of the activeness of all
threads we can decide whether all, none, or any threads are active based on the
active map (without the state):

def no_thread_active (ac : vector bool n) : bool :=
¬ac.to_list.any id↪→

def any_thread_active (ac : vector bool n) : bool :=
ac.to_list.any id↪→

def all_threads_active (ac : vector bool n) : bool :=
ac.to_list.all id↪→

Furthermore, we define two active maps to be distinct as

def ac_distinct (ac₁ ac₂ : vector bool n) : Prop :=
∀ i : fin n, ac₁.nth i = ff ∨ ac₂.nth i = ff

Threads can be deactivated based on a condition, which is evaluated on the
thread-local state.
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def deactivate_threads (f : σ → bool) (ac : vector bool n)
(s : state n σ τ) : vector bool n :=
ac.map₂
(λ a (ts : thread_state σ τ), (bnot ∘ f) ts.tlocal && a)
s.threads

The function map₂ combines two vectors of different types element-wise and
returns a vector of a third type (in this case boolean again). a is the current ac-
tiveness of a thread and ts is the corresponding thread_state. Deactivation
of threads is commutative:

lemma ac_deac_comm :
deactivate_threads f (deactivate_threads f' ac s) t =
deactivate_threads f' (deactivate_threads f ac t) s

We define a partial order on active maps of the same size.

def ac_ge (ac' : vector bool n) (ac : vector bool n) : Prop :=
∀ (t : fin n), ¬ (ac.nth t) → ¬ (ac'.nth t)

By deactivating threads we obtain a smaller (or equal) active map. The order
is transitive.
Given nested applications of deactivate_threads, if we can prove an order
on them, we can remove the smaller one.

lemma ac_deac_ge
(h : deactivate_threads f ac s ≥ deactivate_threads f' ac t) :
deactivate_threads f' (deactivate_threads f ac s) t =
deactivate_threads f' ac t

We keep the active map separate from the state. This makes the definition
of the semantics more comprehensible. We consider a simple example, where
k₁-k₄ are arbitrary code blocks (cf. Figure 3.1). We first consider how the
state behaves in an informal way (the formalization follows later). Without any
assumptions, the state after executing kn is named sn and the initial state is
denoted by s�. The condition c is evaluated on state s� and kn is evaluated on
state sn−1. Observe that the state evolves as a chain where each state sn (only)
depends on state sn−1. We compare this behavior to the active map. Suppose
k� is executed on ac�, and k� and k3 are executed on ac� and ac�′. It follows that
k4 is executed on ac�, which is completely independent of ac� and ac�′. In fact,
ac�′ does not contain enough information to recover ac�. If a thread is inactive in
ac�′, it is either because the condition c did not hold or the thread was already
inactive in ac�. Hence, active maps do not follow a chain. Instead, the active
map only ever changes when descending into subterms. Therefore, we keep the
active map separate from the state.
Given a state and an active map, we can define a function that changes the
thread states of active threads:
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else k3

then k2
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ac2

ac'2

ac1

s0

Figure 3.1: Advancement of active map and state during branching. The dotted
lines denote the influence on active maps. Threads that are inactive in ac₁
remain inactive in ac₂ and ac₂'. Furthermore, threads are deactivated by
evaluating the condition c on each thread.

def map_active_threads (ac : vector bool n)
(f : thread_state σ τ → thread_state σ τ) (s : state n σ τ) :
state n σ τ := { threads := (

s.threads.map₂ (λ t (a : bool), if a then f t else t) ac
), ..s }

3.3.4 Kernels

We define the type kernel as follows:

inductive kernel {ι : Type} (σ : Type) (τ : ι → Type) : Type
| load : (σ → (Σi:ι, (τ i → σ))) → kernel
| store : (σ → (Σi:ι, τ i)) → kernel
| compute {} : (σ → σ) → kernel
| seq : kernel → kernel → kernel
| ite : (σ → bool) → kernel → kernel → kernel
| loop : (σ → bool) → kernel → kernel
| sync {} : kernel

The thread-local memory type σ, address type ι and type-map τ are fixed
for the kernel. The empty curly braces in the compute and sync constructors
instruct Lean to infer τ and ι from the context, rather than from their ar-
guments. All non-recursive constructor arguments are Lean functions. This
shallow-embedding gives Parlang the flexibility it was designed for. Concrete
languages can later narrow down the type of those arguments. The meaning of
the arguments is formalized by the operational semantics. However, we intro-
duce them briefly and informally here – especially those that are different from
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while-programs. The compute instruction modifies the thread-local memory,
without any restriction. The ite instruction stands for if-then-else and is used
for branching. The first argument is the condition. The function is used to
decide whether an active thread executes the if or else branch, on a per-thread
basis. The decision is based only on the thread-local memory. If shared variables
are required in the condition, they must first be loaded. The loop constructor is
similar. The instructions store and load are used to interact with the shared
memory and have the same arguments as their respective functions store and
load on thread_state (cf. Section 3.3.1).
For readability, we introduce the infix operator ;; for sequential composition
of kernels.

3.3.5 Semantics of Kernels and States

We define an operational big-step semantics for kernels over a number of threads,
state, and the active map:
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inductive exec_state {n : ℕ} :
kernel σ τ → vector bool n → state n σ τ → state n σ τ → Prop
| load (f) (s : state n σ τ) (ac : vector bool n) :

exec_state (load f) ac s
(s.map_active_threads ac $ thread_state.load f)

| store (f) (s : state n σ τ) (ac : vector bool n) :
exec_state (store f) ac s
(s.map_active_threads ac $ thread_state.store f)

| compute (f : σ → σ) (s : state n σ τ) (ac : vector bool n) :
exec_state (compute f) ac s
(s.map_active_threads ac $ thread_state.compute f)

| sync_all (s : state n σ τ)
(ac : vector bool n) (m : memory τ)
(hs : s.syncable m) (ha : all_threads_active ac) :
exec_state sync ac s (s.map_threads $ thread_state.sync m)

| sync_none (s : state n σ τ) (ac : vector bool n)
(h : no_thread_active ac) :
exec_state sync ac s s

| seq (s t u : state n σ τ) (ac : vector bool n)
(k₁ k₂ : kernel σ τ) :
exec_state k₁ ac s t →
exec_state k₂ ac t u →
exec_state (seq k₁ k₂) ac s u

| ite (s t u : state n σ τ) (ac : vector bool n)
(f : σ → bool) (k₁ k₂ : kernel σ τ) :
exec_state k₁ (deactivate_threads (bnot ∘ f) ac s) s t →
exec_state k₂ (deactivate_threads f ac s) t u →
exec_state (ite f k₁ k₂) ac s u

| loop_stop (s : state n σ τ) (ac : vector bool n)
(f : σ → bool) (k : kernel σ τ) :
no_thread_active (deactivate_threads (bnot ∘ f) ac s) →
exec_state (loop f k) ac s s

| loop_step (s t u : state n σ τ) (ac : vector bool n)
(f : σ → bool) (k : kernel σ τ) :
any_thread_active (deactivate_threads (bnot ∘ f) ac s) →
exec_state k (deactivate_threads (bnot ∘ f) ac s) s t →
exec_state (loop f k)

(deactivate_threads (bnot ∘ f) ac s) t u →
exec_state (loop f k) ac s u

Listing 1: Parlang kernel semantics

The definition is an inductive proposition, hence it is non-computable. Given
that we have an instance of type exec_state k ac s₁ s₂, we have a proof
that executing kernel k on the initial state s₁ and active map ac results in
state s₂. We explain the cases by constructors of kernel. All kernel con-
structors, except loop and sync, match exactly one case. To derive a valid
load-execution we have to put the resulting state in relation with the initial
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state. More precisely, we have to show that a load is performed on all active
threads. The cases for store and compute are similar. To derive a valid se-
quential composition execution from state s to u, we have to prove validity on
the individual kernels. For that, kernel k₁ must execute from s to some state
t and k₂ from state t to state u. In a sequential composition, both kernels are
executed on the same threads.
The semantics for ite might appear counterintuitive at first, because there is
only one case. Although every thread either executes the if- or the else-branch,
in a set of threads some threads execute the if-branch while others execute the
else-branch. To derive a valid execution, we have to prove the validity of the two
branches similar to sequential composition. However, only a subset of active
threads perform each branch. Therefore, we deactivate threads based on the
condition evaluated over the initial state. Here, we see the benefit of keeping the
active map separate from the state – there is no need to formalize reactivation
of threads after branching. The if branch is arbitrarily executed before the else
branch. We can show that we get an equivalent semantics if we change the order.
On another note, graphics cards are optimized to skip branches if no thread is
active. We ignore this optimization because it is hidden from programmer and
I/O preserving. However, the semantics is designed such that, given s₁ ≠ s₂
and no_thread_active ac, we cannot derive exec_state k ac s1 s2
for any k. If a branch is executed on with all threads being inactive, we call
this an inactive branch.
For the loop-constructor we require two cases: stop and step. Without any
assumptions, we can only show validity if we perform all loop iterations. We
define this inductively. A loop terminates on some active map if all threads are
inactive after evaluating the loop condition (on each thread individually). This is
the base case loop_stop, where 0 iterations are performed and we identify the
initial and resulting state. The case loop_step adds an additional iteration “in
front” of the existing iterations. We have to prove the validity of the loop body
after deactivating threads on the condition. Furthermore, we have to show the
validity of the remaining iterations. As expected, the resulting state of iteration
i is the initial state of iteration i + 1. Note that with every iteration the active
map is smaller (or equal) according to our definition. This is by definition and
is called monotonic loop [21]. In principle, GPUs allow non-monotonic loops;
however, they always cause a barrier divergence or interference according to
our semantics. In Section 3.3.8 we present a variation of the semantics with
non-monotonic loops and prove it to be equivalent to exec_state.
There are two valid cases for sync: either no or all threads are active.
sync_none is required to derive validity if a sync instruction is part of an
inactive branch (in which case the initial state is equal to the resulting state).
In case all threads are active, we have to show non-interference by proving
syncable. The resulting state must reflect the synchronized memory. If at
least one, but not all threads are active, a barrier divergence has been reached
and there is no valid derivation.
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3.3.6 Programs and Programs Semantics

The kernel is the composable part of a GPU program. What is missing is how
many threads run this kernel. Therefore, we extend the type kernel to the type
program.

inductive program {ι : Type} (σ : Type) (τ : ι → Type)
| intro (f : memory τ → ℕ) (k : kernel σ τ) : program

We have an additional field f that denotes the number of threads depending on
the initial memory. Programs only operate on memory instead of state. This
is in accordance with MCL. The host sets up the initial memory and starts the
MCL program. Other languages follow a similar principle.
We extend the kernel semantics to programs:

def init_state (init : ℕ → σ) (f : memory τ → ℕ) (m : memory τ)
:↪→

state (f m) σ τ := { threads :=
(vector.range (f m)).map
(λ n, { tlocal := init n, shared := m })

}

inductive exec_prog : (ℕ → σ) → program σ τ → memory τ →
memory τ → Prop
| intro (k : kernel σ τ) (f : memory τ → ℕ) (a b : memory τ)

(init : ℕ → σ) (s' : state (f a) σ τ)
(hsync : s'.syncable b)
(he : exec_state k (vector.repeat tt (f a))

(init_state init f a) s') :
exec_prog init (program.intro f k) a b

init_state is responsible for initializing the state. The initialization of the
thread-local memory is abstracted in the function init, which takes a thread
identifier and return a thread-local state. Initially, all threads are active. To
show a valid execution of a program, a valid execution of its kernel is required.
Additionally, we have to show that the resulting state is syncable to the resulting
memory. This is to ensure that accesses after the last sync do not interfere and
to retrieve the updated values from the shadow memories.

3.3.7 Properties of Parlang

No skip instruction A skip instruction is not explicitly defined. Instead,
(kernel.compute id) can be used. We can show that the above has the
behavior of skip:

example {n} {ac : vector bool n} {s} :
exec_state (kernel.compute id : kernel σ τ) ac s s
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Not having an explicit skip instruction saves a proof obligation when doing
induction on a kernel or the semantics.
syncable is deterministic if we consider at least one thread. That is, given
any state, every valid derivation has the same resulting memory.

lemma syncable_unique {s : state n σ τ} {m m'}
(h₁ : syncable s m) (h₂ : syncable s m') (hl : 0 < n) : m = m'

exec_state is deterministic. That is, given any kernel, active map, and
initial state, every valid derivation has the same resulting state.

lemma exec_state_unique {s u t : state n σ τ}
{ac : vector bool n} {k} (h₁ : exec_state k ac s u)
(h₂ : exec_state k ac s t) : t = u

3.3.8 Equivalence to Non-Monotonic Semantics

The Parlang semantics restricts itself to monotonic loops. That is, if a thread
is inactive in some iteration n it must also be inactive in any iteration n + m,
where n and m are natural numbers. In that regard, the semantics is not an
accurate model of the GPU architecture. Given that a thread was active when
the kernel enters the loop, its condition is checked in every iteration. If the
condition depends on a shared variable, a thread has the ability to enable an-
other thread. However, it can be shown that this causes a barrier divergence or
interference – neither are valid according to Parlang.
To carry out the proof, we define a semantics that allows non-monotonic loops.

inductive exec_nonmono {n : ℕ} : kernel σ τ → vector bool n →
state n σ τ → state n σ τ → Prop
/-
...
same constructors as exec_state
-/
| loop_step (s t u : state n σ τ) (ac : vector bool n)

(f : σ → bool) (k : kernel σ τ) :
any_thread_active (deactivate_threads (bnot ∘ f) ac s) →
exec_nonmono k (deactivate_threads (bnot ∘ f) ac s) s t →
/- the only difference to parlang is the line below:

here we don't deactivate threads -/
exec_nonmono (loop f k) ac t u →
exec_nonmono (loop f k) ac s u

The difference lies only in the loop_step case, where the condition is evalu-
ated on the initial active map (before loop entry) for every iteration. The new
semantics holds if and only if the original semantics holds.
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lemma eq_parlang_nonmono :
exec_nonmono k ac s s' ↔ exec_state k ac s s'

The double implication is proven separately from left to right and right to
left. Induction is performed on the respective assumptions resulting in a proof
obligation for each constructor of the semantics. All constructors except for
loop_step are trivial because they are equivalent. For the proof of loop_step,
we provide some intuition. The full proof is available in Lean.
Given that the loop body is denoted by k and the condition by f, a valid loop
iteration is expressed as
<semantics> k (deactivate_threads (bnot o f) ac s) s t in ei-
ther semantics. Based on this statement, we relate s and t by their influence
on ac.

example (k f) :
<semantics> k (deactivate_threads (bnot ∘ f) ac s) s t →
deactivate_threads (bnot ∘ f) ac s ≥
deactivate_threads (bnot ∘ f) ac t

To prove the above, we consider an arbitrary thread tid that is inactive at
deactivate_threads (bnot o f) ac s. Because an inactive thread never
changes its state, we show that the state of the thread tid is equivalent in s
and t. We conclude that also the evaluation of the condition is the same on
either state. Hence thread tid is inactive at
deactivate_threads (bnot o f) ac t.
Suppose the initial state is s and the resulting state is u. In both directions we
have the assumption that at least one thread is active at
deactivate_threads (bnot o f) ac s, because we are working on the
constructor loop_step. Furthermore, as induction hypothesis, we have valid
executions of the first loop iteration from s to t and for the remaining iterations
from t to u. We have to show that the active map after the first iteration
corresponds with the semantics.
Left to right

lemma exec_ac_to_deac.aux {k}
(ha : any_thread_active (deactivate_threads (bnot ∘ f) ac s))
(hi : exec_state k (deactivate_threads (bnot ∘ f) ac s) s t)
(h : exec_state (loop f k) ac t u) :
exec_state (loop f k) (deactivate_threads (bnot ∘ f) ac s) t u

When we compare the goal with the assumption h, the active map ac of the
goal undergoes a deactivation of threads based on state s. We do an induction
on h and apply the corresponding constructors of exec_state on the goal.
One can observe that all occurrences of ac undergo a deactivation of threads
based on state t. For our goal this means, we have nested applications of
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deactivate_threads. Using the lemmas defined in Section 3.3.3 and hi,
we derive that the most recent deactivation is stronger and remove the weaker
one. We can close the remaining goals with the hypotheses resulting from the
induction on h.
Right to left

lemma exec_deac_to_ac.aux {k}
(ha : any_thread_active (deactivate_threads (bnot ∘ f) ac s))
(hi : exec_nonmono k (deactivate_threads (bnot ∘ f) ac s) s t)
(h : exec_nonmono (loop f k) (deactivate_threads (bnot ∘ f) ac

s) t u) :↪→

exec_nonmono (loop f k) ac t u

The proof follows the same principles as left to right, except that the nested
deactivation of threads occurs in the hypotheses instead of the goal.
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3.4 Relational Hoare Logic for Parlang

To prove the correctness of program transformations, we define a relational
Hoare logic on Parlang, as well as some inference rules. As opposed to RHL on
while-programs, the logic on Parlang is asymmetric.
There are multiple ways to treat faulty behavior of programs in relational Hoare
logic. Most papers restrict the discussion to non-termination because it is the
only option how a program may fail in their case (e.g. see [20]). We include
interference and barrier divergence but only distinguish between faulty and non-
faulty behavior. A fault is either non-termination, interference or a barrier di-
vergence. Nick Benton’s RHL requires that the two programs co-terminate [20].
That is, part of the proof obligation is to show that if one program terminates,
the other one has to terminate as well. This can be observed by looking at the
definition of RHL on while-programs in Section 2.3.3. The proof requires a
witness for the resulting state of the execution of p₂ on s₂ if p₁ has a valid
execution on s₁ (and vice versa). Termination has to be proven of both pro-
grams. A different approach is to abandon co-termination (e.g. see [22]). It
only has to be shown that the postcondition holds if both programs terminate.
However, this makes it possible to introduce data races or barriers divergence in
the transformed program, which would reduce the expressiveness of our logic.
Both approaches that are described above are symmetric, i.e. swapping the ar-
guments of the assertions and the programs preserve validity. In the context of
stepwise refinement, we can drop this requirement and choose an asymmetric
approach. We relate two versions of the same program: before and after the
optimization. We always place the version before the optimization on the left
side. Because the correctness is concerned with the optimization (i.e. the differ-
ence between the two programs), we assume that the left program is non-faulty
for all states where the precondition holds. If the program makes assumptions
about the input data, it can be expressed in the precondition. Termination has
to be shown of the right (optimized) program (for all states that satisfy the pre-
condition) by providing the resulting state. Compared to co-termination, only
termination of the right program has to be shown as opposed to both sides.
Hence, this approach comes with fewer proof obligations.
Parlang introduces two operational semantics, for kernels and programs respec-
tively. It follows that we also define two relational Hoare logics, first on pro-
grams:

def rel_hoare_program (init₁ : ℕ → σ₁) (init₂ : ℕ → σ₂)
(P : memory τ₁ → memory τ₂ → Prop) (p₁ : program σ₁ τ₁)
(p₂ : program σ₂ τ₂) (Q : memory τ₁ → memory τ₂ → Prop) :=
∀ m₁ m₁' m₂, P m₁ m₂ → exec_prog init₁ p₁ m₁ m₁' →
∃ m₂', exec_prog init₂ p₂ m₂ m₂' ∧ Q m₁' m₂'

The definition uses an existential quantifier. Namely, to prove that p₂ is non-
faulty, the resulting state is required as a witness. Because the semantics of
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Parlang programs is deterministic, the witness is unique if it exists. The asser-
tions are relations on the shared memory. The two programs may use different
init functions, to initialize the thread-local memory.
The RHL on kernels uses a different semantics and other types of assertions:

def rhl_kernel_assertion := ∀ n₁:ℕ, state n₁ σ₁ τ₁ →
vector bool n₁ → ∀ n₂:ℕ, state n₂ σ₂ τ₂ → vector bool n₂ → Prop

def rel_hoare_state (P : rhl_kernel_assertion)
(k₁ : kernel σ₁ τ₁) (k₂ : kernel σ₂ τ₂)
(Q : rhl_kernel_assertion) : Prop :=
∀ (n₁ n₂ : ℕ) (s₁ s₁' : state n₁ σ₁ τ₁)
(s₂ : state n₂ σ₂ τ₂) ac₁ ac₂,
P n₁ s₁ ac₁ n₂ s₂ ac₂ → exec_state k₁ ac₁ s₁ s₁' →
∃ s₂', exec_state k₂ ac₂ s₂ s₂' ∧ Q n₁ s₁' ac₁ n₂ s₂' ac₂

The assertions can relate the states of all threads, as well as the number of
threads and their activeness. To emphasize the asymmetry, we use an asym-
metric syntax version:

{* P *} k₁ ~> k₂ {* Q *}

Following the relation of exec_state and exec_program, the two relational
Hoare logics can be related:

def initial_kernel_assertion (init₁ : ℕ → σ₁) (init₂ : ℕ → σ₂)
(P : memory τ₁ → memory τ₂ → Prop) (f₁ : memory τ₁ → ℕ)
(f₂ : memory τ₂ → ℕ) (m₁ : memory τ₁) (m₂ : memory τ₂)
(n₁) (s₁ : state n₁ σ₁ τ₁) (ac₁ : vector bool n₁) (n₂)
(s₂ : state n₂ σ₂ τ₂) (ac₂ : vector bool n₂) :=
s₁.syncable m₁ ∧ s₂.syncable m₂ ∧ n₁ = f₁ m₁ ∧ n₂ = f₂ m₂ ∧
(∀ i : fin n₁,

s₁.threads.nth i = { tlocal := init₁ i, shared := m₁ }) ∧
(∀ i : fin n₂,

s₂.threads.nth i = { tlocal := init₂ i, shared := m₂ }) ∧
P m₁ m₂ ∧ all_threads_active ac₁ ∧ all_threads_active ac₂

lemma rel_kernel_to_program {k₁ : kernel σ₁ τ₁}
{k₂ : kernel σ₂ τ₂} {init₁ : ℕ → σ₁} {init₂ : ℕ → σ₂}
{P Q : memory τ₁ → memory τ₂ → Prop} {f₁ : memory τ₁ → ℕ}
{f₂ : memory τ₂ → ℕ}
(h : {* λn₁ s₁ ac₁ n₂ s₂ ac₂, ∃ m₁ m₂, initial_kernel_assertion

init₁ init₂ P f₁ f₂ m₁ m₂ n₁ s₁ ac₁ n₂ s₂ ac₂ *} k₁ ~> k₂
{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, (∃ m₁, s₁.syncable m₁) →
∃ m₁ m₂, s₁.syncable m₁ ∧ s₂.syncable m₂ ∧ Q m₁ m₂ *} )

(hg : ∀ {m₁ m₂}, P m₁ m₂ → 0 < f₁ m₁) :
rel_hoare_program init₁ init₂ P (program.intro f₁ k₁)
(program.intro f₂ k₂) Q
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This theorem can reduce a proof obligation on programs to a proof obligation
on kernels. The latter can be proven using the inference rules presented in
Section 3.4.2. As a benefit from the asymmetry of our Hoare logic, we have a
proof that the resulting state of the left kernel is syncable (cf. postcondition of
h). As a consequence, we only have to prove syncablity of the right kernel. We
need the assumption hg due to how syncable is defined. Given that some
state s has zero threads, s.syncable m holds for an arbitrary memory m.
The hypothesis hg eliminates this case.

3.4.1 Chaining Relational Proofs

Stepwise refinement for optimization is an iterative process, where the devel-
oper rewrites the program in multiple steps. Suppose p₀ is the first version
of a program and p₁ to pN are stepwise optimizations of p₀. Using relational
Hoare logic, we can verify that the sum of all transformations is I/O preserving.
We choose equality for the precondition and postcondition, i.e. no renaming of
variables (which, strictly speaking, is not I/O preserving). p₀ and pN can be
directly related using RHL:

example : rel_hoare_program init init eq p₀ pN eq

This proof contains all transformations and, for that reason, grows with the
number of optimization.
An alternative approach is to prove each transformation individually, e.g.

example : rel_hoare_program init init eq p₂ p₃ eq

This gives the developer the flexibility to choose at what granularity to perform
the proofs. Furthermore, automated tools can prove the transformations indi-
vidually. To conclude that pN is I/O preserving w.r.t. p₀ from the individual
proofs, we define a transitivity rule:

theorem trans (p₁ : program σ₁ τ₁) (p₂ : program σ₂ τ₁)
(p₃ : program σ₃ τ₁) (init₁ init₂ init₃)
(h₁ : rel_hoare_program init₁ init₂ eq p₁ p₂ eq)
(h₂ : rel_hoare_program init₂ init₃ eq p₂ p₃ eq) :
rel_hoare_program init₁ init₃ eq p₁ p₃ eq

Regardless of whether the optimizations are proven in one proof or using transi-
tivity, the only program for which we assume non-faultiness is p₀. We consider
this to be reasonable. For one thing, we already assume that the original pro-
gram is functionally correct. Therefore, p₀ should be as simple as possible. For
another thing, existing tools (e.g. [2]) may be used to prove non-faultiness and
functional correctness of the original program.
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3.4.2 Inference Rules

We define a set of inference rules to analyze Hoare quadruples and break them
down into verification conditions. The rules are adaptions from Section 2.3.3.
Hoare quadruples can be broken down using

lemma seq (Q)
(h₁ : {* P *} k₁ ~> k₂ {* Q *})
(h₂ : {* Q *} k₁' ~> k₂' {* R *}) :
{* P *} (k₁ ;; k₁') ~> (k₂ ;; k₂') {* R *}

seq breaks down the kernels on both sides. To apply single-sided rules, we
define variations of seq to relate a kernel with skip. For example, for a leading
instruction of the left program:

lemma single_step_left :
{* P *} k ~> (kernel.compute id) {* R *} →
{* R *} k₁ ~> k₂ {* Q *} →
{* P *} (k ;; k₁) ~> k₂ {* Q *}

Using consequence, the precondition can be replaced by a stronger assertion
and the postcondition can be replaced by a (not necessarily strictly) weaker
assertion:

lemma consequence (h : {* P *} k₁ ~> k₂ {* Q *})
(hp : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂,

P' n₁ s₁ ac₁ n₂ s₂ ac₂ → P n₁ s₁ ac₁ n₂ s₂ ac₂)
(hq : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂,

Q n₁ s₁ ac₁ n₂ s₂ ac₂ → Q' n₁ s₁ ac₁ n₂ s₂ ac₂) :
{* P' *} k₁ ~> k₂ {* Q' *}

RHL on Parlang does not have a symmetry rule due to its asymmetry. However,
the two kernels of a Hoare quadruple can be swapped under some circumstances:

def assertion_swap_side
(P : @rhl_kernel_assertion σ₁ σ₂ _ _ τ₁ τ₂ _ _) :=
λ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₂ s₂ ac₂ n₁ s₁ ac₁

lemma swap (h : {* P *} k₁ ~> k₂ {* Q *})
(he₁ : ∀ {n₁ s₁ ac₁ n₂ s₂ ac₂}, P n₁ s₁ ac₁ n₂ s₂ ac₂ →
∃ s₁', exec_state k₁ ac₁ s₁ s₁') :

{* assertion_swap_side P *} k₂ ~> k₁
{* assertion_swap_side Q *}

Non-faultiness of k₁ has to be shown by providing a witness for the resulting
state. swap can be used in combination with single-sided rules, which exists
as left- and right-hand side. Using swap, a left-hand side rule can be derived
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from the corresponding right-hand side rule. The proof obligation that skip is
non-faulty is trivial.
We define single-sided instruction rules, with the operation on the right side.
Rules that process the left program are created using swap.

theorem compute_right (f) :
{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, Q n₁ s₁ ac₁ n₂
(s₂.map_active_threads ac₂ (thread_state.compute f)) ac₂ *}
kernel.compute id ~> kernel.compute f {* Q *}

theorem store_right (f : σ₂ → (Σ (i : ι₂), τ₂ i)) :
{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, Q n₁ s₁ ac₁ n₂
(s₂.map_active_threads ac₂ (thread_state.store f)) ac₂ *}
kernel.compute id ~> kernel.store f {* Q *}

theorem ite_right (c : σ₂ → bool) (th) (el)
(AC : ∀ {n₂ : ℕ}, vector bool n₂ → Prop)
(h₁ : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₁ s₁ ac₁ n₂ s₂ ac₂ →

P n₁ s₁ ac₁ n₂ s₂ (deactivate_threads (bnot ∘ c) ac₂ s₂))
(h₂ : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂ (s' : state n₂ σ₂ τ₂),

Q n₁ s₁ ac₁ n₂ s₂ (deactivate_threads (bnot ∘ c) ac₂ s') →
Q n₁ s₁ ac₁ n₂ s₂ ac₂)

(h₃ : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂ (s' : state n₂ σ₂ τ₂),
Q n₁ s₁ ac₁ n₂ s₂ ac₂ →
Q n₁ s₁ ac₁ n₂ s₂ (deactivate_threads c ac₂ s'))

(h₄ : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂ (s' : state n₂ σ₂ τ₂),
R n₁ s₁ ac₁ n₂ s₂ (deactivate_threads c ac₂ s') →
R n₁ s₁ ac₁ n₂ s₂ ac₂) :

{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₁ s₁ ac₁ n₂ s₂ ac₂ ∧
(s₂.active_threads ac₂).all (λts, c ts.tlocal) *}
kernel.compute id ~> th {* Q *} →

{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, Q n₁ s₁ ac₁ n₂ s₂ ac₂ ∧
(s₂.active_threads ac₂).all (λts, bnot $ c ts.tlocal) *}
kernel.compute id ~> el {* R *} →

{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₁ s₁ ac₁ n₂ s₂ ac₂ ∧ AC ac₂ *}
kernel.compute id ~> kernel.ite c th el
{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, R n₁ s₁ ac₁ n₂ s₂ ac₂ ∧ AC ac₂ *}

theorem while_right (c : σ₂ → bool)
(V : ∀ {n₂} (s₂ : state n₂ σ₂ τ₂) (ac₂ : vector bool n₂), ℕ)
(h₁ : ∀ {n₁ s₁ ac₁ n₂ s₂ ac₂},

I n₁ s₁ ac₁ n₂ s₂ ac₂ →
I n₁ s₁ ac₁ n₂ s₂ (deactivate_threads (bnot ∘ c) ac₂ s₂))

(h₂ : ∀ {n₁ s₁ ac₁ n₂ s₂ ac₂} {s : state n₂ σ₂ τ₂},
I n₁ s₁ ac₁ n₂ s₂ (deactivate_threads (bnot ∘ c) ac₂ s) →
I n₁ s₁ ac₁ n₂ s₂ ac₂)

(hb : ∀ n, {* λ n₁ s₁ ac₁ n₂ s₂ ac₂, I n₁ s₁ ac₁ n₂ s₂ ac₂ ∧
(s₂.active_threads ac₂).all (λts, c ts.tlocal) ∧
V s₂ ac₂ = n *} kernel.compute id ~> k
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{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, I n₁ s₁ ac₁ n₂ s₂ ac₂ ∧
V s₂ (deactivate_threads (bnot ∘ c) ac₂ s₂) < n *}) :

{* I *} kernel.compute id ~> kernel.loop c k {* I *}

The rules compute_right and store_right follow the same principle as
compute_right for while-programs. However, we limit the change on the
state to active threads.
Similar to seq, ite_right has an intermediary assertion between the if and
else branch. This is because the threads do not all take the same branch.
Assertion P reflects the behavior of the if branch and R reflects the behavior
of both the if and else branch. The preconditions of the branches imply that
the condition holds or does not hold on all active threads respectively. The
converse does not hold: The validity of the condition does not necessarily yield
information about the activeness of the thread. That is, if a thread was inactive
before the branch, the condition may be either true or false.
ite_right requires additional assumptions h₁-h₄. Note that assertions are
dependent on state and the active map. A change in either one of them can
influence the validity of the assertion. In the context of a branch this means that
deactivating threads based on the condition can invalidate the assertion. That
is, the branches are executed on smaller (or equal) active maps than the ite
instruction itself. For example, in order to show that P holds before executing
th, P must be insensitive to the deactivation of threads (see h₁). Assertions on
the active map can be carried over the branch using AC. For example, AC can
capture that if all threads are active before branching, they are all active after
branching.
The instruction rule for loops (while_right) requires an invariant and a vari-
ant. The invariant I must hold before and after every loop iteration. Similar
to ite_right, the assertion must be insensitive to deactivation or activation
of threads (h₁ and h₂). The variant ensures that the loop terminates. It is a
function from the state and active map to ℕ. The variant must decrease with
every loop iteration and is limited by the lower boundary 0 of type ℕ.
Transformations in larger kernels might only change a small fraction of the code.
For example consider the following transformation:
k₁ ;; k₂ ;; k₃ ~> k₁ ;; k₂' ;; k₃. To verify the entire kernel with-
out having to deconstruct k₁ and k₃, we define a rule to relate syntactically
equal kernels.

lemma rhl_eq : {* λn₁ s₁ ac₁ n₂ s₂ ac₂, n₁ = n₂ ∧ ∀h : n₁ = n₂,
s₁ = (by rw h; exact s₂) ∧ ac₁ = (by rw h; exact ac₂) *}

k₁ ~> k₁
{* λn₁ s₁ ac₁ n₂ s₂ ac₂, n₁ = n₂ ∧ ∀ h : n₁ = n₂,

s₁ = (by rw h; exact s₂) ∧ ac₁ = (by rw h; exact ac₂) *}

The types of s₂ and ac₂ have to be rewritten because the number of threads,
which is part of their type, is not definitionally equal.
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3.4.3 Verification of Multiple Thread Groups

Due to the integration of shared and global memory into a single memory,
Parlang is limited in the ability to verify multiple thread groups. Furthermore,
it has no ability to verify host programs.
Multiple thread groups run in parallel and progress independently. They share
a global memory. Note that in our semantics, a thread group has an observ-
able behavior from the viewpoint of the global memory. This behavior can be
analyzed in great detail. The aspect that we are interested in is how a thread
group changes the memory by comparing the memory before execution and after
termination, under the assumption that no other thread group manipulates the
memory. Because there is no ability to synchronize on global memory, the order
and timing of the updates are of no relevance in this case. Based on this view,
we distinguish between two types of transformations. Either the observable be-
havior changes or it does not change. Our logic is only capable of verifying the
latter.
We informally show that verifying multiple thread groups that change the ob-
servable behavior is not possible in Parlang. Consider two thread groups with
one thread each running the same kernel in parallel. We call them thread 1 and
thread 2. The thread group is provided as an argument to the kernel. Suppose
that thread 1 writes to global memory at location a and thread 2 writes to
global memory at location b (depending on the thread group id). We change
the kernel, such that it now writes to location a regardless of the thread group
id. Note that, according to Parlang, a single thread in a thread group cannot
interfere with itself. However, the two thread groups interfere at location a.
We propose the following solution to verify multiple thread groups that do not
change the observable behavior. Based on the RHL on Parlang, we assume that
the left program is correct. Hence, we can also assume that the left program does
not interfere on the global memory. If the observable behavior does not change
after a transformation, the property of non-interference on the global memory
persists. The RHL on Parlang verifies a program on (possibly infinitely) many
initial memory configurations. It can cover multiple thread groups by providing
a thread group identifier. The precondition can limit the range of the thread
group identifier and hence the number of thread groups.
To ensure that the observable behavior does not change, the assertions for the
relational proof on Parlang programs must imply that all global variables are
equal in both program. The relation eq matches this requirement, but might
be too restrictive for some cases.
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3.5 MCL

Parlang is an abstract language that is designed to capture the essential primi-
tives of GPU programs. However, it does not model a real language. Towards
this end, we formalize the language MCL. This is the basis to provide developers
with a framework to prove MCL program transformations, possibly using some
automation. We will relate MCL and Parlang by defining the semantics of MCL
in terms of Parlang.
Not all MCL features will be supported by our formalization. The limitations
will be discussed in the individual subsections and future work (Chapter 6).
The verification of the MCL compiler itself is out of reach of this work.
Because MCL is defined in terms of Parlang, the limitations of the latter carry
over. This includes the simplistic memory structure with only shared and
thread-local memory. Furthermore, multiple thread groups can only be veri-
fied as described in Section 3.4.3.

3.5.1 Primitive Types

MCL has the primitive types bool, integers and float. The types and
their operations form the basis for building expressions, e.g. to calculate an
array index or a new variable value. For simplicity, we use existing Lean types
to approximate the primitive types. The benefit is that all existing lemmas of
those types can be used in RHL proofs. We explicitly ignore particular aspects,
such as overflows and leave them for future work.
Booleans are mapped to the Lean type bool, which is an accurate representa-
tion. The type has exactly two elements: tt and ff denoting true and false
respectively. Floats in GPUs have a fixed size in memory. The precision de-
pends on the value of the number, i.e. larger numbers have a smaller precision.
We choose a type which does not lose precision; that is, rounding errors cannot
be identified by our semantics. Furthermore, there is an upper and a lower
boundary on the values, which we ignore. Floats are mapped to type rat (from
the mathlib library) that models rational numbers. Integers are mapped to ℕ.
We define the mapping from MCL types to Lean types as a function.

def type_map : type → Type
| int := ℕ
| float := rat
| bool := _root_.bool

An instance of type_map t for any type t is definitionally equal to the un-
derlying Lean type, which means we can directly reason with them using the
equality predicate. For example, given some x of type type_map int, the
term x = (7 : nat) is well typed.
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In cases where it is not clear from the context, we use the term MCL type to
distinguish from Lean types. MCL types are of type type (with a small t),
while the Lean type universe is Type (with a capital T).

3.5.2 Arrays

Arrays are an essential part of MCL and GPU programs in general. Without
them, it is very cumbersome for threads to read from and write to the shared
state. The benefit of arrays is that we can compute array indices at runtime,
possibly depending on the thread identifier. This allows for all sorts of opera-
tions, such as distributing data over threads or enabling adjacent threads (in a
group) to communicate. It is therefore important that we formalize arrays and
have convenient ways to reason about them in assertions.
We allow declarations of multi-dimensional arrays. The number of dimensions
is fixed at compile time. However, we leave it for future work to formalize array
sizes. Therefore, arrays are of infinite size and an access to any index is valid.
We have considered multiple options to formalize arrays:

• Each primitive type has a dimensions argument. This means we
introduce arrays for each primitive type individually. However, all primi-
tives behave the same as elements of arrays, so there is no good reason to
reintroduce the concept for each type.

• Make array a separate type. Next to the primitives types, array is
another type that (recursively) takes a type as an argument. However,
this allows the nesting of arrays, which introduces unnecessary complexity.

• Make every variable an array. A variable is an array and has a fixed
primitive type for its elements. MCL declarations for primitive types are
treated as arrays with a single dimension and element.

We formalize the third option as a structure.

structure array := (dim : ℕ) (type : type)

3.5.3 Signature

The signature encapsulates the meta-information about all variables.

def signature_core := string → variable_def

A variable is addressed by string. By definition, there cannot be multiple vari-
ables with the same name. As described in section 3.5.2 a variable is always an
array and the elements of those arrays are not considered variables.
Each declaration contains the following information:

50



inductive scope
| tlocal
| shared

structure variable_def := (type : array) (scope : scope)

A variable is declared either in shared or thread-local memory.
To make the thread identifier accessible to the threads, we impose some restric-
tions on the variable with the name tid. Its value is set in the initial state,
i.e. not by the program itself. To do this in a type-safe manner, the variable
must be declared as a thread-local scalar int. We achieve this by subtyping
signature_core.

def signature := { sig : signature_core //
type_of (sig "tid") = type.int ∧
(sig "tid").type.dim = 1 ∧
(sig "tid").scope = scope.tlocal }

The kernel can access any variable from every location. We do not allow dec-
larations in loop bodies etc. This is a simplification that allows us to fix the
signature for all definitions in Lean. That is, the signature never changes in any
definition. Visibility can still be restricted by constraining MCL kernels using
additional definitions. However, this is left for future work.
To extract information from the signature, we implement a couple of convenience
functions:

def type_of (v : variable_def) : type := v.type.type
def lean_type_of (v : variable_def) := type_map (type_of v)
def signature.type_of (n : string) (sig :signature) :=

type_of (sig.val n)
def signature.lean_type_of (n : string) (sig : signature) :=

lean_type_of (sig.val n)
def is_tlocal (v : variable_def) := v.scope = scope.tlocal
def is_shared (v : variable_def) := v.scope = scope.shared

3.5.4 State

Parlang has a generic memory model that abstracts over types. In MCL we fix
those types, but make them dependent on the signature.
MCL addresses memory using the variable name and the (computed) array
indices.

def mcl_address (sig : signature) :=
(Σ n: string, vector ℕ (sig.val n).type.dim)
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The number of dimensions is dependent on the particular variable. Given an
instance i of type mcl_address sig, the variable name is accessible as i.1.
Given the address type and a signature, we can construct the type map for the
shared memory.

def parlang_mcl_shared (sig : signature) :=
(λ i : mcl_address sig, sig.lean_type_of i.1)

Every thread has thread-local memory. We repurpose the same memory model,
address type and type map from the shared memory.

def parlang_mcl_tlocal (sig : signature) :=
(λ i : mcl_address sig, sig.lean_type_of i.1)

Finally, we define the MCL kernel in terms of the Parlang kernel.

def parlang_mcl_kernel (sig : signature) := kernel
(memory $ parlang_mcl_tlocal sig) (parlang_mcl_shared sig)

3.5.5 Expressions

In Parlang, many parts of the program are defined using Lean functions. Namely,
a compute statement is a function from a state to the resulting state (on all ac-
tive threads). Other examples include the evaluation of conditions for branching
and loops. This is called shallow embedding and is a flexible approach. The ben-
efit is that we can use all existing definitions in Lean, for instance, to build up a
complex arithmetic term. Moreover, we can use existing lemmas and tactics to
reason about the functions. However, for MCL we move to a deep-embedding
approach to more accurately capture the structure of MCL programs. The ben-
efits are that inference rules can include expressions and automated tools have
a limited inductive structure to cover (i.e. by the no junk property of inductive
types). We define an inductive type for expressions that is indexed over MCL
types.

inductive expression (sig : signature) : type → Type
| tlocal_var {t} {dim : ℕ} (n : string)

(idx : fin dim → (expression int))
(h₁ : type_of (sig.val n) = t)
(h₂ : (sig.val n).type.dim = dim)
(h₃ : is_tlocal (sig.val n)) : expression t

| shared_var {t} {dim : ℕ} (n : string)
(idx : fin dim → (expression int))
(h₁ : type_of (sig.val n) = t)
(h₂ : (sig.val n).type.dim = dim)
(h₃ : is_shared (sig.val n)) : expression t

| add {t} : expression t → expression t → expression t
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| mult {t} : expression t → expression t → expression t
| literal_int {} {t} (n : ℕ) (h : t = type.int) : expression t
| lt {t} (h : t = type.bool) :

expression int → expression int → expression t

We only formalize the subset of MCL’s operators that are needed to create
meaningful use cases. Constructors tlocal_var and shared_var are refer-
ences to variables. add and mult are arithmetic operations. lt denotes less
than. We use the common notations +, *, and < for the respective operators.
An expression is always well-typed. That is, all references to variables and
nested expressions are type correct. Note that expressions of one type might con-
tain expressions of another type. For example, an expression such as (4 < 7)
nests two integer literals in a boolean expression.
The definition of expression is not only a recursive but a nested inductive type.
A nested inductive type, nests the type to be defined in the type of a constructor
argument. In expression, the arguments idx of constructors tlocal_var
and shared_var require one expression per dimension of the array (which de-
pends on the signature). The straight-forward approach would be to define the
argument idx over the type
(vector (expression int) (sig.val n).type.dim); however, this
is not possible in Lean. A nested inductive type is resolved by the parser to a
simple inductive type that is supported by the Lean kernel. However, not all
types of nested inductive types are supported. To work around the limitations
of the parser, we have to use a slightly different definition. Instead of using
vectors directly, we accept a function that maps a natural number, bounded
by the number of dimensions dim, to the corresponding expression. vector
provides this function, namely vector.nth. We can transform the function
back to a vector using vector.of_fn.
Because expression is a nested inductive type, pattern matching on it is limited.
Suppose we define a function f on expression. If f needs to be recursively ap-
plied on the indices of tlocal_var or shared_var, pattern matching fails.
Recursive definitions are not allowed by the Lean kernel because they generally
do not terminate. In most situations, the parser can resolve recursive appli-
cations and proof termination automatically. But this is not the case for the
recursive occurrences of the indices. Instead, the recursor must be used directly.
Most constructors of expression take implicit arguments t and dim. Further-
more, the constructors require proofs that t and dim are equal to a value
originating from the signature. This is as opposed to substituting t and dim
with the other side of the equality in all constructors. Although, this would
increase the readability, our definition is more convenient to use in combination
with the relational Hoare logic. We clarify this with an example. Assume that
we have two expressions: a reference to variable "a" of type int and a literal
integer. If we want to nest the two expressions using lt, we can choose t to be
int for both expression to get a type-correct application. If we substitute t by
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type_of (sig.val n), the resulting type
expression (type_of (sig.val n)) would not fit as an argument of
lt. As a consequence, we would have to wrap the expression to adjust its type.
However, this would make it harder to use rw to rewrite expressions, because
the wrapper changes the term.
To evaluate an expression on the thread-local memory we define

def eval {sig : signature}
(m : memory $ parlang_mcl_tlocal sig) {t : type}
(expr : expression sig t) : type_map t :=
expression.rec_on expr

-- tlocal
(λ t dim n idx h₁ h₂ h₃ ih, by rw ← h₁; rw ← h₂ at ih;

exact m.get ⟨n, vector.of_fn ih⟩)↪→

-- shared
(λ t dim n idx h₁ h₂ h₃ ih, by rw ← h₁; rw ← h₂ at ih;

exact m.get ⟨n, vector.of_fn ih⟩)↪→

-- add
(λ t a b ih_a ih_b, type_map_add ih_a ih_b)
-- mult
(λ t a b ih_a ih_b, type_map_mult ih_a ih_b)
-- literal_int
(λ t n h, (by rw [h]; exact n))
-- lt
(λ t h a b ih_a ih_b, (by rw h; exact (ih_a < ih_b)))

The comment preceding an argument denotes, to which constructor the small
premise belongs to. For simplicity, the evaluation of expressions is computable
and cannot fail.
We use the equality hypotheses from expression to rewrite the return type
using the tactic rw. The tactic exact returns the type-correct term.
The function eval only has access to the thread-local memory. We assume
that all shared variables that are referenced in the expression have been loaded
into the thread-local memory, under the same address. Under this assumption,
reading global variables is no different from reading thread-local variables. The
loading of variables depends on the context of the expression and is explained
in Section 3.5.7.
Addition and multiplication are evaluated in auxiliary definitions.

def type_map_add : ∀{t : type}, type_map t → type_map t →
type_map t↪→

| int a b := a + b
| float a b := a + b
| bool a b := a && b

def type_map_mult : ∀{t : type}, type_map t → type_map t →
type_map t↪→

54



| int a b := a * b
| float a b := a * b
| bool a b := a || b

For multiple purposes we need to know if an expression references a variable.

def expr_reads (n : string) {t : type}
(expr : expression sig t) : _root_.bool :=
expression.rec_on expr

-- tlocal
(λ t dim m idx h₁ h₂ h₃ ih, (m = n) ||

(vector.of_fn ih).to_list.any id)
-- shared
(λ t dim m idx h₁ h₂ h₃ ih, (m = n) ||

(vector.of_fn ih).to_list.any id)
-- add
(λ t a b ih_a ih_b, ih_a || ih_b)
-- mult
(λ t a b ih_a ih_b, ih_a || ih_b)
-- literal_int
(λ t n h, ff)
-- lt
(λ t h a b ih_a ih_b, ih_a || ih_b)

If a variable is not used in an expression, we can ignore corresponding updates.

lemma eval_update_ignore (h : expr_reads n expr = ff) :
eval (s.update ⟨n, idx₂⟩ v) expr = eval s expr

A reference to a variable in any part of an MCL program is often used to
access memory. The index expressions of the reference must first be evaluated
to numerical indices and rewritten to a type correct vector. We abstract this
process in a function.

def mcl_addr_from_var {sig : signature} {n dim}
(h₂ : (sig.val n).type.dim = dim)
(idx : vector (expression sig type.int) dim)
(m : memory $ parlang_mcl_tlocal sig) : mcl_address sig :=
⟨n, by rw ← h₂ at idx; exact idx.map (eval m)⟩

3.5.6 Kernels and Programs

We define the syntax of MCL kernels, which look similar to Parlang kernels:

inductive mclk (sig : signature)
| tlocal_assign {t : type} {dim : ℕ} (n : string)
(idx : vector (expression sig int) dim)
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(h₁ : type_of (sig.val n) = t)
(h₂ : (sig.val n).type.dim = idx.length) :
(expression sig t) → mclk

| shared_assign {t : type} {dim : ℕ} (n)
(idx : vector (expression sig int) dim)
(h₁ : type_of (sig.val n) = t)
(h₂ : (sig.val n).type.dim = idx.length) :
(expression sig t) → mclk

| seq : mclk → mclk → mclk
| for (n : string) (h : sig.type_of n = int)
(h₂ : (sig.val n).type.dim = 1) :
expression sig int → expression sig bool → mclk → mclk → mclk

| ite : expression sig bool → mclk → mclk → mclk
| skip {} : mclk
| sync {} : mclk

Similar to expression, we use arguments t and dim in combination with
equality proofs on them (cf. Section 3.5.5). To model MCL accurately, we drop
the compute constructor from Parlang and introduce thread-local and shared
assignments. All assignments must be type-correct according to the signature.
Furthermore, because there is no compute constructor, we introduce a skip
instruction.
We formalize the commonly used for-loop. As opposed to while-loops, for-loops
have an explicit loop variable (n). Using for-loops, we can define inference rules
for common loop-patterns, e.g. a loop variable ranging over numbers.
We encapsulate the kernel in an MCL program:

inductive mclp (sig : signature)
| intro (f : memory (parlang_mcl_shared sig) → ℕ)

(k : mclk sig) : mclp

Because we have few inference rules on programs, we chose a shallow embedding
to compute the thread parallelism.

3.5.7 Translation to Parlang

To keep track of possible interference, Parlang requires that all accesses to shared
memory are performed by load instructions. This makes it easier to reason
about Parlang programs, because the load instructions show the read accesses
to shared memory. If any part on the MCL program (including the conditions for
ite and for) requires shared variables, their values must first be loaded into the
thread-local memory. In this process, we have to ensure that the loaded values
do not interfere with the integrity of the thread-local state, e.g. by overwriting a
thread-local variable. Because shared and thread-local variables share the same
signature, a variable name is exclusively scoped to either shared or thread-local.

56



Therefore, we can take the same address to keep the copy in the thread-local
state without interfering with thread-local variables.
Additionally, we have to ensure that the load instructions are placed correctly
in the code, such that the load happens before consumption and is not in-
validated afterwards. Hence, there must not be a store (to the same ad-
dress) or a sync between load and consumption. We have to place load in-
structions for every mclk constructor that uses expressions: shared_assign,
tlocal_assign, ite, and for. For the first three constructors, we place the
load instructions before any other Parlang instruction we generate for those
cases. The for constructor is different, in that the loop condition is possibly
evaluated many times. Therefore, we have to reload the values before every
evaluation. The first evaluation happens before executing the loop body. To
reload the local copies, we place the same set of load instructions inside the
loop body after the regular for body and the incrementor function.
The list of load instructions is computed by recursively analyzing the expres-
sion and finding all occurrences of shared variables.

def load_shared_vars_for_expr {sig : signature} {t : type}
(expr : expression sig t) : list (parlang_mcl_kernel sig) :=
expression.rec_on expr

-- tlocal
(λ t dim n idx h₁ h₂ h₃ ih,

(vector.of_fn ih).to_list.foldl list.append [])
-- shared
(λ t dim n idx h₁ h₂ h₃ ih,

(vector.of_fn ih).to_list.foldl list.append [] ++
[kernel.load (λ m,
⟨mcl_addr_from_var h₂ (vector.of_fn idx) m, λ v,
m.update
(mcl_addr_from_var h₂ (vector.of_fn idx) m) v⟩)])

-- add
(λ t a b ih_a ih_b, ih_a ++ ih_b)
-- mult
(λ t a b ih_a ih_b, ih_a ++ ih_b)
-- literal_int
(λ t n h, [])
-- lt
(λ t h a b ih_a ih_b, ih_a ++ ih_b)

To allow Lean to compute this function, we avoid the use of sets and use lists
instead. This means we potentially load the same variable multiple times; how-
ever, this is idempotent. Moreover, the order of the load instructions is ir-
relevant. All expressions are fully evaluated, e.g. even if the left side of an
or expression holds we still evaluate the right side, and therefore pessimisti-
cally load all values. The list of instructions is translated into a sequence of
instructions and either prepended or appended to a given instruction.
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def prepend_load_expr {sig : signature} {t : type}
(expr : expression sig t) (k : parlang_mcl_kernel sig) :=
(load_shared_vars_for_expr expr).foldr kernel.seq k

def append_load_expr {sig : signature} {t : type}
(expr : expression sig t) (k : parlang_mcl_kernel sig) :=
(load_shared_vars_for_expr expr).foldl kernel.seq k

On a per-thread basis, the load instructions are only executed if the expres-
sion (containing the shared variables) is evaluated. This can be observed by
the behavior of active maps on instruction sequences in Parlang’s operational
semantics. Given a sequence a ;; b (where a and b are kernels), then a and
b are executed on the same active map. In other words, only nested kernels
change the active map. Suppose b is an ite. Then the condition-expression is
evaluated, regardless of what branch a thread takes.
Assignments in MCL are translated to compute instructions in Parlang. The
given variable is updated with the new value, that is computed by evaluating
the expression. Array index expressions are evaluated to calculate the location
in memory. We encapsulate this process in a function, which also takes care of
type correctness.

def memory.update_assign {sig : signature} {t : type} {dim : ℕ}
(n : string) (idx : vector (expression sig int) dim)
(h₁ : type_of (sig.val n) = t)
(h₂ : (sig.val n).type.dim = idx.length)
(expr : expression sig t)
(m : memory $ parlang_mcl_tlocal sig) :
memory $ parlang_mcl_tlocal sig :=
m.update (mcl_addr_from_var h₂ idx m)
(by rw ← h₁ at expr; exact (eval m expr))

The translation from mclk to a Parlang kernel is defined as a function.

def mclk_to_kernel {sig : signature} : mclk sig →
parlang_mcl_kernel sig
| (seq k₁ k₂) :=

kernel.seq (mclk_to_kernel k₁) (mclk_to_kernel k₂)
| skip := kernel.compute id
| sync := kernel.sync
| (tlocal_assign n idx h₁ h₂ expr) := idx.to_list.foldr

(λexpr' k, prepend_load_expr expr' k) $
prepend_load_expr expr (kernel.compute $

memory.update_assign n idx h₁ h₂ expr)
| (shared_assign n idx h₁ h₂ expr) := idx.to_list.foldr

(λexpr' k, prepend_load_expr expr' k) $
prepend_load_expr expr (kernel.compute $

memory.update_assign n idx h₁ h₂ expr) ;;
kernel.store (λ m, ⟨mcl_addr_from_var h₂ idx m, m.get $
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mcl_addr_from_var h₂ idx m⟩)
| (ite c th el) := prepend_load_expr c (

kernel.ite (λm, eval m c)
(mclk_to_kernel th) (mclk_to_kernel el))

| (for n h h₂ expr c k_inc k_body) := prepend_load_expr expr
(kernel.compute $ memory.update_assign n v[0] h h₂ expr);;
prepend_load_expr c (

kernel.loop (λ s, eval s c) (mclk_to_kernel k_body ;;
append_load_expr c (mclk_to_kernel k_inc))

)

The translation of the constructors seq, skip and sync is trivial. The con-
structor tlocal_assign computes a new thread-local memory according to
update_assign. The shared variables that are referenced in expr and all
expressions in idx are prepended. shared_assign also computes the new
value in thread-local memory first and stores it into shared memory in a ded-
icated instruction. Note that all occurrences of load and store instructions
only copy values between thread-local and shared memory without applying
any arithmetic operators. This was a design decision to simplify the proof of
inference rules. for loops are translated to Parlang loops. The initial value of
the loop variable is set before the loop. The for loop body and the incrementor
together form the basis for the Parlang loop body. Because the loop condition
c is evaluated after every iteration, the shared variables have to be reloaded
with every iteration. For the first iteration, we load the shared variables of c
before the loop. For every other iteration, we reload the variables in the loop
body, after any other instruction.
The translation from mclp to Parlang programs is straight-forward.

def mclp_to_program {sig : signature} : mclp sig →
parlang.program (memory $ parlang_mcl_tlocal sig)
(parlang_mcl_shared sig)
| (mclp.intro f k) :=

parlang.program.intro f (mclk_to_kernel k)
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3.6 Relational Hoare Logic for MCL

To prove program transformations of MCL programs we define a relational
Hoare logic for MCL. Due to the relation of MCL and Parlang, we can lift
the existing RHL on Parlang to MCL. Because MCL has a fixed type map
(however dependent on the signature), we create an alias (i.e. a Lean definition)
for MCL assertions.

def state_assert (sig₁ sig₂ : signature) :=
∀ n₁:ℕ, parlang.state n₁ (memory (parlang_mcl_tlocal sig₁))
(parlang_mcl_shared sig₁) → vector bool n₁ →
∀ n₂:ℕ, parlang.state n₂ (memory (parlang_mcl_tlocal sig₂))
(parlang_mcl_shared sig₂) → vector bool n₂ → Prop

Programs and kernels are translated from MCL to Parlang according to the
definitions from Section 3.5.

def mclk_rel {sig₁ sig₂ : signature}
(P : state_assert sig₁ sig₂)
(k₁ : mclk sig₁) (k₂ : mclk sig₂)
(Q : state_assert sig₁ sig₂) :=

rel_hoare_state P (mclk_to_kernel k₁) (mclk_to_kernel k₂) Q

We use the same Hoare quadruple notation as for Parlang. Furthermore, we
define RHL on mclp.

def mclp_rel {sig₁ sig₂ : signature} (P) (p₁ : mclp sig₁)
(p₂ : mclp sig₂) (Q) := rel_hoare_program mcl_init mcl_init
P (mclp_to_program p₁) (mclp_to_program p₂) Q

We can lift the proof to relate the logics of kernels and programs from Parlang
to MCL.

lemma rel_mclk_to_mclp (h : mclk_rel (λ n₁ s₁ ac₁ n₂ s₂ ac₂,
∃ m₁ m₂, initial_kernel_assertion mcl_init mcl_init
P f₁ f₂ m₁ m₂ n₁ s₁ ac₁ n₂ s₂ ac₂)

k₁ k₂
(λ n₁ s₁ ac₁ n₂ s₂ ac₂, (∃ m₁, s₁.syncable m₁) → ∃ m₁ m₂,

s₁.syncable m₁ ∧ s₂.syncable m₂ ∧ Q m₁ m₂))
(hg : ∀ {m₁ m₂}, P m₁ m₂ → 0 < f₁ m₁) :
mclp_rel P (mclp.intro f₁ k₁) (mclp.intro f₂ k₂) Q :=
rel_kernel_to_program h @hg

Similarly, we can lift the rules consequence, seq and the single-step rules,
e.g. single_step_left.

lemma consequence (h : {* P *} k₁ ~> k₂ {* Q *})
(hp : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂, P' n₁ s₁ ac₁ n₂ s₂ ac₂ →
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P n₁ s₁ ac₁ n₂ s₂ ac₂)
(hq : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂, Q n₁ s₁ ac₁ n₂ s₂ ac₂ →

Q' n₁ s₁ ac₁ n₂ s₂ ac₂) :
{* P' *} k₁ ~> k₂ {* Q' *} := consequence h hp hq

lemma seq (Q)
(h₁ : {* P *} k₁ ~> k₂ {* Q *})
(h₂ : {* Q *} k₁' ~> k₂' {* R *}) :
{* P *} k₁ ;; k₁' ~> k₂ ;; k₂' {* R *} := parlang.seq Q h₁ h₂

lemma single_step_left :
{* P *} k₁ ~> skip {* Q *} →
{* Q *} k₁' ~> k₂ {* R *} →
{* P *} (k₁ ;; k₁') ~> k₂ {* R *} := parlang.single_step_left Q

The inference rule seq can be lifted by using the lemma from Parlang directly.
Hence, MCL’s rule is just an instance of Parlang’s rule. This is because the
sequence instruction in MCL directly relates to the sequence instruction in Par-
lang (cf. mclk_to_kernel). An inference rule where this line of reasoning
does not apply is shared_assign_right.

lemma shared_assign_right {t dim n}
{idx : vector (expression sig₂ type.int) dim}
{h₁ : type_of (sig₂.val n) = t}
{h₂ : ((sig₂.val n).type).dim = dim}
{expr : expression sig₂ t} :
{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₁ s₁ ac₁ n₂

(s₂.map_active_threads ac₂ (
thread_state.tlocal_to_shared n idx h₁ h₂ ∘
thread_state.compute

(memory.update_assign n idx h₁ h₂ expr) ∘
thread_state.update_shared_vars_for_expr expr ∘
thread_state.update_shared_vars_for_exprs idx

)) ac₂ *}
(skip : mclk sig₁) ~> shared_assign n idx h₁ h₂ expr {* P *}

shared_assign_right is a single-sided instruction rule. It translates to at
least one compute and one store instruction in Parlang. To avoid lambda-
terms in the assertions, we define a function that copies a value from shared to
thread-local memory.

def thread_state.tlocal_to_shared {sig : signature} {t} {dim}
(var : string) (idx : vector (expression sig type.int) dim)
(h₁ : type_of (sig.val var) = t)
(h₂ : ((sig.val var).type).dim = dim) :=
@thread_state.store _ _ (parlang_mcl_shared sig) _ (

λ (m : memory $ parlang_mcl_tlocal sig),
⟨mcl_addr_from_var h₂ idx m,

m.get $ mcl_addr_from_var h₂ idx m⟩)
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Furthermore, there may be multiple load instructions. We abstract the changes
on thread_state of all load instructions of an expression.

def thread_state.update_shared_vars_for_expr {t : type}
(expr : expression sig t) :
thread_state
(memory $ parlang_mcl_tlocal sig) (parlang_mcl_shared sig) →

thread_state
(memory $ parlang_mcl_tlocal sig) (parlang_mcl_shared sig) :=

expression.rec_on expr
-- tlocal
(λ t dim n idx h₁ h₂ h₃ ih, id)
-- shared
(λ t dim n idx h₁ h₂ h₃ ih, λ ts,
((list.range_fin dim).foldl (λ ts e, ih e ts) ts).load (
λ m, ⟨mcl_addr_from_var h₂ (vector.of_fn idx) m, λ v,
m.update (mcl_addr_from_var h₂ (vector.of_fn idx) m) v⟩))
-- add
(λ t a b ih_a ih_b, ih_b ∘ ih_a)
-- mult
(λ t a b ih_a ih_b, ih_b ∘ ih_a)
-- literal_int
(λ t n h, id)
-- lt
(λ t h a b ih_a ih_b, ih_b ∘ ih_a)

We also lift the definition to support a vector of expressions.

def thread_state.update_shared_vars_for_exprs {n} {t : type}
(exprs : vector (expression sig t) n) :
thread_state
(memory $ parlang_mcl_tlocal sig) (parlang_mcl_shared sig) →

thread_state
(memory $ parlang_mcl_tlocal sig) (parlang_mcl_shared sig) :=

λts, exprs.to_list.foldr (λexpr ts,
thread_state.update_shared_vars_for_expr expr ts) ts

Using swap we can create shared_assign_left.

lemma shared_assign_left {t dim n expr}
{idx : vector (expression sig₁ type.int) dim}
{h₁ : type_of (sig₁.val n) = t}
{h₂ : ((sig₁.val n).type).dim = vector.length idx} :
{* λ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₁ (s₁.map_active_threads ac₁ (

thread_state.tlocal_to_shared n idx h₁ h₂ ∘
thread_state.compute

(memory.update_assign n idx h₁ h₂ expr) ∘
thread_state.update_shared_vars_for_expr expr ∘
thread_state.update_shared_vars_for_exprs idx
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)) ac₁ n₂ s₂ ac₂ *}
shared_assign n idx h₁ h₂ expr ~> skip {* P *} := begin

apply swap_skip shared_assign_right,
end
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Chapter 4

Use Cases

We evaluate the applicability of our approach by presenting two use cases. The
first example is written in MCL and breaks down the two programs using in-
struction rules – a versatile but cumbersome approach. The second example is
written in Parlang and shows the benefit of a transition rule.

4.1 Example 1: Swapping Assignments

We show that reordering of two assignment instructions preserves the input-
output behavior. We do not have a transformation rule for this case. Hence, we
use instruction rules to decompose the programs instruction by instruction.
First, we define a signature, where all variables except tid are shared one-
dimensional arrays of type int.

def sigc : signature_core
| "tid" := { scope := scope.tlocal, type := ⟨1, type.int⟩ }
| _ := { scope := scope.shared, type := ⟨1, type.int⟩ }

def sig : signature := ⟨sigc, ⟨rfl, rfl, rfl⟩⟩

Because the signature is computable, all proofs regarding the signature can be
proven by reflexivity. We define the initial implementation of the program with
two assignments to different variable names.

def read_tid :=
(@expression.tlocal_var sig _ _ "tid" (λ_, 0) rfl rfl rfl)

def p₁ : mclp sig := mclp.intro (λ m, 100) (
mclk.shared_assign "a" v[read_tid] rfl rfl read_tid ;;
mclk.shared_assign "b" v[read_tid] rfl rfl
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(read_tid + (expression.literal_int 1 rfl))
)

A simple transformation is to swap the assignments.

def p₂ : mclp sig := mclp.intro (λ m, 100) (
mclk.shared_assign "b" v[read_tid] rfl rfl

(read_tid + (expression.literal_int 1 rfl)) ;;
mclk.shared_assign "a" v[read_tid] rfl rfl read_tid

)

We want to show that the transformation from p₁ to p₂ is I/O preserving.

lemma assign_rel' : mclp_rel eq p₁ p₂ eq

For the pre- and postcondition we relate the memories using equality. This
includes, that arrays "a" and "b" must be equal after execution. All other
variables remain untouched by the programs.
By applying rel_mclk_to_mclp to the the goal, we can reduce the goal to a
Hoare quadruple on the respective kernels of p₁ and p₂. Using the single-step
rules (e.g. single_left_step_left), we can decompose the Hoare quadru-
ples, such that one kernel contains a single instruction and the other side is a
skip. Using the single-sided instruction rules shared_assign_right and
shared_assign_left, we can eliminate the Hoare quadruples. After this
process, we have the following assumptions (among others).

∀ n₁ s₁ ac₁ n₂ s₂ ac₂, (∃ m₁ m₂),
initial_kernel_assertion mcl_init mcl_init eq
(λ _, 100) (λ _, 100) m₁ m₂ n₁ s₁ ac₁ n₂ s₂ ac₂

From the assumptions we can conclude that s₁ = s₂, m₁ = m₂, and n₁ = n₂.
It remains to solve the following goal.

∃ m₁' m₂', syncable (map_active_threads ac₁ (
tlocal_to_shared "b" v[read_tid] _ _ ∘
compute (memory.update_assign "b" v[read_tid] _ _

(read_tid + expression.literal_int 1 _)) ∘
update_shared_vars_for_expr

(read_tid + expression.literal_int 1 _) ∘
update_shared_vars_for_exprs v[read_tid] ∘
tlocal_to_shared "a" v[read_tid] _ _ ∘
compute (memory.update_assign "a" v[read_tid] _ _

read_tid) ∘
update_shared_vars_for_expr read_tid ∘
update_shared_vars_for_exprs v[read_tid]

) s₁) m₁' ∧ syncable (map_active_threads ac₂ (
tlocal_to_shared "a" v[read_tid] _ _ ∘
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compute (memory.update_assign "a" v[read_tid] _ _
read_tid) ∘

update_shared_vars_for_expr read_tid ∘
update_shared_vars_for_exprs v[read_tid] ∘
tlocal_to_shared "b" v[read_tid] _ _ ∘
compute (memory.update_assign "b" v[read_tid] _ _

(read_tid + expression.literal_int 1 _) ∘
update_shared_vars_for_expr

(read_tid + expression.literal_int 1 _) ∘
update_shared_vars_for_exprs v[read_tid]

) s₂) m₂' ∧ m₁' = m₂'

Among others, we have to prove syncable for the resulting state of both kernel
executions. The structure of the resulting state is similar for both kernels.
They map all active threads (hence all threads in our case) using the functors
tlocal_to_shared, compute, update_shared_vars_for_expr and
update_shared_vars_for_exprs.
In our goal, the arguments of update_shared_vars_for_expr and
update_shared_vars_for_exprs that are of type expression do not
contain any references to shared variables. Using computability, we can reduce
the terms to id and remove the latter using the tactic simp. Only the functors
tlocal_to_shared and compute remain.
In order to prove a proposition of type syncable _ _, we have to prove a
proposition on every address i of type mcl_address sig (cf. the definition
of syncable). We can do so by doing case distinct on i. If the variable name
is neither "a" nor "b", no thread stores at these addresses and this part of the
resulting memory is equal to the initial memory. In the case that the variable
name is "a" or "b", we have to do case distinction once more; this time on the
array index. If the array index is a below 0 or above 99, again no thread stores
at these addresses. In the case that the array index is between 0 and 99, there
exists a thread that stores at this address. For those cases it has to be proven
that no other thread stores at that address. Furthermore, those cases influence
the resulting memory. In all cases, we have to study the state argument of
syncable in a repeating fashion, which is cumbersome.
Instead of doing case distinction on addresses directly, we proof syncable by
the structure of the state. We define a variation of syncable, that allows us
to process the functors of map_active_threads one by one.

def syncable' (shole : set ι) (lhole : set ι) (s : state n σ τ)
(m : memory τ) : Prop :=
state.syncable s m ∧ ∀ i tid,
(i ∈ shole → i ∉ (s.threads.nth tid).stores) ∧
(i ∈ lhole → i ∉ (s.threads.nth tid).loads)

The two new arguments shole and lhole denote addresses at which no thread
is allowed to store to or load from, respectively. We can relate syncable and
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syncable' and use this lemma to rewrite our goal.

lemma syncable_syncable' :
syncable' ∅ ∅ s m ↔ state.syncable s m

For brevity and due to the intensive need of auxiliary definitions, we only provide
the intuition for the remaining part of the proof. The entire proof is available
in Lean.
We have to provide the witnesses for the resulting memories m₁' and m₂'.
Initially, we use the initial memories m₁ and m₂ respectively. With every
tlocal_to_shared function that we process, we update cells in the mem-
ory (at most one per active thread). The new memory cell value is dependent
on s₁ and all compute functions that come before tlocal_to_shared (in
the order of execution according to the operational semantics). After we pro-
cess a tlocal_to_shared, no more stores or loads are allowed to the related
addresses. We use arguments shole and lhole of syncable' to keep track
of these addresses. This way, we ensure that multiple tlocal_to_shared
functions do not interfere with each other.
Using syncable' and the related lemmas, we obtain the resulting memories.
It remains to show that the postcondition holds, i.e. that m₁' = m₂'. The
memories are based on m₁ and m₂ respectively, which are equal. Therefore,
we substitute m₂ with m₁. On each side of the equation, the same updates
are applied to m₁, however, in a different order. By changing the order of the
update instructions, we can make both sides structurally equal.
Non-termination cannot occur because the programs do not contain loops. Fur-
thermore, there is no possibility of a barrier divergence because the programs
do not contain sync instructions.

4.2 Example 2: Known Branch

We consider the following Parlang program, where k is an arbitrarily complex
kernel:

def p₁ : program bool (λ (s : string), ℕ) :=
program.intro (λm, m.get "x") (

compute (λ_, tt) ;;
ite id (

k
) (

store (λ_, ⟨"a", 5⟩)
)

)

The thread-local storage is of type bool. The condition of the ite instruction is
true if the thread-local storage equals tt, which is the case due to the proceeding
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compute instruction. Hence, the condition holds for all threads and the else
branch is inactive in all executions. Therefore, we want to replace the ite
instruction by its then branch.

def p₂ : program bool (λ (s : string), ℕ) :=
program.intro (λm, m.get "x") (

compute (λ_, tt) ;;
k

)

We want to show that the transformation from p₁ to p₂ is I/O preserving.

example : rel_hoare_program (λ_, ff) (λ_, ff)
(λ m₁ m₂, eq m₁ m₂ ∧ 0 < m₁.get "x") p₁ p₂ eq

We consider removing inactive branches to be a common transformation, there-
fore, we define a transformation rule for it, which is applicable here, but generic
enough to be used for other kernels as well.

theorem known_branch_left (c : σ₁ → bool) (th) (el)
(h₁ : ∀ n₁ s₁ ac₁ n₂ s₂ ac₂, P n₁ s₁ ac₁ n₂ s₂ ac₂ →

∀ tid : fin n₁, c (s₁.threads.nth tid).tlocal)
(h₂ : {* P *} th ~> k₂ {* Q *}) :
{* P *} kernel.ite c th el ~> k₂ {* Q *}

We prove this transformation rule by the semantics of ite, which splits the
execution into the two branches (cf. Section 3.3.5). We can reason about their
respective active maps using h₁. From h₁ we can derive that deactivating
threads based on condition c and state s results in an active map where no
thread is active. Hence, no thread is active in the else branch and the execution
of the else branch does not change the state. Futhermore, by negating the
condition no thread gets deactivated. Hence, the then branch is executed on
the same threads as the ite instruction itself. We can derive the execution of
the then branch from h₂.
To proof the transformation from p₁ to p₂, we show the relation of k to it-
self by rhl_eq. We can remove the branching from the left kernel by apply-
ing known_branch_left. The validity of the condition id follows from the
compute instruction, which we process using an instruction rule.
The validity of the postcondition follows from s₁ = s₂ after executing k, and
the asymmetry of RHL on Parlang. By definition, the left kernel has a valid
execution. Because Parlang kernels are deterministic, the right program also has
a valid execution and the resulting memories are equal (under the assumption
that there is at least one thread).
The benefit of defining a transformation rule is that it reduces the proof work
of this particular transformation and can be used in other proofs as well. We
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need to process the compute instruction to establish that the condition holds.
However, we can ignore the complexity of kernel k by using rhl_eq.
The use case also shows the benefit of proving transformations instead of proving
every version of a GPU program individually (e.g. using GPUVerify). The proof
that p₁ or p₂ is non-interferent and barrier diverge free without any assumption
requires an analysis of k. The proof of the transformation from p₁ to p₂ does
not require an analysis of k, as illustrated above.
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Chapter 5

Related Work

5.1 Semantics and Logics of GPU Programs

Betts et al. [2] base their tool (GPUVerify) on the synchronous, delayed visibility
(SDV) semantics. Under the SDV semantics, all threads advance in lockstep
(synchronous). Accesses to shared variables are logged and the writes to shared
variables of one thread are only visible to the other threads after the next barrier
(delayed visibility). The logs are used to detect interference at the barrier. Our
semantics is inspired by SDV; however, Parlang is a big-step semantics and SDV
is a small-step semantics. SDV has been mechanized in Isabelle [23]; however,
the mechanization is independent of GPUVerify. That is, the output of the
verifier is not checked.
Blom et al. [24] present a logic to prove functional correctness and data-race-
freedom of GPU kernels. It is based on permission-based separation logic. Sep-
aration logic is an instance of Hoare logic where the assertions reason about
dynamically allocated memory. Furthermore, which thread is allowed to read
and write to which shared variable is tracked by permissions. At every barrier
statement, the permissions can be redistributed among threads. An interference
is detected if permissions are inconsistent. Similar to Hoare logic, the program
must be annotated with pre- and postconditions. Additionally, annotations are
required for group, thread and barrier specifications, which makes the proof
fairly verbose. Based on their logic, they provide a prototype based on the
verification tool VerCors [25] and experimental results of a single example.
Kojima et al. [21] present two different semantics for GPU kernels and show that
they are equal under the assumption of non-interference. The first semantic
is a lockstep big-step semantic, similar to the SDV semantics. However, a
kernel often runs multiple sub-groups in parallel (which do not run in lockstep).
Therefore, they present a second semantic that models all possible interleavings
of threads. They show that the two semantics are equivalent for non-interfering
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programs. Hence, for race-free programs, the simpler semantics can be used.
For simplicity, we did not create an interleaving semantics for Parlang. Based
on the lockstep semantics they created a non-relational Hoare logic with a few
basic inference rules. The activeness of threads is an extra argument to the
logic. This is as opposed to our approach, to include the active map in the
assertions. The formalization has been mechanized in Coq in a separate paper.1

Collingbourne et al. [26] present another two semantics as part of the GPUVerify
project. Similar to Kojima et al. one semantics is an interleaving semantics and
the second one is a lockstep semantics. They also prove equivalence of the two
semantics. Compared to Kojima et al. the approach is less formal and has not
been mechanized (to the best of our knowledge).
None of the above define a relational Hoare logic for GPU programs. Instead,
they concentrate on the verification of a single GPU program.

5.2 Verification Tools

Li et al. has developed PUG and released multiple versions. The original re-
lease [3] can verify data race freedom and user assertions to a limited extent.
Variable assignments are translated into static single assignment (SSA) form
and the resulting statements are directly translated into constraints which are
handed of to an SMT solver, together with the assertions. The biggest limitation
is that verification only terminates in reasonable time on 2–3 threads.
The successor PUGpara [27] can additionally check equivalence of two kernels.
While PUG verifies for a fixed amount of threads, the newer release reasons
about a single parameterized thread. It uses data flow analyses on shared vari-
ables to detect data races. To get around the limitations of the underlying SMT
solver, PUGpara overapproximates, which may lead to missed bugs.
GPUVerify [2] uses the SDV semantics to detect data races and barrier di-
vergences. It proves that it suffices to show data race and barrier divergence
freedom for two arbitrary threads to conclude it for arbitrarily many threads.
The data race and barrier divergence free program is transformed into a sequen-
tial program to simplify the verification of user-defined assertions using common
analyses techniques.
Kojima et al. [28] use their lockstep semantic to develop a verification condition
generator (VCG). They do not use the exact inference rules from their previous
work and instead generate conditions from the kernel code in an SSA fashion.
The description in the paper is fairly informal; however, an implementation
exists. It rewrites the verification conditions for optimization purposes, before
handing them off to an off-the-shelf SMT solver. They have successfully proven
correctness of seven kernels. They do not attempt to compare two kernels. To

1 The paper and the conference appear to be in Japanese. To the best of our knowledge,
neither the paper nor information about the conference are available in English.
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the best of our knowledge, the soundness of the VCG has not been formally
proven.
Tripakis et al. [29] present an approach to check equality of two kernels by first
checking that they are deterministic followed by checking equivalence based on
the assumption of determinism. Their approach is fairly limited as it cannot deal
with branches. Furthermore, their implementation can only check determinism
but does not perform equivalence checks.
All the tools above target either CUDA or OpenCL. No verification tool for
MCL has been reported.

5.3 Relational Hoare Logic

Benton [20] designed relational Hoare logic (RHL) as a variation of the tra-
ditional Hoare logic to relate two programs. The pre- and postconditions are
adapted to relations, that can make assertions on the states of the two program.
Benton shows relational Hoare logic on the syntax and denotational semantics
of standard while-programs. Our logic is closely related; however, we define
it on our new semantics (Parlang) that models GPU programs. Another key
difference is that our logic is asymmetric, which simplifies the proofs without
substantially weakening the expressiveness.

5.4 Optimization Tools and Automation

Relational Hoare logic is often referenced in the context of optimizations. Much
research has been done on proving optimizations in compilers. These optimiza-
tions are usually proven once for arbitrary programs and then embedded into
the compilation process.
Rhodium [30] is a tool to automatically prove the soundness of compiler opti-
mizations. The idea is that a developer can extend the compiler with domain-
specific optimizations. To express the optimization they have developed a
domain-specific language that works on control flow graphs. The optimiza-
tions are generic (i.e. not specific to a program) and are given to a theorem
prover to automatically prove soundness using abstract interpretation (cf. [31]).
Our work can be used to prove an optimization of a particular program as well
as a generic optimization. We do not make an effort to automatically apply
optimizations (cf. Section 2.1.3).
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Chapter 6

Conclusion and Future
Work

We have created the abstract language Parlang to capture the essential behavior
of GPU programs. Furthermore, we have used Parlang as a basis to define the
operational semantics of MCL. The layered approach extends to our adaption of
relational Hoare logic, which is first defined on Parlang and then lifted to MCL.
The layered approach also suggests, how the proof of complex program trans-
formations of real programs can be naturally broken down. Parlang proofs are
concerned with the basic behavior of GPU programs. MCL proofs complement
the former with aspects of the concrete language.
The layered approach makes it possible to use parts of our work individually.
On the one hand, Parlang can be used to study GPU programs abstractly. On
the other hand, MCL can be used to prove real programs. Parlang can also be
the basis to formalize other programming languages. To that end, MCL serves
as a template.
We have shown how to create an asymmetric version of the relational Hoare
logic. This version is expressive enough to verify program transformations.
Compared to requiring co-termination, the benefit is that we have additional
assumptions, which simplify the proofs of transformation. This can be observed
by the rule rel_kernel_to_kernel (cf. Section 3.4). However, the trade-offs
of an asymmetric RHL certainly merit a more thorough analysis.
We have presented the verification of program transformations as a comple-
menting method to verifying non-interference and barrier diverge freeness of
individual GPU programs. Section 3.4.1 shows how the two methods can be
used together. Furthermore, in Section 4.2 we demonstrate the advantage of
proving program transformations, when verifying multiple program versions.
To make this work feasible in the available time we had to simplify the formal-
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ization. Therefore, we see much potential to improve our work.
Our memory architecture only knows shared and thread-local memory. This is
sufficient for our model because we focus on the verification of a single thread
group, and hence, the scope of global and shared memory is the same. However,
a more accurate approach is to distinguish between global and shared memory.
Having a dedicated global memory would be the basis for Parlang to support the
verification of multiple thread groups and the host program. We believe that
this line of research is a valuable follow up to broaden the range of supported
optimizations.
MCL is an advanced language. Our model only captures an approximation of
MCL to illustrate the lift from Parlang to a concrete language and to prove
a use case in Chapter 4. However, to increase the confidence in the model
it should be sound with regards to the MCL specification. That is, MCL’s
operational semantics should not hold in any case that is not according to the
MCL specification. Current limitations that break soundness include missing
out of bounds checks for array accesses and the model of primitive types (e.g.
missing overflow detection). Furthermore, our model is missing MCL features,
for example, some expression operators and while loops. A complete model
increases the application in practice. Towards that end, it would also be useful
to read MCL programs from source code, instead of having to define them in
Lean. This eliminates the risk of discrepancy between the definition in Lean
and the actual program.
We have shown how to prove program transformations manually in Lean. This
is a cumbersome process and requires experience in theorem proving. By creat-
ing Lean tactics the developer can be aided in the proof work. For common and
simple optimizations, a tactic might even proof the transformation entirely au-
tomatically. An interesting approach is to investigate the integration of existing
automated tools, such as SMT solvers.
All in all, we believe this work lays a good foundation to prove program trans-
formations of GPU programs and we hope to see further work in this direction.

74



Bibliography

[1] H. Hijma, Programming Many-Cores on Multiple Levels of Abstraction.
PhD thesis, Vrije Universiteit Amsterdam, 2015.

[2] A. Betts, N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson, “GPU-
Verify: A Verifier for GPU kernels,” in ACM SIGPLAN Notices, vol. 47,
pp. 113–131, 2012.

[3] G. Li, G. Gopalakrishnan, R. M. Kirby, and D. Quinlan, “PUG : A Sym-
bolic Verifier of GPU Programs,” 2012.

[4] T. Rauber and G. Ruenger, Parallel programming : for multicore and
cluster systems. Berlin: Springer-Verlag, 2010.

[5] Nvidia, “Cuda toolkit documentation v10.1.168,” Aug 2019.

[6] Khronos Group, “The OpenCL Specification v2.2,” Aug 2019.

[7] Y. Lin and V. Grover, “Using CUDA Warp-Level Primitives,” 2018.

[8] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. M. Jr, “Profiling
divergences in GPU applications,” no. June 2012, pp. 775–789, 2013.

[9] D. Kirk and W.-m. Hwu, Programming massively parallel processors
: a hands-on approach LK - https://vu.on.worldcat.org/oclc/489718737.
Burlington, MA SE - xviii, 258 pages : illustrations ; 24 cm: Morgan
Kaufmann Publishers, 2010.

[10] Z. Lin, X. Gao, H. Wan, and B. Jiang, “GLES: A practical GPGPU op-
timizing compiler using data sharing and thread coarsening,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2015.

[11] P. Hijma, R. V. van Nieuwpoort, C. J. H. Jacobs, and H. E. Bal, “Stepwise-
refinement for performance: a methodology for many-core programming,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 17,
pp. 4515–4554, 2015.

[12] J. Avigad, L. D. Moura, and S. Kong, “Theorem Proving in Lean,” 2017.

75



[13] T. Coquand and G. Huet, “The calculus of constructions,” Information and
Computation, 1988.

[14] P. Dybjer, “Inductive families,” Formal Aspects of Computing, 1994.

[15] M. Carneiro, “Lean Mathlib,” 2019.

[16] M. Sorensen and P. Urzyczyn, Lectures on the Curry-Howard isomorphism.
Amsterdam Boston MA: Elsevier, 2006.

[17] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. D. Moura, “A Metapro-
gramming Framework for Formal Verification,” vol. 1, no. September, 2017.

[18] K. Apt, A. Pnueli, F. de Boer, and E. Olderog, Verification of Sequential
and Concurrent Programs. Texts in Computer Science, Springer London,
2009.

[19] G. Winskel, The formal semantics of programming languages : an intro-
duction. Foundations of computing, Cambridge, Mass: MIT Press, 1994.

[20] N. Benton, “Simple relational correctness proofs for static analyses and pro-
gram transformations,” Conference Record of the Annual ACM Symposium
on Principles of Programming Languages, vol. 31, pp. 14–25, 2004.

[21] K. Kojima and A. Igarashi, “A Hoare Logic for GPU Kernels,” vol. V,
no. 212, 2014.

[22] G. Barthe, J. Crespo, and C. Kunz, “Unleashing relational program logics,”
Software.Imdea.Org, pp. 1–17, 2010.

[23] J. Wickerson, “Syntax and semantics of a gpu kernel programming lan-
guage,” Archive of Formal Proofs, Apr. 2014. http://isa-afp.org/
entries/GPU_Kernel_PL.html, Formal proof development.

[24] S. Blom, M. Huisman, and M. Mihelˇ, “Science of Computer Programming
Specification and verification of GPGPU programs,” vol. 95, pp. 376–388,
2014.

[25] S. Blom and M. Huisman, “The vercors tool for verification of concurrent
programs,” in FM, vol. 8442 of Lecture Notes in Computer Science, pp. 127–
131, Springer, 2014.

[26] P. Collingbourne, A. F. Donaldson, J. Ketema, and S. Qadeer, “Interleaving
and Lock-Step Semantics for Analysis and Verification of GPU Kernels,”
no. 287767.

[27] G. Li, “Parameterized Verification of GPU Kernel Programs,” 2013.

[28] K. Kojima and A. Imanishi, “Automated Verification of Functional Cor-
rectness of Race-Free GPU Programs,” 2018.

76

http://isa-afp.org/entries/GPU_Kernel_PL.html
http://isa-afp.org/entries/GPU_Kernel_PL.html


[29] S. Tripakis, “Checking Equivalence of SPMD Programs Using Non- Inter-
ference,” 2010.

[30] S. Lerner, T. Millstein, E. Rice, and C. Chambers, “Automated soundness
proofs for dataflow analyses and transformations via local rules,” in Pro-
ceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’05, (New York, NY, USA), pp. 364–377,
ACM, 2005.

[31] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, (Los An-
geles, California), pp. 238–252, ACM Press, New York, NY, 1977.

77



Appendix A

Lean Variables

These variables are used in various definitions in this thesis. They were defined
in the order from top to bottom.

variables
{ α β γ δ : Type }
{ σ : Type }
{ ι : Type }
{ τ : ι → Type }
[ decidable_eq ι ]
{ σ₁ σ₂ σ₃ : Type }
{ ι₁ ι₂ : Type }
{ τ₁ : ι₁ → Type }
{τ₂ : ι₂ → Type}
[decidable_eq ι₁]
[decidable_eq ι₂]
{ n : ℕ }
{ s t u : state n σ τ }
{ ac : vector bool n }
{ f f' : σ → bool }
{ m : memory τ }
{ i i' : ι }
{ val val' : τ i }
/- In Parlang -/
{ k₁ k₁' : kernel σ₁ τ₁ }
{ k₂ k₂' : kernel σ₂ τ₂ }
{ P Q R P' Q' I : ∀ n₁:ℕ, state n₁ σ₁ τ₁ → vector bool n₁ → ∀

n₂:ℕ, state n₂ σ₂ τ₂ → vector bool n₂ → Prop }↪→

/- In MCL -/
{ sig : signature }
{ sig₁ : signature }
{ sig₂ : signature }
{ k₁ : mclk sig₁ }

78



{ k₁' : mclk sig₁ }
{ k₂ : mclk sig₂ }
{ k₂' : mclk sig₂ }
{ P : parlang.state n₁ (memory $ parlang_mcl_tlocal sig₁)

(parlang_mcl_shared sig₁) → vector bool n₁ → ∀ n₂:ℕ,
parlang.state n₂ (memory $ parlang_mcl_tlocal sig₂)
(parlang_mcl_shared sig₂) → vector bool n₂ → Prop }

↪→

↪→

↪→

{ P' : parlang.state n₁ (memory $ parlang_mcl_tlocal sig₁)
(parlang_mcl_shared sig₁) → vector bool n₁ → ∀ n₂:ℕ,
parlang.state n₂ (memory $ parlang_mcl_tlocal sig₂)
(parlang_mcl_shared sig₂) → vector bool n₂ → Prop }

↪→

↪→

↪→

{ Q : parlang.state n₁ (memory $ parlang_mcl_tlocal sig₁)
(parlang_mcl_shared sig₁) → vector bool n₁ → ∀ n₂:ℕ,
parlang.state n₂ (memory $ parlang_mcl_tlocal sig₂)
(parlang_mcl_shared sig₂) → vector bool n₂ → Prop }

↪→

↪→

↪→

{ Q' : parlang.state n₁ (memory $ parlang_mcl_tlocal sig₁)
(parlang_mcl_shared sig₁) → vector bool n₁ → ∀ n₂:ℕ,
parlang.state n₂ (memory $ parlang_mcl_tlocal sig₂)
(parlang_mcl_shared sig₂) → vector bool n₂ → Prop }

↪→

↪→

↪→
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