
Vrije Universiteit Amsterdam

Bachelor Thesis

Formalization of sorting algorithms in
Isabelle/HOL

Author: Marco Pierre Fernandez Burgos (2592652)

1st supervisor: Dr. Jasmin Christian Blanchette
2nd reader: Dr. Femke van Raamsdonk

July 25, 2019



“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii



Abstract

Software testing can never guarantee that sorting algorithms respond correctly

to all kinds of inputs. Instead, formal proofs can be used to assert that an

algorithm is consistently correct. Manual formalization might become prone

to human error due to a large number of proof steps. Hence, the need for a

proof assistant is crucial, which is a software-based tool designed to help with

the development of formal proofs in an iterative and automated fashion. By

employing Isabelle/HOL, which is one of the major proof assistants, I formal-

ized some sorting algorithms by checking the multiplicity, and that the output

is sorted. These algorithms are: tail and non-tail recursive insertion and selec-

tion sort, and also tail recursive merge sort. Moreover, I used Isabelle’s Isar

language to present readable formal proofs as opposed to other formalizations

of sorting algorithms in Isabelle/HOL.



iv



Here one can also find the code for the formalization of sorting algorithms in

Isabelle/HOL:

https://github.com/marco10507/formalization-of-sorting-algorithms

v

https://github.com/marco10507/formalization-of-sorting-algorithms


vi



To Maria Esther Burgos Contreras

For her faith and courage.



Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Jasmin

Christian Blanchette for the continuous support on my thesis, for his patience,

and immense knowledge. I could not have imagined having a better supervisor

and mentor for my thesis. Besides my supervisor, I would like to thank Dr.

Femke van Raamsdonk, for providing the last review of this thesis.



Contents

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Pure functional programming . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Structural induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Computational induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Informal proofs for sorting 7

2.1 Predefined functions and data types, and derived lemmas . . . . . . . . . . 7

2.2 Merge and insertion sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Selection sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Formalization in Isabelle/HOL 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Formalization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Insertion sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Merge sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Selection sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Conclusion 23

References 25

iii



CONTENTS

I Appendix: Insertion sort informal proofs 27

II Appendix: Insertion sort code 31

IIIAppendix: Merge sort code 35

IVAppendix: Selection sort code 41

iv



List of Figures

1.1 remove1: a predefined Isabelle/HOL function . . . . . . . . . . . . . . . . . 2

1.2 remove1: a recursively defined mathematical function . . . . . . . . . . . . . 3

1.3 splice: a predefined Isabelle/HOL function . . . . . . . . . . . . . . . . . . . 4

1.4 Proving lemma 1.4.1 using Isabelle/HOL . . . . . . . . . . . . . . . . . . . . 5

2.1 merge: a recursively defined mathematical function . . . . . . . . . . . . . . 8

2.2 merge_sort: a recursively defined mathematical function . . . . . . . . . . . 8

2.3 selection_sort: a recursively defined mathematical function . . . . . . . . . 12

3.1 Auxiliary lemma for Isabelle/HOL insert_order lemma . . . . . . . . . . . . 18

3.2 Proving lemma I.0.1 (insert order) using Isabelle/HOL . . . . . . . . . . . . 18

3.3 Proving termination for merge function in Isabelle/HOL . . . . . . . . . . . 20

3.4 Formalizing lemma 2.3.1 (selection_sort permutation) in Isabelle/HOL . . . 21

I.1 insert: a recursively defined mathematical function . . . . . . . . . . . . . . 27

I.2 insertion_sort: a recursively defined mathematical function . . . . . . . . . 27

v



LIST OF FIGURES

vi



List of Tables

2.1 Predefined Isabelle/HOL functions. . . . . . . . . . . . . . . . . . . . . . . . 7

vii



LIST OF TABLES

viii



Glossary

Acronyms

HOL Higher Order Logic

IH Induction Hypothesis

Isar Intelligible semiautomated reasoning

mset multiset

Isabelle/HOL symbols

... Refers to right-hand side of last expression

[...] Defines a list of elements

# adding an element at the beginning of list cons, being the same as the operator

: in Haskell language∧
Universal quantifier for binding local variables [1]

=⇒ For separating premises and conclusion of theorems [1]

⇒ Separates types in functions

'a Type variable where a can be any other letter

{...} Defines a set of elements

{#...#} Defines a mset of elements

Logical operators

≡ Is equivalent to

∀ For all

ix



GLOSSARY

∈ Is member of

→ Implies

∴ Therefore

Number sets

N Natural Numbers as {0, 1, 2, 3, ...}

x



1

Introduction

1.1 Sorting

An algorithm receives a value or a set of values, also called input, and then follows a set

of rules to produce some value, also called output. In particular, sorting algorithms aim

to solve the sorting problem by rearranging the records of a collection in a defined order.

The sorting problem can be formally defined as follows [2]:

Input: A sequence of n numbers <r1, r2, ..., rn>

Output: A permutation (rearrangement) <r′1, r′2, ..., r′n> of input sequence such that

r′1 ≤ r′2 ≤ ... ≤ r′n

The above formal description shows two main characteristics for the output. The first

characteristic is that the output is a permutation of the input. The other characteristic

is that the output is in increasing order: this means that any element that belongs to the

output is always smaller than or equal to its successor. Next, two examples showing a

correct and a wrong output after sorting is found:

Correct output: Input: [4, 3, 2, 1, 0] and Output: [0, 1, 2, 3, 4]

Wrong output: Input: [4, 4, 3, 2, 1, 0, 0] and Output: [0, 1, 2, 3, 4]

On the one hand, the correct output is clearly sorted because (1) the output sequence 0

≤ 1 ≤ 2 ≤ 3 ≤ 4 holds, and (2) it is a rearrangement of the input. On the other hand, the

wrong output is in increasing order. However; it is not a permutation of the input since

the output does not include the duplicates of the numbers 4 and 0

1



1. INTRODUCTION

1.2 Orders

The binary relation ≤ used for sorting elements is required to be a total order. This binary

relation meets the requirements for a partial order and an extra condition known as the

comparability condition. A formal definition for the partial order relation follows [3]:

A partial order on a set S is a binary relation R such that:

• ∀a ∈ S : (a, a) ∈ R (R is reflexive)

• ∀a, b, c ∈ S : (a, b) ∈ R ∧ (b, c) ∈ R→ (b, c) ∈ R (R is transitive)

• ∀a, b, c ∈ S : (a, b) ∈ R ∧ (b, c) ∈ R→ a = b (R is antisymmetric)

Let R be a partial order relation on Set S. Any two elements y , x ∈ S are comparable

if either xRy or yRx. For example, either x ≤ y or y ≤ x . When the previous condition

holds, then the relation R is comparable.

1.3 Pure functional programming

Pure functional programming is a programming paradigm where the functions do not have

side effects, and the input is not modified. In other words, the functions do not utilize

variables but constants. Moreover, the functions cannot access any other data than the

one contained in its own arguments or inputs [4].

primrec remove1 : : " ' a ⇒ ' a l i s t ⇒ ' a l i s t " where
"remove1 x [ ] = [ ] " |
"remove1 x (y # xs ) = ( i f x = y then xs else y # remove1 x xs )"

Figure 1.1: remove1: a predefined Isabelle/HOL function

Isabelle/HOL reassembles a purely functional programming language. Therefore, it in-

cludes base types, type constructors, function types, and type variables. It also has terms

that can be formed by applying functions to arguments [5]. Figure 1.1 shows the built-in

function remove1, which receives as input an element x and a list of type a, then removes

x at most one time from the list. Finally, it outputs the result in a list of type a.

Purely functional programming code is similar to a recursively defined mathematical

function, this can be seen in figure 1.1 and 1.2. To illustrate, the first constructor in

function remove1, figure 1.1, is similar to equation 1.1 in figure 1.2, and this is also the

case for the other constructor and equation.

2



1.4 Structural induction

remove1(x, []) = [] (1.1)

remove1(x, (y#ys)) =

ys, if x = y

y#remove1(x, ys), otherwise
(1.2)

Figure 1.2: remove1: a recursively defined mathematical function

1.4 Structural induction

Structural induction is a mathematical proof technique which is similar to mathematical

induction, but the latter can only work on the domain of N, whereas the former can only

work on recursively defined data types [6]. For example, lists and trees. Besides, we can

state that structural induction accepts N since these numbers can be defined as a recursive

data type. Next, a concrete example of structural induction will be shown by proving a

particular property of the recursively defined function remove1 in figure 1.2:

Lemma 1.4.1 Removing an element y ∈ set(x#xs) from list x#xs always yields to a
strictly smaller list than the original list. Formally:

∀y, x, xs(y ∈ set(x#xs)→ length(remove1(y, (x#xs))) < length(x#xs))

Proof The proof is by structural induction on list xs.

Base case: when xs = [], then show length(remove1(y, [x]) < length([x]) holds by
assuming that y ∈ set([x])

length(remove1(y, (x#[])))

= length(remove1(x, (x#[]))) [By assumption y ∈ set([x])]

= length([]) [By definition of remove1 1.2]

< length([x])

Induction hypothesis:
∀y, x, xs(y ∈ set(x#xs)→ length(remove1(y, (x#xs))) < length(x#xs))

Inductive step: assuming that IH holds, then show:

∀y, a, x, xs(y ∈ set(a#x#xs)→ length(remove1(y, (a#x#xs))) < length(a#x#xs))

Fix: y, a, x, xs
Assume: y ∈ set(a#x#xs)

3



1. INTRODUCTION

Case 1 y = a.

length(remove1(y, (a#x#xs)))

= length(remove1(a, (a#x#xs))) [By y=a]

= length(x#xs) [By definition of remove1 1.2]

< length(a#x#xs)

Case 2 y ∈ set(x#xs).

length(remove1(y, (a#x#xs)))

= length(a#remove1(y, (x#xs))) [By definition of remove1 1.2]

= length([a]) + length(remove1(y, (x#xs)))

< length([a]) + length(x#xs) [By using IH and since y ∈ set(x#xs)]

= length(a#x#xs)

∴ By the principle of structural induction, the lemma 1.4.1 holds. Q. E. D.

1.5 Computational induction

fun s p l i c e : : " ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t " where
" s p l i c e [ ] ys = ys" |
" s p l i c e xs [ ] = xs" |
" s p l i c e ( x#xs ) (y#ys ) = x#y#s p l i c e xs ys"

Figure 1.3: splice: a predefined Isabelle/HOL function

This kind of induction follows the recursive pattern in a function to form an induction

principle which can be used to simplify inductive proofs, Concrete semantics, page 18 [7].

For example, the induction principle of any property P zs for the splice function in figure

1.3 follows:

∧
ys. P [ ] ys

∧
x, xs. P (x#xs) [ ]

∧
x, y, xs, ys. P xs ys =⇒ P (x#xs) (y#ys)

P zs

1.6 Isabelle/HOL

Isabelle/HOL is a specialization of the generic proof assistant Isabelle for higher-order

logic (HOL). Proofs are carried out by using the Isar language, which allows presenting

4



1.6 Isabelle/HOL

proofs in a human-readable fashion [8]. Isabelle/HOL also includes productivity tools such

as Sledgehammer, which invokes multiple automatic theorem provers to try to solve a

particular problem. Figure 1.4 shows a fragment of a proof in Isabelle/HOL. The entire

proof is located in Appendix IV.

Isabelle/HOL can form a chain of intermediate results, also known as proof by calcula-

tional reasoning, that are composed by basic principles, such as transitivity of ≤, < or =.

Calculations are formed by using the commands also and finally, and the "..." notation,

which holds the value of the most recent right-hand-side expression [9]. This proof pattern

is found in figure 1.4, line 5-10.

In figure 1.4, line 2, structural induction is carried out on list xs for any y and x. At

this stage, Isabelle/HOL shows two subgoals to prove:

1. ∧
y x . y ∈ s e t [ x ] =⇒ l ength ( remove1 y [ x ] ) < length [ x ]

2. ∧
a xs y x .

(
∧

y x . y ∈ s e t ( x#xs )=⇒ l ength ( remove1 y (x#xs ) ) < length (x#xs ) )
=⇒y ∈ s e t ( x#a#xs )=⇒ l ength ( remove1 y (x#a#xs ) ) < length (x#a#xs )

The first subgoal refers to the base case and the second to the inductive step, which

specifies two premises and a conclusion. Figure 1.4 does not show the resolution for the

base case; however, line 4-8 shows a resolution for case True, which represents the case

y ∈ set(a#xs). This resolution is almost identical to the chain of (in)equations presented

in Case 2, inductive step, previous section, the only difference is that case True uses a

instead of x.

1 lemma "y ∈ s e t ( x#xs )=⇒ l ength ( remove1 y (x#xs ) ) < length (x#xs )"
2 proof ( induct xs a r b i t r a r y : y x )
3 ...
4 proof ( ca s e s "y ∈ s e t ( a#xs )" )
5 case True
6 have " l ength ( remove1 y (x#a#xs ) ) = length (x#remove1 y ( a#xs ) )" ...
7 also have " . . . = length [ x ] + length ( remove1 y ( a#xs ) )" ...
8 also have " . . . < length [ x ] + length ( a#xs )" ...
9 also have " . . . = length (x#a#xs )" ...

10 f ina l ly show " l ength ( remove1 y (x#a#xs ) ) < length (x#a#xs )" by t h i s
11 next
12 case Fa l se
13 ...
14 qed

Figure 1.4: Proving lemma 1.4.1 using Isabelle/HOL

5



1. INTRODUCTION

6



2

Informal proofs for sorting

2.1 Predefined functions and data types, and derived lemmas

Table 2.1 lists all the Isabelle/HOL functions used to implement and prove the sorting

algorithms. Keep in mind that the notation for multisets in Isabelle/HOL is {#...#}. For

example, a multiset of natural number is defined as {#1 , 2 , 3#}.

Table 2.1: Predefined Isabelle/HOL functions.

Function Definition

Min :: 'a set⇒ 'a returns the smallest element from a set.
Max :: 'a set⇒ 'a returns the largest element from a set.
remove1 :: 'a⇒ 'a list⇒ 'a list removes at most one element from a list.
sorted :: 'a list⇒ bool checks whether a list is in total order.
length :: 'a list⇒ nat returns the number of elements in a list.
mset :: 'a list⇒ 'a multiset transforms a list into a multiset.
+ :: 'a multiset⇒ 'a multiset⇒ 'a multiset multiset union.
set :: 'a list⇒ 'a set transforms a list into a set.
take :: nat⇒ 'a list⇒ 'a list takes the n first elements of a list.
drop :: nat⇒ 'a list⇒ 'a list drops the n first elements of a list.

Predefined functions such as take and drop come with predefined lemmas. The auto-

matic theorem provers, such as Sledgehammer, can prove variations of these predefined

lemmas. The following lemmas are modifications of predefined lemmas that Isabelle/HOL

can automatically prove.

7



2. INFORMAL PROOFS FOR SORTING

Lemma 2.1.1 (take drop permutation)
∀n, xs(mset(take(n, xs)) +mset(drop(n, xs)) = mset(xs))

Lemma 2.1.2 (rest permutation)
∀y, ys(mset(remove1(Min(set(y#ys)), (y#ys))) = mset(y#ys)− {#Min(set(y#ys))#})

2.2 Merge and insertion sort

Proving an implementation of insertion sort will lead more or less directly to show merge

sort. However, only merge sort is presented in this section to prevent from making chapter

2 too long. Nevertheless, for the sake of completeness, the informal proofs for insertion

sort are available in appendix I. If one encounters challenging to follow the informal proofs

for merge sort, then one should first fully understand the informal proofs for insertion sort,

which are based entirely on structural induction. I used as inspiration for the insertion

sort correctness the slides of the Computer Science Theory course, University of Minnesota

Duluth, page 9 [10].

merge(xs, []) = xs

merge([], ys) = ys

merge(x#xs, y#ys) =

x#merge(xs, y#ys), if x ≤ y

y#merge(x#xs, ys), otherwise

Figure 2.1: merge: a recursively defined mathematical function

merge_sort([]) = []

merge_sort([x]) = [x]

merge_sort(xs) = merge(merge_sort(left),merge_sort(right))

where half = (length(xs) div 2 )

, left = take(half , xs)

and right = drop(half , xs)

Figure 2.2: merge_sort: a recursively defined mathematical function

Lemma 2.2.1 (merge order) The merge function yields a sorted list (output) if the in-
put list xs and ys are sorted. Formally:

∀xs, ys(sorted(xs) ∧ sorted(ys)→ sorted(merge(xs, ys)))

8



2.2 Merge and insertion sort

Proof The proof is by computational induction on list xs and ys.

Base case 1 and 2: In the base case 1, the list ys is empty, and in the base case 2, the
list xs is empty. Then it follows that base case 1 and 2 output, lists xs and ys, respectively.
Therefore, both cases hold, because we assume that ys and xs are sorted.

Induction hypotheses:
IH.1: ∀y, xs, ys(sorted(xs) ∧ sorted(y#ys)→ sorted(merge(xs, y#ys)))

IH.2: ∀x, xs, ys(sorted(x#xs) ∧ sorted(ys)→ sorted(merge(x#xs, ys)))

Inductive step: assuming that both, IH.1 and IH.2 hold, then show:

∀x, y, xs, ys(sorted(x#xs) ∧ sorted(y#ys)→ sorted(merge(x#xs, y#ys)))

Fix: x, y, xs, ys
Assume: sorted(x#xs) ∧ sorted(y#ys)

Case 1 x ≤ y. The premise sorted(x#xs) implies sorted(xs), because removing the first
element of a sorted list leaves the rest of the list sorted. sorted(xs) ∧ sorted(y#ys) holds,
then from IH.1, it follows that sorted(merge(xs, y#ys)) holds too. Moreover, by defini-
tion of merge function merge (x#xs,y#ys) = x#merge (xs, (y#ys)). Hence, the expres-
sion sorted(x#merge(xs, (y#ys))) holds, because merge(xs, y#ys), y#ys and x#xs are
sorted, and x ≤ y .

Case 2 x > y. Similar to case 1, sorted(x#xs) ∧ sorted(ys) holds, then from IH.2, it
follows that sorted(merge(x#xs, ys)) holds too. Moreover, by definition of merge function
merge (x#xs,y#ys) = y#merge (x#xs, ys). Hence, sorted(y#merge(x#xs,ys)) holds,
because merge(x#xs, ys), y#ys and x#xs are sorted, and x > y .

∴ By the principle of computational induction, the lemma 2.2.1 holds. Q. E. D.

Lemma 2.2.2 (merge permutation) The merge function output is a permutation of its
input. Formally:

∀xs, ys(mset(merge(xs, ys)) = mset(xs) +mset(ys))

Proof The proof is by computational induction on list xs and ys.

Base case 1: when xs = [], then show mset(merge([], ys)) = mset([]) +mset(ys) holds.

mset(merge([], ys))

= mset(ys) [By definition of function merge]

= mset([]) +mset(ys)

9



2. INFORMAL PROOFS FOR SORTING

Base case 2: when ys = [], then show mset(merge(xs, [])) = mset(xs) +mset([]) holds.

mset(merge(xs, []))

= mset(xs) [By definition of function merge]

= mset(xs) +mset([])

Induction hypotheses:
IH.1: ∀y, xs, ys(mset(merge(xs, y#ys)) = mset(xs) +mset(y#ys))

IH.2: ∀x, xs, ys(mset(merge(x#xs, ys)) = mset(x#xs) +mset(ys))

Inductive step: assuming that, both, IH.1 and IH.2 holds, then show:

∀x, y, xs, ys(mset(merge(x#xs, y#ys)) = mset(x#xs) +mset(y#ys))

Fix: x, y, xs, ys

Case 1 x ≤ y.

mset(merge(x#xs, y#ys))

= mset(x#merge(xs, y#ys)) [By using case 1 and merge function definition]

= {#x#}+mset(merge(xs, y#ys)) [By mset definition]

= {#x#}+mset(xs) +mset(y#ys) [By IH.1 and since x ≤ y ]

= mset(x#xs) +mset(y#ys) [By mset definition]

Case 2 x > y.

mset(merge(x#xs, y#ys))

= mset(y#merge(x#xs, ys)) [By using case 2 and merge function definition]

= {#y#}+mset(merge(x#xs, ys)) [By mset definition]

= {#y#}+mset(x#xs) +mset(ys) [By IH.2 and since x > y ]

= mset(x#xs) +mset(y#ys) [By mset definition]

∴ By the principle of computational induction, the lemma 2.2.1 holds. Q. E. D.

Theorem 2.2.1 (merge_sort order) The merge_sort function yields a sorted list (out-
put). Formally:

∀xs(sorted(merge_sort(xs))

Proof The proof is by computational induction on list xs.

10



2.2 Merge and insertion sort

Base case 1 and 2: The base case 1 is the empty list, and the base case 2 is [x ].
Therefore, both cases hold since the empty list and [x ] are always sorted.

Induction hypotheses: Let l be ∀x , xs(take((length(x#xs) div 2), (x#xs))) and r be
∀x , xs(drop((length(x#xs) div 2), (x#xs))).

IH.1: ∀l(sorted(merge_sort(l)))

IH.2: ∀r(sorted(merge_sort(r)))

Inductive step: assuming that, both, IH.1 and IH.2 hold, then show:

∀x, xs(merge_sort(x#xs))

Fix: x, xs
Let half be length(x#xs) div 2, left be take(half, x#xs) and right be drop(half, x#xs).

By IH.1 and IH.2 merge_sort(left) and merge_sort(right) are sorted. Moreover, by def-
inition of merge_sort merge_sort (x#xs) = merge(merge_sort(left), merge_sort(right)).
Hence, sorted (merge(merge_sort(left), merge_sort(right))) holds, because lemma
2.2.1 shows that if the merge function receives as input two sorted lists, then the merge
function produces a sorted list.

∴ By the principle of computational induction, the theorem 2.2.1 holds. Q. E. D.

Theorem 2.2.2 (merge_sort permutation) The merge_sort function output is a per-
mutation of its input. Formally:

∀xs(mset(merge_sort(xs)) = mset(xs))

Proof The proof is by computational induction on list xs.

Base case 1 and 2: The base case 1 is the empty list, and the base case 2 is [x]. By
definition of merge sort, base case 1 and 2 output the empty list and [x], respectively.
Therefore, both cases hold since both input and output are the same.

Induction hypotheses: Let l be ∀x , xs(take((length(x#xs) div 2), (x#xs))) and r be
∀x , xs(drop((length(x#xs) div 2), (x#xs))).

IH.1: ∀l(mset(merge_sort(l)) = mset(l))

IH.2: ∀r(mset(merge_sort(r)) = mset(r))

11



2. INFORMAL PROOFS FOR SORTING

Inductive step: assuming that, both, IH.1 and IH.2 hold, then show:

∀x, xs(mset(merge_sort(x#xs)) = mset(x#xs))

Fix: x, xs
Let half be length(x#xs) div 2, left be take(half, x#xs) and right be drop(half, x#xs).

mset(merge_sort(x#xs))

= mset(merge(merge_sort(left),merge_sort(right))) [By merge_sort definition]

= mset(merge_sort(left)) +mset(merge_sort(right)) [By using lemma 2.2.2]

= mset(left) +mset(right) [By using IH.1 and IH.2]

= mset(x#xs) [By using lemma 2.1.1]

∴ By the principle of computational induction, the theorem 2.2.2 holds. Q. E. D.

2.3 Selection sort

selection_sort([]) = [] (2.1)

selection_sort(x#xs) = minimum#selection_sort(rest) (2.2)

where minimum =Min(set(x#xs)) (2.3)

and rest = remove1(minimum, (x#xs))) (2.4)

Figure 2.3: selection_sort: a recursively defined mathematical function

Lemma 2.3.1 (selection_sort halts) For any given list, selection_sort function always
terminates.

Proof Termination proof for the selection_sort recursive case is not trivial, because the
recursive calls use as input the rest of the list x#xs, figure 2.3. The halting of the recursive
case can be shown by comparing the length of list x#xs, left-hand side, and the length of
the rest of the list, ride-hand side:

length(rest) < length(x#xs)

∴ By the lemma 1.4.1, remove member, the lemma 2.3.1 holds, because the rest is smaller
than list x#xs since removing one member of any list, with at least one element, always
reduce the length of the original list. Q. E. D.

12



2.3 Selection sort

Theorem 2.3.1 (selection_sort permutation) The selection_sort function output is
a permutation of its input. Formally:

∀xs(mset(selection_sort(ys)) = mset(ys))

Proof The proof is by computational induction on list ys.

Base case: We have mset(selection_sort[]) since ys = []. Moreover, we can rewrite this
expression to mset([]) by using the selection_sort definition. Therefore, the base case
holds, because from mset(selection_sort[]) we can get mset([]).

Induction hypothesis: Let re be ∀y , ys(remove1 (Min(set(y#ys)), (y#ys))).

∀re(mset(selection_sort(re)) = mset(re))

Inductive step: assuming that IH holds, then show:

∀y, ys(mset(selection_sort(y#ys)) = mset(y#ys))

Fix: y, ys
Let minimum be Min (set (y#ys)) and let rest be remove1(minimum, (y#ys)).

Case 1 minimum = y.

mset(selection_sort(y#ys))

= mset(minimum#selection_sort(rest)) [By selection_sort definition]

= {#minimum#}+mset(selection_sort(rest)) [By definition of mset]

= {#minimum#}+mset(rest) [By using IH]

= {#minimum#}+mset(remove1(y, y#ys)) [By minimum = y ]

= {#y#}+mset(ys) [By minimum = y and remove1 definition]

= mset(y#ys) [By mset definition]

Case 2 minimum 6= y.

mset(selection_sort(y#ys))

= mset(minimum#selection_sort(rest)) [By selection_sort definition]

= {#minimum#}+mset(selection_sort(rest)) [By definition of mset]

= {#minimum#}+mset(rest) [By using IH]

= {#minimum#}+ (mset(y#ys)− {#minimum#}) [By using lemma 2.1.2]

= mset(y#ys) [By mset definition]

13



2. INFORMAL PROOFS FOR SORTING

∴ By the principle of computational induction, the theorem 2.3.1 holds. Q. E. D.

Theorem 2.3.2 (selection_sort order) The selection_sort function yields a sorted list
(output). Formally:

∀xs(sorted(selection_sort(xs))

Proof The proof is by computational induction on list xs.

Base case: We have mset(sorted_sort []) since xs = []. Moreover, we can rewrite this
expression to sorted([]) by using the selection_sort definition. Therefore, the base case
holds, because the empty list is always sorted.

Induction hypothesis: Let re be ∀x , xs(remove1 (Min(set(x#xs)), (x#xs))).

∀re(sorted(selection_sort(re)))

Inductive step: assuming that IH holds, then show:

∀x, xs(sorted(selection_sort(x#xs)))

Fix: x, xs
Let minimum be Min (set (x#xs)) and let rest be remove1(minimum, (x#xs)).

1. Claim 1: mset(selection_sort(rest)) = mset(x#xs) - {#minimum#}

Proof (Subproof)

mset(selection_sort(rest))

= mset(rest) [By using theorem 2.3.1]

= mset(x#xs)− {#minimum#} [By using lemma 2.1.2]

∴ Claim 1 holds. Q. E. D.

2. Claim 2: ∀n(n ∈ set(selection_sort(rest))∧minimum ≤ n) holds by using Claim 1.

By IH the expression selection_sort(rest) is sorted, but it also has to be a permutation
of the original list x#xs without the minimum, otherwise, selection_sort(rest) might in-
clude some number n such that ∃n(n ≤ minimum ∧ n ∈ set(selection_sort(rest))) holds.
Claim 1 shows that indeed the selection_sort(rest) is a permutation. Moreover, by se-
lection_sort definition selection_sort(x#xs) = minimum#selection_sort(rest). Hence,
sorted(minimum#selection_sort(rest)) holds, because claim 2 shows that the mini-
mum is always less than or equal to all the elements in selection_sort(rest), and by

14



2.3 Selection sort

IH selection_sort(rest) is sorted.

∴ By the principle of computational induction, the theorem 2.3.2 holds. Q. E. D.

15



2. INFORMAL PROOFS FOR SORTING

16



3

Formalization in Isabelle/HOL

3.1 Introduction

This section shows some fragments of the formalized lemmas in Isabelle/HOL. All the

lemmas and implementations of the sorting algorithms are available in appendices II, III,

and IV. To learn how to formalize in Isabelle/HOL, I extensively used the book Concrete

Semantics with Isabelle/HOL, part I [7], the manual The Isabelle/Isar Reference Manual

[11], and the article Structured Induction Proofs in Isabelle/Isar [12]. One can use all these

references to understand more technical details about the formalizations in the appendices.

3.2 Formalization strategy

In this section, I present the strategy I used to formalize sorting algorithms in Isabelle/HOL.

This strategy is essential to avoid pitfalls, such as the belief that Isabelle/HOL proves any

lemma directly by writing a few lines of code. From experience, this proof assistant verifies

instantly proof steps but not entire lemmas. I suggest the next approach to formalize in

Isabelle/HOL:

1. Recursively define the mathematical functions for the algorithms.

2. Write the informal proofs to show particular properties about the algorithms.

3. Implement the mathematical functions in Isabelle/HOL.

4. Formalize proofs in Isabelle/HOL using the Isar language, providing as many proof

steps and details as provided in the informal proofs.

5. Use automatic provers such as sledgehammer to verify every proof step.

17



3. FORMALIZATION IN ISABELLE/HOL

Indeed, as one gets more experience in Isabelle/HOL and formalization, steps one and

two increasingly become redundant. However, for a beginner, it is vital to use the Isar

language and present the proof as closely related to the informal proof as possible. In step

five, by splitting the lemma into subproblems, the automatic provers are more likely to

find a proof, because the search space is much smaller.

3.3 Insertion sort

1 lemma so r t ed3 : " so r t ed (y#i n s e r t x ys ) = (y ≤ x ∧ so r t ed ( i n s e r t x ys ) )"
2 proof ( induct ion ys a rb i t r a r y : y r u l e : s o r t ed . induct )
3 ...
4 qed

Figure 3.1: Auxiliary lemma for Isabelle/HOL insert_order lemma

1 lemma i n s e r t_orde r : " so r t ed ( ys )=⇒ so r t ed ( i n s e r t y ys )"
2 proof ( induct ys r u l e : i n s e r t . induct )
3 ...
4 show " so r t ed (y#i n s e r t x ys )"
5 proof ( simp de l : s o r t ed . simps add : Fa l se so r t ed3 " l o c a l . 2 . prems" )
6 show "y ≤ x ∧ so r t ed ( i n s e r t x ys )"
7 proof ( r u l e con j I )
8 show "y ≤ x" ...
9 next

10 have " so r t ed ys" ...
11 then show " so r t ed ( i n s e r t x ys )" ...
12 ...
13 qed

Figure 3.2: Proving lemma I.0.1 (insert order) using Isabelle/HOL

Isabelle/HOL provides many predefined lemmas that come along with the sorted func-

tion; the simplifier uses these lemmas to rewrite expressions. Some of these lemmas are:

1. sorted.simps(2):

so r t ed (x#ys ) = (∀y ∈ s e t ys . x ≤ y ) ∧ so r t ed ys

2. sorted2_simps(2):

so r t ed (x # y # zs ) = x ≤ y ∧ so r t ed (y # zs )

18



3.4 Merge sort

The lemma sorted.simps(2) is too aggressive to prove that the expression sorted (y#insert

x ys) holds, line 4, figure 3.2, because it associates each element of insert x ys to all its

successors. To illustrate, by using lemma sorted.simps(2) the expression sorted (y#insert

x ys) rewrites to:

∀z ∈ s e t ( i n s e r t x ys ) . y ≤ z ) ∧ so r t ed ( i n s e r t x ys )

For ∀z ∈ set(insert x ys). y ≤ z ), not even the automatic theorem provers can find an

efficient proof. However, the sorted2_simps(2) lemma is less aggressive; it links the in-

sert function directly without the quantifier, but it cannot be applied directly to sorted

(y#insert x ys) since sorted2_simps(2) requires at least two elements.

Unfortunately, Sledgehammer cannot find any adequate proof for proof step in line 4;

the automatic provers were taking more than one second to reconstruct the proof. If an

automatic prover runs seemingly forever, that is a sign that the proof is too hard for it

[13]. I solved this issue by adding an auxiliary lemma called sorted3 in figure 3.1. This

auxiliary lemma uses sorted2_simps(2) to rewrite sorted (y#insert x ys) to:

y ≤ x ∧ so r t ed ( i n s e r t x ys )

In line 6, figure 3.2, we can see that Isabelle/HOL can indeed rewrite sorted (y#insert x

ys) to y ≤ x ∧ sorted(insert x ys) by using lemma sorted3. The automatic provers can find

efficient proofs for y ≤ x ∧ sorted(insert x ys) that reconstructs under few milliseconds as

opposed to more than one second. This section is quite technical, but the bottom line is:

the automatic provers are more efficient when using sorted3 than sorted2_simps(2).

3.4 Merge sort

Some non-terminating tail-recursive functions are allowed in Isabelle/HOL. However, the

vast majority of functions must be total; this means that these recursive functions must

halt. Isabelle/HOL has an automatic termination prover, which demands that the ar-

guments of recursive calls on the right-hand side need to be strictly smaller than the

arguments on the left-hand side.

The default method for termination proofs is the lexicographic_order method. This

method search for an adequate lexicographic combination of size measure. Some functions

do not have a simple termination argument. In these circumstances, the termination

relation has to be set manually [14].

Consider the merge function, figure 3.3, which merges two sorted lists. The lexico-

graphic_order method fails on this function because it is not clear which argument should

19



3. FORMALIZATION IN ISABELLE/HOL

1 function merge : : "nat l i s t ⇒ nat l i s t ⇒ nat l i s t " where
2 "merge xs [ ] = xs" |
3 "merge [ ] ys = ys" |
4 "merge (x#xs ) ( y#ys )=( i f x ≤ y then x#merge xs (y#ys ) else y#merge (x#xs ) ys )"
5 by pat_completeness auto
6 te rminat ion
7 proof ( r e l a t i o n "measure (λ( xs , ys ) . l ength xs + length ys )" )
8 ...
9 assume a1 : "x ≤ y"

10 ...
11 show " l ength xs + length (y#ys ) < length (x#xs ) + length (y#ys )" ...
12 ...
13 assume a2 : " x ≤ y "
14 ...
15 show " l ength (x#xs ) + length ys < length (x#xs ) + length (y#ys )" ...
16 ...
17 qed

Figure 3.3: Proving termination for merge function in Isabelle/HOL

be considered for the standard size ordering. To prove termination manually, we must

provide a custom well-founded relation.

First, we need to prove the pattern completeness of the datatype constructors. We

show this by issuing the command pat_completeness, line 5. Then we need to proof

termination by using the measure function (λ(xs, ys). length xs + length ys), which states

that the standard size is the sum of both arguments, line 7. Finally, we show that in the

recursive case, the sum of the lists is strictly smaller than the sum of the original inputs,

lines 11 and 15.

3.5 Selection sort

Functions defined with the function keyword come with their induction schema, which

follows the recursion schema and derives from the termination arrangement. For example,

the selection sort function, appendix IV, proves the tailor-made induction rule:

P [ ]
∧
x, xs. P xs =⇒ P (x#xs)

P m

This induction rule simplifies inductive proofs. For example, the induction rule in figure

3.3, line 2, produces two subgoals, lines 4 and 10.

20



3.5 Selection sort

We show some important basic proof patterns for structural induction and calculational

reasoning, in figure 3.3. The induction proof automatically creates the subgoals and also

the fix-assume steps, which are abbreviated using the case idiom, lines 3 and 6. For

example, the case "case (2 x xs)" is an abbreviation for:

fix : x xs
assume hyps : "mset s e t ( s e l e c t i o n_so r t ?xb ) = mset ?xb"

We can also reduce the complexity of our proof by entering new assumptions. By using

the keyword cases, line 11, we can obtain two additional assumptions, lines 12 and 22.

Finally, we show a proof structure for calculational reasoning, lines 13-20, and 23-28,

where we produce the proof with the "glue statements" also and finally.

1 theorem se l ect ion_sort_permutat ion : "mset ( s e l e c t i o n_so r t ( xs ) ) = mset xs"
2 proof ( induct xs r u l e : s e l e c t i o n_so r t . induct )
3 case 1
4 then show "mset ( s e l e c t i o n_so r t [ ] ) = mset [ ] " by simp
5 next
6 case (2 x xs )
7 l e t ?minimum = "Min ( s e t ( x # xs ) )"
8 l e t ? r e s t = "remove1 ?minimum (x # xs )"
9 have IH : "mset ( s e l e c t i o n_so r t ? r e s t ) = mset ? r e s t " us ing " 2 . hyps" ...

10 then show "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset ( x # xs )"
11 proof ( ca s e s "?minimum = x" )
12 case True
13 have "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset (?minimum#se l e c t i o n_so r t (?

r e s t ) )" ...
14 also have " . . . = {#?minimum#} + mset ( s e l e c t i o n_so r t (? r e s t ) )" ...
15 also have " . . . = {#?minimum#} + mset (? r e s t )" ...
16 also have " . . . = {#?minimum#} + mset ( remove1 x (x # xs ) )" ...
17 also have " . . . = {#?minimum#} + mset ( xs )" ...
18 also have " . . . = {#x#} + mset ( xs )" ...
19 also have " . . . = mset ( x#xs )" ...
20 f ina l ly show "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset ( x # xs )" ...
21 next
22 case Fa l se
23 have c1 : "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset (?minimum#se l e c t i o n_so r t

(? r e s t ) )" ...
24 also have c2 : " . . . = {#?minimum#} + mset ( s e l e c t i o n_so r t (? r e s t ) )" ...
25 also have c3 : " . . . = {#?minimum#} + mset (? r e s t )" ...
26 also have c4 : " . . . = {#?minimum#} + mset (x # xs ) − {#?minimum#}" ...
27 also have c5 : " . . . = mset ( x # xs )" by simp
28 f ina l ly show "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset ( x # xs )" ...
29 qed
30 qed

Figure 3.4: Formalizing lemma 2.3.1 (selection_sort permutation) in Isabelle/HOL

21



3. FORMALIZATION IN ISABELLE/HOL

22



4

Conclusion

This thesis aimed to prove the correctness of some sorting algorithms using the proof

assistant Isabelle/HOL. Based on informal proofs, I verified the total correctness of these

algorithms by showing that (1) they sort according to the sorting problem, and (2) they

eventually terminate. I used the Isar language to present the lemmas in sub-proofs; making

the code modular, and maybe easier to maintain.

Surprisingly, I found more challenging verifying selection sort than merge and insertion

sort. By assuming that the merge and insertion sort input lists are sorted, one can show

that these two algorithms sort correctly. However, to prove that the selection sort output

is sorted, I had to verify that the result of its recursive calls does not include new elements.

Even though the automatic theorem provers are excellent for proof search, sometimes

they cannot find any proof, because the search space is massive or the current goal is not in

first-order logic. Therefore, some level of fundamental mathematics and proof techniques,

such as structural or computational induction, is required to break down a problem into

subproblems, and because the automatic provers do not attempt to do induction since they

are for first-order logic.

23



4. CONCLUSION

24



References

[1] Tobias Nipkow. Session 2: Isabelle’s meta-logic, 2010. [online] Available:

https://isabelle.in.tum.de/doc/prog-prove.pdf. ix

[2] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to algorithms, chapter 1, pages 5–5. MIT press, 3rd edition, 2009.

1

[3] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer

Algorithms, chapter 3, pages 76–76. Addison-Wesley Longman Publishing Co., Inc.,

1st edition, 1974. 2

[4] AMR SABRY. What is a purely functional language? Journal of Functional

Programming, 8(1):1–22, 1998. publisher: Cambridge University Press. 2

[5] Tobias Nipkow. Programming and proving in Isabelle/HOL, chapter 2, pages 5–5.

2019. [online] Available: https://isabelle.in.tum.de/doc/prog-prove.pdf. 2

[6] Rod M Burstall. Proving properties of programs by structural induction.

The Computer Journal, 12(1):41–48, 1969. publisher: The British Computer Society.

3

[7] Tobias Nipkow and Gerwin Klein. Concrete Semantics. A Proof Assistant

Approach, 2014. 4, 17

[8] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:

a proof assistant for higher-order logic, 2283, chapter 1, pages 3–3. Springer Science

& Business Media, 2002. 5

[9] Gertrud Bauer and Markus Wenzel. Calculational Reasoning Revisited

(An Isabelle/Isar Experience). In Theorem Proving in Higher Order Logics: 14th

25

https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf


REFERENCES

International Conference, TPHOLs 2001, Edinburgh, Scotland, UK, September 3-6,

2001. Proceedings, 2152, pages 75–90. Springer, 2003. 5

[10] Doug Dunham. Structural induction, 2 2010. [online] Available: https://www.

d.umn.edu/~ddunham/cs3512s10/notes/l10.pdf. 8

[11] Makarius Wenzel et al. The Isabelle/Isar reference manual, 2004. [online]

Available: https://isabelle.in.tum.de/doc/isar-ref.pdf. 17

[12] Makarius Wenzel. Structured induction proofs in Isabelle/Isar. In Interna-

tional Conference on Mathematical Knowledge Management, pages 17–30. Springer,

2006. 17

[13] Jasmin Christian Blanchette and Lawrence C. Paulson. A User’s Guide

to Sledgehammer for Isabelle/HOL, 6 2019. [online] Available: https://

isabelle.in.tum.de/dist/doc/sledgehammer.pdf. 19

[14] Alexander Krauss. Defining recursive functions in Isabelle/HOL, 2008.

[online] Available: https://isabelle.in.tum.de/doc/functions.pdf. 19

26

https://www.d.umn.edu/~ddunham/cs3512s10/notes/l10.pdf
https://www.d.umn.edu/~ddunham/cs3512s10/notes/l10.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
https://isabelle.in.tum.de/doc/functions.pdf


Appendix I

Appendix: Insertion sort informal
proofs

insert(x, []) = [] (I.1)

insert(x, (y#ys)) =

x#y#ys, if x < y

y#insert(x, ys), otherwise
(I.2)

Figure I.1: insert: a recursively defined mathematical function

insertion_sort([]) = [] (I.3)

insertion_sort(x#xs) = insert(x, insertion_sort(xs)) (I.4)

Figure I.2: insertion_sort: a recursively defined mathematical function

Lemma I.0.1 (insert order) The insert function yields to sorted list (output) if the el-
ement is inserted to a sorted list. Formally:

∀y, ys(sorted(ys)→ sorted(insert(y, ys)))

Proof The proof is by structural induction on list ys.

Base case: when ys = [], then show that sorted(insert(y , [])) holds by assuming that
sorted([]) holds.

insert(y, [])

= [] [By definition of insert function]

Hence, sorted(insert(y, [])) holds because sorted([]) is sorted.

27



I. APPENDIX: INSERTION SORT INFORMAL PROOFS

Induction hypothesis:
∀y, ys(sorted(ys)→ sorted(insert(y, ys)))

Inductive step: assuming that IH holds, then show:

∀a, y, ys(sorted(a#ys)→ sorted(insert(y, a#ys)))

Fix: a, y, ys
Assume: sorted(a#ys)

Case 1 y < a.

sorted(insert(y, a#ys))

= sorted(y#a#ys) [By definition of insert function and since y < a]

Hence, sorted(y#a#ys) holds, because sorted(a#ys) holds and since y < a.

Case 2 y ≥ a. The premise sorted(a#ys) implies sorted(ys), because removing the first
element of a sorted list leaves the rest of the list sorted. sorted(insert(y , ys)) holds by
using IH and sorted(ys). Moreover, insert(y , a#ys)) = sorted(a#insert(y , ys) by defi-
nition of the insert and since y ≥ a. Hence, sorted(a#insert(y,ys)) holds, because
sorted(insert(y , ys)) and sorted(a#ys) holds, and since y ≥ a.

∴ By the principle of structural induction, the lemma I.0.1 holds. Q. E. D.

Theorem I.0.1 (insetion_sort order) The insertion_sort function yields a sorted list
(output). Formally:

∀ys(sorted(insertion_sort(ys)))

Proof The proof is by structural induction on list ys.

Base case: when ys = [], then show that sorted(insertion_sort([])) holds by assuming
that sorted([]) holds.

insertion_sort([])

= [] [By definition of function insertion_sort ]

Hence, sorted(insert_sort([])) holds, because sorted([]) is sorted.

Induction hypothesis:
∀ys(sorted(insert_sort(ys)))

28



Inductive step: assuming that IH holds, then show:

∀y, ys(sorted(insert_sort(y#ys)))

Fix: y, ys

sorted(insertion_sort(y#ys))

= sorted(insert(y, insertion_sort(ys))) [By definition of function insertion_sort ]

Hence, sorted(insert(y, insert_sort(ys))) holds, because (1) insertion_sort(ys) is sorted
by using IH, and (2) the lemma I.0.1 states that when the insert function adds any element
to a sorted list, then its final output is sorted.

∴ By the principle of structural induction, the theorem I.0.1 holds. Q. E. D.

Lemma I.0.2 (insert permutation) The insert function output is a permutation of its
own input. Formally:

∀y, ys(mset(insert(y, ys)) = mset(y#ys))

Proof The proof is by structural induction on list ys.

Base case: when ys = [], then show mset(insert(y , [])) = mset([y ]) holds.

mset(insert(y, []))

= mset([y]) [By definition of function insert ]

Induction hypothesis:
∀y, ys(mset(insert(y, ys)) = mset(y#ys))

Inductive step: assuming that IH holds, then show:

∀a, y, ys(mset(insert(y, a#ys)) = mset(y#a#ys))

Fix: y, a, ys

Case 1 y < a.

mset(insert(y, a#ys))

= mset(y#a#ys) [By using insert function definition and since y < a]

29



I. APPENDIX: INSERTION SORT INFORMAL PROOFS

Case 2 y ≥ a.

mset(insert(y, a#ys))

= mset(y#insert(a, ys)) [By using insert function definition and since y ≥ a]

= {#y#}+mset(insert(a, ys)) [By mset definition]

= {#y#}+mset(a#ys) [By using IH]

= mset(y#a#ys) [By mset definition]

∴ By the principle of structural induction, the lemma I.0.2 holds. Q. E. D.

Theorem I.0.2 (insertion_sort permutation) The insertion_sort function output is
a permutation of its own input. Formally speaking:

∀ys(mset(insert_sort(ys)) = mset(ys))

Proof The proof is by structural induction on list ys.

Base case: when ys = [], then show mset(insertion_sort([])) = mset([]) holds.

mset(insertion_sort([]))

= mset([]) [By definition of function insertion_sort ]

Induction hypothesis:
∀ys(mset(insert_sort(ys) = mset(ys)))

Inductive step: assuming that IH holds, then show:

∀y, ys(mset(insert_sort(y#ys) = mset(y#ys))

Fix: y, ys

mset(insert_sort(y#ys)

= mset(insert(y, (insert_sort(ys)))) [By insertion_sort function definition]

= mset(y#(insert_sort(ys))) [By using lemma I.0.2]

= {#y#}+mset(insert_sort(ys)) [By using mset definition]

= {#y#}+mset(ys) [By usin IH]

= mset(y#ys) [By using mset definition]

∴ By the principle of structural induction, the theorem I.0.2 holds. Q. E. D.

30



Appendix II

Appendix: Insertion sort code

theory " i n s e r t i o n−s o r t "
imports Main "HOL−Library . Mul t i s e t "

begin

de c l a r e [ [ names_short ] ]

t ex t \<open>non−t a i l r e c u r s i v e\<c lo s e >

primrec i n s e r t : : "nat ⇒ nat l i s t ⇒ nat l i s t " where
i n s e r t_Ni l : " i n s e r t x [ ] = [ x ] " |
insert_Cons : " i n s e r t x (y#ys ) = ( i f x < y then ( x#y#ys ) else y#i n s e r t x ys )"

value " i n s e r t 1 [ 2 , 4 , 1 0 ] "

primrec i n s e r t i on_so r t : : "nat l i s t ⇒ nat l i s t " where
i n s e r t i on_sor t_Ni l : " i n s e r t i on_so r t [ ] = [ ] " |
insert ion_sort_Cons : " i n s e r t i on_so r t ( x#xs ) = i n s e r t x ( i n s e r t i on_so r t ( xs ) )

"

value " i n s e r t_so r t [ 2 , 4 , 1 0 , 0 , 3 ] "

lemma so r t ed3 : " [[ so r t ed (y#ys ) ; x < y ]] =⇒ so r t ed (y#i n s e r t x ys ) = (y ≤ x ∧
so r t ed ( i n s e r t x ys ) )"

proof ( induct ion ys ru l e : s o r t ed . induct )
case 1
then show " so r t ed (y # i n s e r t x [ ] ) = (y ≤ x ∧ so r t ed ( i n s e r t x [ ] ) )" by

auto
next

case (2 x ys )
then show ? case by ( simp de l : L i s t . l i n o r d e r_c l a s s . s o r t ed . simps add :

sorted2_simps )
qed

31



II. APPENDIX: INSERTION SORT CODE

lemma i n s e r t_orde r : " so r t ed ( ys )=⇒ so r t ed ( i n s e r t x ys )"
proof ( induct ys a r b i t r a r y : x )

case Ni l
then show " so r t ed ( i n s e r t x [ ] ) " by simp

next
case (Cons y ys )
then show " so r t ed ( i n s e r t x (y # ys ) )"
proof ( ca s e s "x < y" )

case True
then show " so r t ed ( i n s e r t x (y # ys ) )"
proof ( simp only : True insert_Cons if_True )

show " so r t ed (x # y # ys )"
proof ( simp )

show "x ≤ y ∧ Bal l ( s e t ys ) ( (≤) x ) ∧ Bal l ( s e t ys ) ( (≤) y ) ∧ so r t ed
ys"

proof ( i n t r o con j I )
show "x ≤ y" by ( simp add : Order ings . o rder_c las s . order .

s t r i c t_ imp l i e s_orde r True )
next

show "Bal l ( s e t ys ) ( (≤) x )" us ing True l o c a l . Cons . prems by auto
next

show "Bal l ( s e t ys ) ( (≤) y )" us ing L i s t . l i n o r d e r_c l a s s . s o r t ed .
simps (2 ) l o c a l . Cons . prems by simp

next
show " so r t ed ys" us ing L i s t . l i n o r d e r_c l a s s . s o r t ed . simps (2 ) l o c a l .

Cons . prems by simp
qed

qed
qed

next
case Fa l se
then show " so r t ed ( i n s e r t x (y # ys ) )"
proof ( simp only : Fa l se insert_Cons i f_Fa l s e )

show " so r t ed (y # i n s e r t x ys )"
proof ( simp de l : L i s t . l i n o r d e r_c l a s s . s o r t ed . simps add : Fa l se so r ted3 "

l o c a l . Cons . prems" )
show "y ≤ x ∧ so r t ed ( i n s e r t x ys )"
proof ( r u l e con j I )

show "y ≤ x" by ( simp add : Fa l se l e I )
next

have " so r t ed ys" us ing " l o c a l . Cons . prems" L i s t . l i n o r d e r_c l a s s .
s o r t ed . simps (2 ) by b l a s t

then show " so r t ed ( i n s e r t x ys )" by ( simp add : l o c a l . Cons . hyps )
qed

qed
qed

32



qed
qed

theorem i n s e r t i on_sor t_order : " so r t ed ( i n s e r t i on_so r t ( ys ) )"
proof ( induct ys )

case Ni l
then show " so r t ed ( i n s e r t i on_so r t [ ] ) " by simp

next
case (Cons y ys )
show " so r t ed ( i n s e r t i on_so r t ( y # ys ) )"
proof ( simp only : insert ion_sort_Cons )

show " so r t ed ( i n s e r t y ( i n s e r t i on_so r t ys ) )" by ( simp only : " l o c a l . Cons .
hyps" i n s e r t_orde r )

qed
qed

lemma insert_permutat ion : "mset ( i n s e r t x ys ) = mset ( x#ys )"
proof ( induct ys a r b i t r a r y : x )

case Ni l
then show "mset ( i n s e r t x [ ] ) = mset [ x ] " by simp

next
case (Cons y ys )
then show "mset ( i n s e r t x (y # ys ) ) = mset (x # y # ys )"
proof ( ca s e s "x < y" )

case True
then show "mset ( i n s e r t x (y # ys ) ) = mset (x # y # ys )" by simp

next
case Fa l se
have "mset ( i n s e r t x (y # ys ) ) = mset (y#i n s e r t x ys )" us ing Fal se by
simp
also have " . . . = {#y#} + mset ( i n s e r t x ys )" by simp
also have " . . . = {#y#} + mset (x # ys )" us ing " l o c a l . Cons . hyps" False by
simp
also have " . . . = mset ( x # y # ys )" by simp
f ina l ly show "mset ( i n s e r t x (y # ys ) ) = mset (x # y # ys )" by t h i s

qed
qed

theorem insert ion_sort_permutat ion : "mset ( i n s e r t i on_so r t ys ) = mset ys"
proof ( induct ys )

case Ni l
then show "mset ( i n s e r t i on_so r t [ ] ) = mset [ ] " by simp

next
case (Cons x xs )
have "mset ( i n s e r t i on_so r t ( x # xs ) ) = mset ( i n s e r t x ( i n s e r t i on_so r t ( xs ) )

)" by simp
also have " . . . = mset ( x#( i n s e r t i on_so r t ( xs ) ) )" us ing insert_permutat ion

33



II. APPENDIX: INSERTION SORT CODE

by simp
also have " . . . = {#x#} + mset ( i n s e r t i on_so r t ( xs ) )" by simp
also have " . . . = {#x#} + mset xs" us ing " l o c a l . Cons . hyps" by simp
also have " . . . = mset (x # xs )" us ing " l o c a l . Cons . hyps" by simp
f ina l ly show "mset ( i n s e r t i on_so r t ( x # xs ) ) = mset ( x # xs )" by t h i s

qed

t ex t \<open>t a i l r e c u r s i v e\<c lo s e >

fun i n s e r t i o n_so r t_ta i l : : "nat l i s t ⇒ nat l i s t ⇒ nat l i s t " where
i n s e r t i on_so r t_ta i l_Ni l : " i n s e r t i o n_so r t_ta i l [ ] accum = accum" |
insert ion_sort_ta i l_Cons : " i n s e r t i o n_so r t_ta i l ( x#xs ) accum =

in s e r t i o n_so r t_ta i l ( xs ) ( i n s e r t x accum)"

value " i n s e r t_so r t_ta i l ( [ 2 , 4 , 1 0 ] ) ( [ ] ) "

theorem i n s e r t_sor t_ta i l_orde r : " so r t ed (ACCUM)=⇒ so r t ed ( i n s e r t i o n_so r t_ta i l
xs ACCUM)"

proof ( induct xs a r b i t r a r y :ACCUM)
case Ni l
then show " so r t ed ( i n s e r t i o n_so r t_ta i l [ ] ACCUM)" by simp

next
case (Cons a xs )
then show " so r t ed ( i n s e r t i o n_so r t_ta i l ( a # xs ) ACCUM)" by ( simp add :

in se r t_order )
qed

theorem in se r t ion_sort_ta i l_permutat ion : "mset ( i n s e r t i o n_so r t_ta i l xs ACCUM
) = mset (xs@ACCUM)"

proof ( induct xs a r b i t r a r y :ACCUM)
case Ni l
then show "mset ( i n s e r t i o n_so r t_ta i l [ ] ACCUM) = mset ( [ ] @ ACCUM)" by

simp
next

case (Cons a xs )
then show ? case by ( simp add : insert_permutat ion )

qed

34



Appendix III

Appendix: Merge sort code

theory "merge−s o r t "
imports Main "HOL−Library . Mul t i s e t "

begin

de c l a r e [ [ names_short ] ]

t ex t \<open>t a i l r e c u r s i v e\<c lo s e >

function merge : : "nat l i s t ⇒ nat l i s t ⇒ nat l i s t " where
"merge xs [ ] = xs" |
"merge [ ] ys = ys" |
"merge (x#xs ) ( y#ys ) = ( i f x ≤ y then x#merge xs (y#ys ) else y#merge (x#xs )

ys )"
by pat_completeness auto
terminat ion
proof ( r e l a t i o n "measure (λ( xs , ys ) . l ength xs + length ys )" )

show "wf ( measure (λ( xs , ys ) . l ength xs + length ys ) )" by simp
next

f ix xs ys : : "nat l i s t "
f ix x y : : nat
assume a1 : "x ≤ y"
show " ( ( xs , y#ys ) , x#xs , y#ys ) ∈ measure (λ( xs , ys ) . l ength xs + length ys

)"
proof ( simp only : in_measure )

show " ( case ( xs , y#ys ) o f ( xs , ys ) ⇒ l ength xs + length ys ) < ( case ( x#
xs , y#ys ) o f ( xs , ys ) ⇒ l ength xs + length ys )"
proof ( simp only : prod . case )

show " l ength xs + length (y#ys ) < length (x#xs ) + length (y#ys )" by
simp
qed

qed
next

35



III. APPENDIX: MERGE SORT CODE

f ix xs ys : : "nat l i s t "
f ix x y : : nat
assume a2 : " x ≤ y "
show " ( ( x#xs , ys ) , x#xs , y#ys ) ∈ measure (λ( xs , ys ) . l ength xs + length ys

)"
proof ( simp only : in_measure )

show " ( case ( x# xs , ys ) o f ( xs , ys ) ⇒ l ength xs + length ys ) < ( case ( x#
xs , y#ys ) o f ( xs , ys ) ⇒ l ength xs + length ys )"
proof ( simp only : prod . case )

show " l ength (x#xs ) + length ys < length (x#xs ) + length (y#ys )" by
simp
qed

qed
qed

value "merge ( [ 1 , 2 , 3 ] ) ( [ 1 , 2 , 3 , 1 0 ] ) "

lemma so r t ed4 : " [[ so r t ed (y#ys ) ; s o r t ed (x#xs ) ; s o r t ed ( merge ( xs ) ( y#ys ) ) ; x ≤
y ]] =⇒ so r t ed (x#merge ( xs ) ( y#ys ) )"

proof ( induct ion xs ru l e : s o r t ed . induct )
case 1
then show ? case by auto

next
case (2 x ys )
then show ? case by ( metis merge . simps (3 ) so r t ed2 )

qed

lemma so r t ed5 : " [[ so r t ed (y#ys ) ; s o r t ed (x#xs ) ; s o r t ed ( merge (x#xs ) ( ys ) ) ; y ≤
x ]] =⇒ so r t ed (y#merge (x#xs ) ( ys ) )"

proof ( induct ion ys ru l e : s o r t ed . induct )
case 1
then show ? case by auto

next
case (2 x ys )
then show ? case by ( metis merge . simps (3 ) so r t ed2 )

qed

lemma merge_order : " [[ so r t ed ( xs ) ; s o r t ed ( ys ) ]] =⇒ so r t ed ( merge xs ys )"
proof ( induct xs ys r u l e : merge . induct )

case (1 xs )
then show " so r t ed ( merge xs [ ] ) " by simp

next
case (2 ys )
then show " so r t ed ( merge [ ] ys )" by simp

next
case (3 x xs y ys )
then show " so r t ed ( merge (x # xs ) (y # ys ) )"

36



proof ( ca s e s "x ≤ y" )
case True
then show " so r t ed ( merge (x # xs ) (y # ys ) )"
proof ( simp only : merge . simps True if_True )

have " so r t ed ( merge xs (y # ys ) )" us ing " 3 . hyps" (1 ) " 3 . prems" (1 ) " 3 .
prems" (2 ) True so r t ed . simps (2 ) by simp

then show " so r t ed (x # merge xs ( y # ys ) )" by ( simp only : " 3 . prems"
(1 ) " 3 . prems" (2 ) True sor t ed4 )
qed

next
case Fa l se
then show " so r t ed ( merge (x # xs ) (y # ys ) )"
proof ( simp only : merge . simps Fal se i f_Fa l s e )

have " so r t ed ( merge (x # xs ) ys )" us ing " 3 . hyps" (2 ) " 3 . prems" (1 ) " 3 .
prems" (2 ) Fa l se so r t ed . simps (2 ) by simp

moreover have "y ≤ x" us ing Fal se nat_le_l inear by simp
u l t imat e l y show " so r t ed (y # merge (x # xs ) ys )" by ( simp only : " 3 .

prems" (1 ) " 3 . prems" (2 ) Fa l se so r t ed5 )
qed

qed
qed

lemma merge_permutation : "mset ( merge xs ys ) = mset xs + mset ys"
proof ( induct xs ys r u l e : merge . induct )

case (1 ys )
have "mset ( merge ys [ ] ) = mset ( ys )" by simp
also have " . . . = mset ys + mset [ ] " by simp
f ina l ly show "mset ( merge ys [ ] ) = mset ys + mset [ ] " by t h i s

next
case (2 xs )
have "mset ( merge [ ] xs ) = mset ( xs )" by simp
also have " . . . = mset xs + mset [ ] " by simp
then show "mset ( merge [ ] xs ) = mset [ ] + mset xs" by simp

next
case (3 x xs y ys )
then show ? case
proof ( ca s e s "x ≤ y" )

case True
have "mset ( merge (x # xs ) ( y # ys ) ) = mset (x#merge xs (y # ys ) )" us ing
True by simp
also have " . . . = {#x#} + mset ( merge xs ( y # ys ) )" by simp
also have " . . . = {#x#} + mset xs + mset (y # ys )" us ing " 3 . hyps" (1 )
True by ( simp )
also have " . . . = mset ( x # xs ) + mset (y # ys )" by ( simp add : " 3 . hyps"
(1 ) True )
f ina l ly show "mset ( merge (x # xs ) ( y # ys ) ) = mset (x # xs ) + mset ( y #
ys )" by t h i s

37



III. APPENDIX: MERGE SORT CODE

next
case Fa l se
have "mset ( merge (x # xs ) ( y # ys ) ) = mset (y#merge (x#xs ) ys )" us ing
Fal se by simp
also have " . . . = {#y#} + mset ( merge (x#xs ) ys )" by simp
also have " . . . = {#y#} + mset (x # xs ) + mset ys" by ( simp add : " 3 .
hyps" (2 ) Fa l se )
also have " . . . = mset (x # xs ) + mset ( y # ys )" by simp
f ina l ly show "mset ( merge (x # xs ) ( y # ys ) ) = mset (x # xs ) + mset ( y #
ys )" by t h i s

qed
qed

value "merge [ 1 , 2 , 3 ] [ 1 , 4 , 5 , 6 ] "

fun merge_sort : : "nat l i s t ⇒ nat l i s t " where
"merge_sort [ ] = [ ] " |
"merge_sort [ x ] = [ x ] " |
"merge_sort ( x#xs ) = ( l e t h a l f = ( ( l ength (x#xs ) ) div 2) ; l e f t = take ha l f

( x#xs ) ; r i g h t = drop ha l f ( x#xs ) in merge ( merge_sort ( l e f t ) ) (
merge_sort ( r i g h t ) ) )"

value "msort [ 9 , 8 , 7 , 6 , 5 , 4 ] "

theorem merge_sort_order : " so r t ed ( merge_sort xs )"
proof ( induct xs r u l e : merge_sort . induct )

case 1
then show ? case by simp

next
case (2 x )
then show ? case by simp

next
case (3 v vb vc )
thm " 3 . hyps"
l e t ? h a l f = " l ength (v # vb # vc ) div 2"
l e t ? l e f t = " take ? ha l f ( v # vb # vc )"
l e t ? r i g h t = "drop ? ha l f ( v # vb # vc )"
show " so r t ed ( merge_sort ( v # vb # vc ) )"
proof ( simp only : merge_sort . simps Let_def )

have " so r t ed ( ( merge_sort (? l e f t ) ) )" us ing " 3 . hyps" (1 ) by simp
moreover have " so r t ed ( ( merge_sort (? r i g h t ) ) )" us ing " 3 . hyps" (2 ) by simp
u l t imat e l y show " so r t ed ( merge ( merge_sort (? l e f t ) ) ( merge_sort (? r i g h t )
) )" by ( simp only : merge_order )

qed
qed

theorem merge_sort_permutation : "mset ( merge_sort xs ) = mset xs"

38



proof ( induct xs r u l e : merge_sort . induct )
case 1
then show "mset ( merge_sort [ ] ) = mset [ ] " by simp

next
case (2 x )
then show "mset ( merge_sort [ x ] ) = mset [ x ] " by simp

next
case (3 v vb vc )
l e t ? h a l f = " l ength (v # vb # vc ) div 2"
l e t ? l e f t = " take ? ha l f ( v # vb # vc )"
l e t ? r i g h t = "drop ? ha l f ( v # vb # vc )"
have "mset ( merge_sort ( v # vb # vc ) ) = mset ( merge ( merge_sort ? l e f t ) (

merge_sort ? r i g h t ) )" by simp
also have " . . . = mset ( merge_sort ? l e f t ) + mset ( merge_sort ? r i g h t )" us ing

merge_permutation by simp
also have " . . . = mset (? l e f t ) + mset (? r i g h t )" by ( simp add : " 3 . hyps" (1 ) "

3 . hyps" (2 ) )
also have " . . . = mset ( v # vb # vc )" by ( metis append_take_drop_id

mset_append )
f ina l ly show "mset ( merge_sort ( v # vb # vc ) ) = mset ( v # vb # vc )" by

t h i s
qed

39



III. APPENDIX: MERGE SORT CODE

40



Appendix IV

Appendix: Selection sort code

theory " s e l e c t i o n−s o r t "
imports Main "HOL−Library . Mul t i s e t "

begin

text \<open>no t a i l−r e c u r s i v e\<c lo s e >

lemma remove_member : "y ∈ s e t ( x#xs )=⇒ l ength ( remove1 y (x#xs ) ) < length (x
#xs )"

proof ( induct xs a r b i t r a r y : y x )
case Ni l
have " l ength ( remove1 y [ x ] ) = length ( remove1 x [ x ] ) " us ing Ni l . prems by

simp
also have " l ength ( remove1 x [ x ] ) = length [ ] " by simp
also have " l ength [ ] < length [ x ] " by simp
f ina l ly show " l ength ( remove1 y [ x ] ) < length [ x ] " by t h i s

next
case (Cons a xs )
then show " l ength ( remove1 y (x # a # xs ) ) < length (x # a # xs )"
proof ( ca s e s "y ∈ s e t ( a # xs )" )

case True
have " l ength ( remove1 y (x # a # xs ) ) = length (x#remove1 y ( a # xs ) )"
us ing One_nat_def Suc_pred True length_Cons length_pos_if_in_set
length_remove1 remove1 . simps (2 ) by metis
also have " . . . = length [ x ] + length ( remove1 y ( a # xs ) )" by simp
also have " . . . < length [ x ] + length ( a # xs )" us ing Cons . hyps True by
simp
also have " . . . = length (x # a # xs )" by simp
f ina l ly show " l ength ( remove1 y (x # a # xs ) ) < length (x # a # xs )" by
t h i s

next
case Fa l se
have " l ength ( remove1 y (x # a # xs ) ) = length ( remove1 x (x # a # xs ) )"

41



IV. APPENDIX: SELECTION SORT CODE

us ing Cons . prems Fal se by simp
also have " . . . = length ( a # xs )" by simp
also have " . . . < length (x # a # xs )" by simp
f ina l ly show " l ength ( remove1 y (x # a # xs ) ) < length (x # a # xs )" by
t h i s

qed
qed

function s e l e c t i o n_so r t : : "nat l i s t ⇒ nat l i s t " where
s e l e c t i on_sor t_Nul l : " s e l e c t i o n_so r t [ ] = [ ] " |
se lect ion_sort_Cons : " s e l e c t i o n_so r t ( x#xs ) = ( l e t minimum = Min ( s e t ( x#xs ) )

; r e s t = remove1 minimum (x#xs ) in minimum#se l e c t i o n_so r t ( r e s t ) )"
by pat_completeness auto
te rminat ion
proof ( r e l a t i o n "measure (λ( xs ) . l ength xs )" )

show "wf ( measure l ength )" by simp
next

f ix minimum x : : nat
f ix r e s t xs : : "nat l i s t "
assume a1 : "minimum = Min ( s e t ( x # xs ) )"
assume a2 : " r e s t = remove1 minimum (x # xs )"
show " ( r e s t , x # xs ) ∈ measure l ength "
proof ( simp only : in_measure )

have p1 : "minimum ∈ s e t ( x#xs )" us ing a1 eq_Min_iff by b l a s t
show " l ength r e s t < length (x # xs )" us ing a2 p1 by ( simp only :
remove_member )

qed
qed

value " s e l e c t i o n_so r t [ 2 , 4 , 1 0 , 0 , 0 ] "

theorem se l ect ion_sort_permutat ion : "mset ( s e l e c t i o n_so r t ( xs ) ) = mset xs"
proof ( induct xs r u l e : s e l e c t i o n_so r t . induct )

case 1
then show "mset ( s e l e c t i o n_so r t [ ] ) = mset [ ] " by simp

next
case (2 x xs )
l e t ?minimum = "Min ( s e t ( x # xs ) )"
l e t ? r e s t = "remove1 ?minimum (x # xs )"
have IH : "mset ( s e l e c t i o n_so r t ? r e s t ) = mset ? r e s t " us ing " 2 . hyps" by simp
then show "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset ( x # xs )"
proof ( ca s e s "?minimum = x" )

case True
have "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset (?minimum#se l e c t i o n_so r t (?
r e s t ) )" us ing True by simp
also have " . . . = {#?minimum#} + mset ( s e l e c t i o n_so r t (? r e s t ) )" by simp
also have " . . . = {#?minimum#} + mset (? r e s t )" us ing IH by simp

42



also have " . . . = {#?minimum#} + mset ( remove1 x (x # xs ) )" us ing True by
simp
also have " . . . = {#?minimum#} + mset ( xs )" by simp
also have " . . . = {#x#} + mset ( xs )" us ing True by simp
also have " . . . = mset ( x#xs )" by simp
f ina l ly show "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset ( x # xs )" by t h i s

next
case Fa l se
have c1 : "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset (?minimum#se l e c t i o n_so r t
(? r e s t ) )" by ( metis " s e l e c t i o n−s o r t . se lect ion_sort_Cons " )
also have c2 : " . . . = {#?minimum#} + mset ( s e l e c t i o n_so r t (? r e s t ) )" by simp
also have c3 : " . . . = {#?minimum#} + mset (? r e s t )" us ing IH by simp
also have c4 : " . . . = {#?minimum#} + mset (x # xs ) − {#?minimum#}" by (
metis L i s t . f i n i t e_ s e t Min_in di f f_union_single_conv l i s t . d i s t i n c t (1 )
mset_remove1 set_empty set_mset_mset )
also have c5 : " . . . = mset ( x # xs )" by simp
f ina l ly show "mset ( s e l e c t i o n_so r t ( x # xs ) ) = mset ( x # xs )" by t h i s

qed
qed

theorem s e l e c t i on_sor t_orde r : " so r t ed ( s e l e c t i o n_so r t ( xs ) )"
proof ( induct xs r u l e : s e l e c t i o n_so r t . induct )

case 1
then show ? case by simp

next
case (2 x xs )
l e t ?minimum = "Min ( s e t ( x # xs ) )"
l e t ? r e s t = "remove1 ?minimum (x # xs )"
show " so r t ed ( s e l e c t i o n_so r t ( x # xs ) )"
proof ( simp only : se lect ion_sort_Cons Let_def )

show " so r t ed (?minimum # se l e c t i o n_so r t (? r e s t ) )"
proof ( simp only : Let_def so r t ed . simps )

show "Bal l ( s e t ( s e l e c t i o n_so r t (? r e s t ) ) ) ( (≤) (?minimum) ) ∧ so r t ed (
s e l e c t i o n_so r t (? r e s t ) )"

proof ( r u l e con j I )
have p1 : "mset ( s e l e c t i o n_so r t (? r e s t ) ) = mset ( x # xs ) − {#?minimum#}"
proof −

have c1 : "mset ( s e l e c t i o n_so r t (? r e s t ) ) = mset (? r e s t )" us ing
se lect ion_sort_permutat ion by b l a s t

also have c2 : " . . . = mset (x # xs ) − {#?minimum#}" us ing c1 by simp
f ina l ly show "mset ( s e l e c t i o n_so r t (? r e s t ) ) = mset ( x # xs ) − {#?

minimum#}" by t h i s
qed
show "Bal l ( s e t ( s e l e c t i o n_so r t (? r e s t ) ) ) ( (≤) (?minimum) )" by (

metis L i s t . f i n i t e_ s e t Min_le in_dif fD p1 set_mset_mset )
next

have " so r t ed ( s e l e c t i o n_so r t (? r e s t ) )" us ing " 2 . hyps" by simp

43



IV. APPENDIX: SELECTION SORT CODE

then show " so r t ed ( s e l e c t i o n_so r t (? r e s t ) )" by assumption
qed

qed
qed

qed

t ex t \<open>t a i l−r e c u r s i v e\<c lo s e >

lemma max_membership : "m = Max( s e t ( x#xs ) )=⇒m ∈ s e t ( x#xs )"
proof ( induct xs a r b i t r a r y : x m)

case Ni l
have "m = Max ( s e t [ x ] ) " us ing Ni l . prems by simp
also have " . . . ∈ s e t [ x ] " by simp
f ina l ly show "m ∈ s e t [ x ] " by t h i s

next
case (Cons a xs )
have "m = Max ( s e t ( x # a # xs ) )" us ing Cons . prems by simp
also have " . . . ∈ s e t ( x # a # xs )" us ing Max_in by b l a s t
f ina l ly show "m ∈ s e t ( x # a # xs )" by t h i s

qed

function t r_se l e c t i on_so r t : : "nat l i s t ⇒ nat l i s t ⇒ nat l i s t " where
" t r_se l e c t i on_so r t [ ] accum = accum" |
" t r_se l e c t i on_so r t ( x#xs ) accum = ( l e t max = Max ( s e t ( x#xs ) ) ; r e s t =remove1

max (x#xs ) in t r_se l e c t i on_so r t ( r e s t ) (max#accum) )"
by pat_completeness auto
terminat ion
proof ( r e l a t i o n "measure (λ( xs , accum) . s i z e xs )" )

show "wf ( measure (λ( xs , accum) . l ength xs ) )" by simp
next

f ix maximum x : : nat
f ix r e s t xs accum : : "nat l i s t "
assume a1 : "maximum = Max ( s e t ( x # xs ) )"
assume a2 : " r e s t = remove1 maximum (x # xs )"
show " ( ( r e s t , maximum # accum) , x # xs , accum) ∈ measure (λ( xs , accum) .

l ength xs )"
proof ( simp only : in_measure )

show " ( case ( r e s t , maximum # accum) o f ( xs , accum) ⇒ l ength xs ) < ( case
( x # xs , accum) o f ( xs , accum) ⇒ l ength xs )"
proof ( simp only : prod . case )

have p1 : "maximum ∈ s e t ( x#xs )" us ing a1 by ( simp only : max_membership
)

show " l ength r e s t < length (x # xs )" us ing a2 p1 by ( simp only :
remove_member )
qed

qed
qed

44



value " t r_se l e c t i on_so r t [ 2 , 4 , 1 0 , 0 , 0 ] [ ] "

theorem tr_se lect ion_sort_output_sorted : " [[ so r t ed (ACCUM) ; ∀A e . A ∈ ( s e t
ACCUM) ∧ e ∈ s e t xs ∧ e ≤ A]]=⇒ so r t ed ( t r_se l e c t i on_so r t xs ACCUM)"

proof ( induct xs a r b i t r a r y : ACCUM ru l e : t r_se l e c t i on_so r t . induct )
case (1 zs )
then show ? case by ( simp add : sor ted01 )

next
case (2 v va zs )
then show " so r t ed ( t r_se l e c t i on_so r t zs ACCUM)" by ( simp add : sor ted01 )

qed

theorem tr_select ion_sort_is_permutation_of_input : " [[ so r t ed (ACCUM) ; ∀A e . A
∈ ( s e t ACCUM) ∧ e ∈ s e t xs ∧ e ≤ A]] =⇒mset ( t r_se l e c t i on_so r t xs ACCUM)
= mset xs + mset ACCUM"

proof ( induct xs a r b i t r a r y : ACCUM)
case Ni l
show ? case by simp

next
case (Cons a xs )
show "mset ( t r_se l e c t i on_so r t ( a # xs ) ACCUM) = mset ( a # xs ) + mset ACCUM

" us ing Cons . prems (2 ) by b l a s t
qed

45


	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Sorting
	1.2 Orders
	1.3 Pure functional programming
	1.4 Structural induction
	1.5 Computational induction
	1.6 Isabelle/HOL

	2 Informal proofs for sorting
	2.1 Predefined functions and data types, and derived lemmas
	2.2 Merge and insertion sort
	2.3 Selection sort

	3 Formalization in Isabelle/HOL
	3.1 Introduction
	3.2 Formalization strategy
	3.3 Insertion sort
	3.4 Merge sort
	3.5 Selection sort

	4 Conclusion
	References
	I Appendix: Insertion sort informal proofs
	II Appendix: Insertion sort code
	III Appendix: Merge sort code
	IV Appendix: Selection sort code

