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Abstract. We present a complete superposition calculus for first-order
logic with an interpreted Boolean type. Our motivation is to lay the foun-
dation for refutationally complete calculi in more expressive logics with
Booleans, such as higher-order logic, and to make superposition work ef-
ficiently on problems that would be obfuscated when using clausification
as preprocessing. Working directly on formulas, our calculus avoids the
costly axiomatic encoding of the theory of Booleans into first-order logic
and offers various ways to interleave clausification with other derivation
steps. We evaluate our calculus using the Zipperposition theorem prover,
and observe that, with no tuning of parameters, our approach is on a par
with the state-of-the-art approach.

1 Introduction

Superposition is a calculus for equational first-order logic that works on problems
given in clausal normal form. Its immense success made preprocessing clausifica-
tion a predominant mechanism in modern automatic theorem proving. However,
this preprocessing is not without drawbacks. Clausification can transform sim-
ple problems, such as s — s where s is a large formula, in a way that hides
its original simplicity from the superposition calculus. Ganzinger and Stuber’s
superposition-like calculus [13] operates on clauses that contain formulas as well
as terms and replaces preprocessing clausification by inprocessing—meaning pro-
cessing during the operation of the calculus itself. Inprocessing clausification
allows superposition’s powerful simplification engine to work on formulas. For
example, unit equalities can rewrite formulas s and ¢ in s <> t before clausifi-
cation duplicates the occurrences into s — ¢t and t — s. Whole formulas rather
than simple literals can be removed by rules such as subsumption resolution [5].

Another issue with Boolean reasoning in the standard superposition calculus
is that, in first-order logic, formulas cannot appear inside terms although this is
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often desirable for problems coming from software verifiers or proof assistants.
Instead, authors of such tools need to resort to translations. Kotelnikov et al.
studied effects of these translations in detail. They showed that simple axioms
such as the domain cardinality axiom for Booleans (V(z : 0).z = T Vz = 1) can
severely slow down superposition provers. To support more efficient reasoning on
problems with first-class Booleans, they describe the FOOL logic, which admits
functions that take arguments of Boolean type and quantification over Booleans.
They further describe two approaches to reason in FOOL: The first one [17]
requires an additional rule in the superposition calculus, whereas the second
one [16] is completely based on preprocessing.

Our calculus combines complementary advantages of Ganzinger and Stuber’s
and of Kotelnikov et al.’s work. Following Kotelnikov et al., our logic (Sect. 2)
is similar to FOOL and supports nesting formulas inside terms, as well as quan-
tifying over Booleans. Following Ganzinger and Stuber, our calculus (Sect. 3)
reasons with formulas and supports inprocessing clausification.

Our calculus also extends the two approaches. To reduce the number of
possible inferences, we generalize Ganzinger and Stuber’s Boolean selection
functions, which allow us to restrict the Boolean subterms in a clause on which
inferences can be performed. The term order requirements of our calculus are
less restrictive than Ganzinger and Stuber’s. In addition to the lexicographic
path order (LPO), we also support the Knuth-Bendix order (KBO) [15], which
is known to work better with superposition in practice.

Our proof of refutational completeness (Sect. 5) lays the foundation for com-
plete calculi in more complex logics with Booleans. Indeed, Bentkamp et al. [8]
devised a refutationally complete calculus for higher-order logic and prove it
complete by transforming the model constructed in our proof into a higher-order
model. Our completeness theorem incorporates a powerful redundancy criterion
that allows for a variety of inprocessing clausification methods (Sect. 6).

We implemented our approach in the Zipperposition theorem prover (Sect. 7)
and evaluated it on thousands of problems that target our logic ranging from
TPTP to SMT-LIB to Sledgehammer-generated benchmarks (Sect. 8). Without
fine-tuning, our new calculus performs as well as known techniques. Exploring
the strategic choices that our calculus opens should lead to further performance
improvements. In addition, we corroborate the claims of Ganzinger and Stuber
concerning applicability of formula-based superposition reasoning: We find a set
of 17 TPTP problems (out of 1000 randomly selected) that Zipperposition can
solve only using the techniques described in this paper.

2 Logic

Our logic is a first-order logic with an interpreted Boolean type. It is essentially
identical to the UF logic of SMT-LIB [6], including the Core theory, but without
if-then-else and let expressions, which can be supported through simple transla-
tions. It also closely resembles Kotelnikov et al.’s FOOL [17], which additionally
supports if-then-else and let expressions.
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Throughout the report, we write tuples (aq,...,a,) as @, or a.

Syntax We fix a set X, of types. We require that X}, contains the type o
of Booleans. A type declaration is a tuple of types (7,,v) € Z{;'H, written as
Tn = v. If n =0, we simply write v for () — v.

We fix a set X of (function) symbols f, each associated with a type declaration
Tn — v, written as f : 7,, — v or f, and a countably infinite set V of variables
with associated types, written as = : 7 or z. The notation ¢ : 7 will also be used
to indicate the type of arbitrary terms ¢t. We require that X’ contains the logical
symbols T, L :0;=:0— 0; A,V,=: (0 X 0) = 0; and the overloaded symbols
~,% : (T X T) = o for each 7 € Xy,. The logical symbols are printed in bold to
distinguish them from the notation used for clauses below. We use infix notation
for the binary logical symbols. Moreover, we require that there is at least one
nullary symbol for each type to avoid empty Herbrand universes. A formula is
a term of Boolean type.

A signature is a pair (Xy,X). The set of terms is defined inductively as
follows. Every z:7 € V is a term of type 7. If f : 7, - v € X and &, : 7, is
a tuple of terms, then the application f(%,) (or simply f if n = 0) is a term of
type v. If x : 7 and ¢t : o, then the quantified terms Vz. ¢ and Jz. t are terms
of Boolean type. We view quantified terms modulo a-renaming. We also write
these as Vp and Jp, where ps = {z — s}t is a term to term function of the given
form.

The root of a term is x if the term is a variable z; it is f if the term is an
application f(,); and it is V or 3 if the term is a quantified term Vz. ¢ or Jz. ¢.

A variable occurrence is free in a term if it is not bound by V or 3. A term
is ground if it contains no free variables.

A literal s &~ t is an equation s ~ t or a disequation s % ¢. Unlike terms
constructed using the function symbols & and #, literals are unoriented—i.e.,
s ~ tand t & s denote the same literal. A clause LV ---V L, is a finite multiset
of literals L;. The empty clause is written as L. Terms ¢ of Boolean type are
not literals. They must be encoded as t &~ T and t ~ L, which we call predicate
literals. Both are considered positive literals because they are equations, not
disequations.

We have considered excluding negative literals s % t by encoding them as
(s = t) = L, following Ganzinger and Stuber. However, this approach requires
an additional term order condition to make the conclusion of equality factoring
small enough, excluding KBO. To support both KBO and LPO, we allow neg-
ative literals. Regardless, our simplification mechanism will allow us to simplify
negative literals of the form ¢ % L and ¢t % T into ¢t & T and t ~ L, respectively,
thereby eliminating redundant representations of predicate literals.

Subterms and positions are inductively defined as follows. A position in a
term is a tuple of natural numbers. For any term ¢, the empty position € is a
position of ¢, and ¢ is the subterm of ¢ at position . If ¢ is the subterm of u; at
position p, then 4.p is a position of f(@), and ¢ is the subterm of f(u) at position
1.p. If t is the subterm of u at position p, then 1.p is a position of Vz. v and of
Jx. u, and t is the subterm of Vx. u and of Jz. u at position 1.p.
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For positions in clauses, natural numbers are not appropriate because clauses
and literals are unordered. A position in a clause C' is a tuple L.s.p where L =
s /& tis a literal in C and p is a position in s. The subterm of C' at position L.s.p
is the subterm of s at position p. We write s|, to denote the subterm at position
pin s. We write s[u], to denote a term s with the subterm u at position p and
call s[ ], a context; the position p may be omitted in this notation. A position p
is at or below a position q if ¢ is a prefix of p. A position p is below a position ¢
if ¢ is a proper prefix of p.

Substitutions are defined as usual in first-order logic and they rename quan-
tified variables to avoid capture.

Semantics An interpretation Z = (U, J) is a pair, consisting of a universe U, for
each type 7 € X}y, and an interpretation function J, which associates with each
symbol f : 7 — v and universe elements a € Uz a universe element J(f)(a) € U,.
We require that U, = {0,1}; J(T) = 1; J(L) = 0; (=) (a) = 1—a; T(A)(a,b) =
min {a,b}; J(V)(a,b) = max{a,b}; J(—=)(a,b) = max{l — a,b}; J(=)(c,d) =
1if ¢ = d and 0 otherwise; J(%)(c,d) = 0 if ¢ = d and 1 otherwise; for all a,b €
U, and c,d € U; where 7 € X,.

A waluation is a function assigning an element £(x) € U, to each variable
x : 7. For an interpretation 7 and a valuation &, the denotatlon of a term is
inductively defined as [z]5 = £(z) for a variable z € V; [f( E)gﬂ ;[l for
a symbol f € X and approprlately typed terms ¢; and [Vz. ¢] mln{[[t]] #ova)
acU.}, [Fx.t]; = max{[[t]]zlﬁa] | a € U,} for a variable xz : 7 € V and a term
t : 0. For ground terms ¢, the denotation does not depend on the choice of the
valuation &, which is why we sometimes write [t]; for [tﬂ

leen an interpretation Z and a valuation £, an equation s ~ t is true if [[s]]I
and [[t]] > are equal and it is false otherwise. A disequation s % ¢ is true if s &= ¢ is
false. A clause is true if at least one of its literals is true. A clause set is true if
all its clauses are true. An interpretation Z is a model of a clause set N, written
T E N, if N is true in Z for all valuations &.

Some of our calculus rules introduce Skolem symbols, which are intended to
be interpreted as witnesses for existentially quantified terms. Still, our seman-
tics treats them as uninterpreted symbols. To achieve a satisfiability-preserving
calculus, we assume that these symbols do not occur in the input problem. More
precisely, we inductively extend the signature of the input problem by a symbol
skvg.3.¢ : T — v for each term of the form 3Jz. ¢ over the extended signature,
where v is the type of z and § : T are the free variables occurring in 3z. ¢, in
order of first appearance.

3 The Calculus

Following standard superposition, our calculus employs a term order and a literal
selection function to restrict the search space. To accommodate for quantified
Boolean terms, we impose additional requirements on the term order. To support
flexible reasoning with Boolean subterms, in addition to the literal selection
function, we introduce a Boolean subterm selection function.
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3.1 Term Order

The calculus is parameterized by a strict well-founded order > on ground
terms that fulfills: (O1) w = L > T for any term u that is not T or L;
(02) Vz.t = {x — wu}t and Jz.t = {x — u}t for any term u whose only
Boolean subterms are T and L; (O3) subterm property; (0O4) compatibility
with contexts (not necessarily below V and 3); (O5) totality. The order is
extended to literals, clauses, and nonground terms as usual [3]. The nonground
order then also enjoys (O6) stability under grounding substitutions.

Ganzinger and Stuber’s term order restrictions are similar but incompatible
with KBO. Using an encoding of our terms into untyped first-order logic we
describe how both LPO and the transfinite variant of KBO [19] can satisfy
conditions (O1)—(06).

Our encoding represents bound variables by De Bruijn indices, which become
new constant symbols db,, for n € N. Quantifiers are represented by two new
unary function symbols, also denoted by V and 3. All other symbols are simply
identified with their untyped counterpart. Regardless of symbol precedence or
symbol weights, KBO and LPO enjoy properties (03)—(06) when applied to
the encoded terms because they are ground-total simplification orders. They are
even compatible with contexts below quantifiers.

To satisfy (O1) and (0O2), let the precedence for LPO be T < L <f <V <
d < dbg < dby < -+ where f is any other symbol. For KBO, we can use the same
symbol precedence and a symbol weight function W that assigns each symbol
ordinal weights (of the form wa + b with a,b € N), where W(T) = W(L) =
1, W(Y¥) = W(3) = w, and W(f) € N\ {0} for any other symbol f.

It is easy to check that for both orders (O1) is satisfied. As replacing variable
x with « from (02) in V.t (or Jz.t) only decreases de Bruijn indices or replaces
them by u < dbg, LPO satisfies (02). A term u without quantified subterms has
a weight < w. Hence, the w-component of {x — wu}t is smaller than that of V. ¢
for 1. Consequently, (02) holds in case of KBO.

3.2 Selection and Eligibility

Following an idea of Ganzinger and Stuber, we parameterize our calculus with
two selection functions: one selecting literals and one selecting Boolean subterms.

Definition 1 (Selection functions). The calculus is parameterized by a lit-
eral selection function FLSel and a Boolean subterm selection function FBSel.
The function FLSel maps each clause to a subset of its literals. The selection
function FBSel maps each clause C' to a subset of the positions of Boolean
subterms in C. The literals FLSel(C) and the positions FBSel(C') are selected
in C. The following selection restrictions apply: (S1) A literal can only be
selected if it is negative or of the form s ~ 1. (S2) A Boolean subterm can only
be selected if it is not T, L, or a variable. (S3) A Boolean subterm can only be
selected if its occurrence is not below a quantifier. (S4) The topmost terms on
either side of a positive literal cannot be selected.
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The interplay of maximality w.r.t. term order, literal and Boolean selection
functions gives rise to a new notion of eligibility:

Definition 2 (Eligibility). A literal L is (strictly) eligible w.r.t. a substitution
o in C'if it is selected in C' or there are no selected literals and no selected Boolean
subterms in C' and oL is (strictly) maximal in ¢C. The eligible positions of a
clause C' w.r.t. a substitution o are inductively defined as follows: (E1) Any
selected position is eligible. (E2) If a literal s & ¢t with os A ot is either eligible
and negative or strictly eligible and positive, then L.s.c is eligible. (E3) If the
position p is eligible and the root of o(C|,) is not =, %, V, or 3, the positions of
all direct subterms are eligible. (E4) If the position p is eligible and o(C,) is of
the form s & t or s % t, the position of s is eligible if os A ot and the position
of t is eligible if os ¥ ot. The substitution o is left implicit if it is the identity
substitution.

3.3 The Core Inference Rules

The following inference rules form our calculus:

D c
—_——
D'vitxt Clu C'Vu m=vVumw
Sup FAacTOR
a(D" Vv C[t) o(C' Vv Vum')
c c
——~ —~
C'Vugu C'Vswt Clu]
——— IRREFL ——— 1E1Mm BooLRw
aC’ aC’ oC[t']
C[Vz. v] C[3z. v]
VRw JRw
Cl{z = skvy.3:.-0(9) 1] Cl{z = skvy.3:.0(9)}v]
Clu) Cls = t] Cls % t]
———  BooLHoiIsT ————=HoisT ————gHoIsT
CL]VusT CHL]Vvs~t ClT]vs~t
Cvx. t] C[3x. t]
VHoIsT JHoisT
CLVvi{z—yht=T C[TIlv{iz—ylt~=1

The rules are subject to the following side conditions:

Sup (1) o = mgu(t,u); (2) u is not a variable; (3) ot A ot’; (4) D < Clul;
(5) the position of u is eligible in C w.r.t. o; (6) ¢t = t' is strictly eligible
in D w.r.t. o; (7) the root of ¢ is not a logical symbol; (8) if ot’ = L, the
subterm u is at the top level of a positive literal.

FACTOR (1) 0 = mgu(u,u'); (2) ou % t ¢ oC for any term ¢; (3) no Boolean
subterm and no literal is selected in C; (4) ou is a maximal term in oC;
(5) ov is maximal in {¢t | cu =t € C'}.
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IRREFL (1) 0 = mgu(u,u’); (2) u# o' is eligible in C w.r.t. o.

1ELM (1) o =mgu(s = t, L~ T); (2) s =t is strictly eligible in C' w.r.t. o.

BooLRw (1) (t t') is one of the following pairs, where x is a fresh variable:
(=L, T), (=T, L), (LAL, 1), (TAL, 1), (LAT, 1), (TAT, T), (LVL, 1),
(TvLl T, (J_VT T, (TVvT, T),(L=>L T),(T—=1,1),(L->T,T),
(T>T,T),(z=azT), (x ¢z 1); (2) c = mgu(t,u); (3) u is not a
variable; (4) the position of w is eligible in C' w.r.t. o.

*Rw (where = € {V,3}) (1) v is a term that may refer to z; (2) § are the free
variables occurring in Vz.v and 3z.v, respectively, in order of first appearance;
(3) the position of the indicated subterm is eligible in C'; (4) for VRw, C[T] is
not a tautology; (5) for IRw, C[1] is not a tautology. (In an implementation,
the tautology check can be approximated by checking if the affected literal
is of the form Vz.v ~ T or 3z.v ~ L.)

BooLHOIST (1) u is a Boolean term whose root is an uninterpreted predicate;
(2) the position of u is eligible in C; (3) w is not a variable; (4) u is not at
the top level of a positive literal.

*HOIST (where x € {=,%,V,3}) (1) the position of the indicated subterm is
eligible in C; (2) y is a fresh variable.

3.4 Rationale for the Rules

In addition to the standard superposition rules SUP, FACTOR, and IRREFL, our
calculus contains various rules to deal with Booleans. For each logical symbol
and quantifier, we must consider the case where it is true and the case where it
is false. Whenever possible, we prefer rules that rewrite the Boolean subterm in
place (with names ending in Rw). When this cannot be done in a satisfiability-
preserving way, we resort to rules hoisting the Boolean subterm into a dedicated
literal (with names ending in HoIsST). For terms rooted by an uninterpreted
predicate, the rule BOOLHOIST only deals with the case that the term is false.
If it is true, we rely on SUP to rewrite it to T eventually.

Ezample 3. The clause a A ma = T can be refuted by the core inferences as
follows. First we derive a = T (displayed on the left) and then we use it to
derive L (displayed on the right). In this and the following example, we assume
eager selection of literals whenever the selection restrictions allow it.

aAN—-a~xT
BooLHoisT
lA-a~TVvarT
BoovLHoisT
1IA-lLl~TVasxTVaxT aA-ax~T axT
BooLRw Sup
IAT~TVaxrTVaxT ar~T TA-axT
BooLRw Sup
l~TVasxTVaxT TA-T~=T
1ELmv ——— BOOLRw
arTVaxrT TALXT
FAacTOR — X BOOLRw
T#TVarT 1=T
IRREFL —— 1 ELIM
ar~T 1
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The derivation illustrates how BOOLHOIST and SUP replace uninterpreted predi-
cates by T and L to allow BOOLRW to eliminate the surrounding logical symbols.

Ezample 4. The clause (Jz.Vy.y % x) = T can be refuted as follows:
(Fze.Vy.ygtz)=T

LTV (Y #skapvyyps) =T

(y/ # s"ﬂzﬁy.y%m) ~T
1=T

JRw
VHoOIST
1ELIM
#%Rw

1ELMm

This example shows how quantifiers can be Skolemized or hoisted to the clausal
level.

Our calculus is a graceful generalization of superposition: if the input problem
does not contain any Boolean terms, it coincides with standard superposition.
Our FACTOR rule is even a bit more restrictive by excluding equality factoring
inferences such as

c#aVbaf(zr)Vbagy)

c#aVvi(z)#gly) Vb~f(z)
where ¢ > b and b, f(z), f(y) are mutually incomparable.

However, most standard superposition provers support nonequational predi-
cates by encoding them as ¢t =~ T and t % T, where T is considered an auxiliary
symbol that does not receive any special treatment by the prover. In this respect,
our calculus diverges slightly from standard superposition since our normal rep-
resentation is t ~ T and ¢t =~ L.

Ezample 5. Consider the unsatisfiable clause set consisting of f(a,a) ~ T and
f(z,a) % T Vf(a,z) % T. In standard superposition, it can be refuted by two
superposition inferences from the first clause, followed by two equality resolution
inferences. Our calculus also allows for these inferences, but performs in addition
a BOOLHOIST inference on f(z,a) or f(a, ) in the second clause.

To avoid this BOOLHOIST inference, we can bring the two clauses in our
normal representation of predicate literals, yielding f(a,a) ~ T and f(z,a) ~
1 v f(a,z) =~ L. But then the SUP inference is no longer applicable because
in this representation with positive literals the two occurrences of the terms
f(z,a) and f(a,z) in the second clause are not eligible w.r.t. {x — a}. Instead,
our calculus now requires an FACTOR inference on the second clause, whose
conclusion contains the necessary eligible occurrence of f(a, a).

As Ganzinger and Stuber observed, selection can be used to faithfully imitate
the behavior of ordered resolution. The same holds for imitating the support for
nonequational predicates in the standard superposition calculus. In our example,
we can select the subterm f(z,a) to make it eligible and to avoid the applica-
bility of FACTOR, thus achieving the same refutation as standard superposition
without additional inferences.
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4 Satisfiability Preservation

Most of our calculus rules are sound. However, since VRw and FRw introduce
fresh Skolem symbols, they are only satisfiability preserving. To prove these
properties, we first show the substitution lemma for our logic:

Lemma 6 (Substitution lemma). Let Z = (U, J) be an interpretation. Then

[ot]s = [

for all terms t, all substitutions o, and all valuations &, & such that €' (z) = [ox]5
for all variables x.

Proof. We prove this by structural induction on ¢. If t = x for some z € V, then

[ot]s = €' (x) = [t]5

If ¢t = f(¢) for some f € X and terms ¢, then

[ot]5 = [f(oD]5 = T(H)([015) = T(E)([AT) = [15

If t = Vz. s for some term s, then we can assume without loss of generality that
ox = x and that & does not appear in oy for any y # x. We have

[ot]$ = [Va. os]$ = min {[os]57 | a e U, }
= min {57 |0 € Uy} = [z s]S = [1]§

The mductlon hypothesis is applicable because ¢'[z — a)(z) = a = [¢]5" " =

[ox]> tle=al and for all y # x we have {'[z — a|(y) = &' (y) = [oy]7 = [[Uy]]g[mHa]
An analogous argument applies if t = Jz.s. a

Lemma 7. Let C be a clause and T an interpretation. If T |= C, then T |= oC
for all substitutions o.

Proof. Let s &=t be a literal of C' and { a valuation. Since 7 = C, this literal is
true w.r.t. Z and &. Let 5’ be defined as in Lemma 6. Then [Us]] [[s]]I and
[[Utﬂ [[t]]I Thus, os % ot is true w.r.t. Z and &'. Since this holds for arbitrary
literals s & ¢ in C' and arbitrary valuations, we have Z = oC. a

Lemma 8. All rules of Finf except for VRW and 3Rw are sound.

Proof. For Sup, FACTOR, IRREFL, and LELIM, we can show soundness by ap-
plying Lemma 7 to the premises and, given an interpretation and a valuation,
making a case distinction on the truth of literals, using the fact that o is an
mgu.

For BooLHo1ST, ®Ho01sT, 4HOoI1sT, VHOIST, and JHOIST, given an interpre-
tation and a valuation, we can simply make a case distinction on whether the
affected subterm of the premise is true or false.

For BoOLRwW, we apply Lemma 7 to the premise. Since ¢ is an mgu and
since both elements of each listed pair have identical denotations under any
interpretation and valuation, soundness follows. a
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Theorem 9 (Satisfiablity preservation). If the initial problem does not con-
tain any Skolem symbols, all rules of FInf preserve satisfiability.

Proof. Except for VRw and JRwW, Lemma 8 implies satisfiability preservation.
We will argue for VRW here. For 3Rw, we can argue analogously. Assume that
the current clause set N and in particular the premise C[Vz. v] of the VRw
inference has a model Z = (U, J). We define a new interpretation Z' = (U, J'),
redefining the interpretation of skyy 3. - : 7 — 7. For all other symbols, let the
interpretation function 7’ be identical with the old interpretation function 7.
What remains is to define J'(skvy.32.-0)(a@) for each a € Us.

Let a € Uz and & be a valuation such that £(7) = a. If [Vz. v]}% = 1, then
by the definition of term denotation, for all a € U,, [[v]]g[ZHa] = 1. Otherwise
[V=. v]]% = 0 and hence there exists an a € U, such that [[vﬂg[z'_m] =0.In
both cases there exists an a € U, such that ﬂv]]g[ZHa] = [Vz.v]5. We define
j/(Skvy.Elz.—\v)(d) = a.

This definition ensures that, by Lemma 6,

[{z = skg. 3z~ @) }0]S = [IFF7 =[] = [vz. v]§ (*)

If N already contains the symbol skyg.3..—, it must have been introduced
by VRw or JRw. Without loss of generality, we can therefore assume that 7
interprets skyg.3,.-, already as defined above and hence Z = Z’. If N does not
contain skyg.3..—w, 71’ is also a model of N. In both cases, Z' being a model
of N and in particular C[Vz. v] implies that Z' is a model of N U {C[{z —
skvg.32.-(7) }v]}. Thus, satisfiability is preserved. O

4.1 The Redundancy Criterion

As in standard first-order superposition, we define the redundancy criterion first
on ground clauses and ground inferences, and lift it to nonground clauses and
nonground inferences in a second step. The distinction of a ground calculus G and
our calculus F without a ground restriction will also be used in the refutational
completeness proof. Let 7r and Cr denote the set of all terms and of all clauses,
respectively. Let 7 and Cg denote the set of ground terms and of ground clauses,
respectively. Moreover, in the following, we define a ground inference system
GInf on G that—unlike the ground inference system of standard first-order
superposition—is not contained in the inference system FInf on F.

The inference system GInf is parameterized by a literal selection function
GLSel, a Boolean subterm selection function GBSel, and a witness function w.
The functions GLSel and GBSel are subject to the same restrictions as specified
in Definition 1. The witness function w maps a clause C' € T and a subterm
Jz.v of C to a term w(C,3z. v) € Ti. This function will be used to provide an
applied skolem function for 3x.v. We require that 3z.v > {z — w(C,3z.v)}v and
Vz. v = {x — w(C,3x. =) }v. Let Q be the set of all triples (GLSel, GBSel, w)
that satisfy the above requirements. Let g € @ be such a parameter triple.



Superposition with First-Class Booleans and Inprocessing Clausification 11

The term order is a fourth parameter of GInf?, but unlike the other param-
eters, we let it coincide with the term order on F and it can therefore be fixed
globally.

The inference rules of GInf? include the rules SUP, FACTOR, IRREFL, LELIM,
BooLRw, &HOIsT, and $HOIST on ground clauses. In addition, GInf? contains
the following rules:

CVz. v] C[3z. v]

GVRw G3IRw
C{z — w(C,3z. w)}v] C{z— w(C,3z. v)}v]

where

— v is a term that may contain the loose bound variable z
— the position of the indicated subterm is eligible in C
— for GVRw, C[T] is not a tautology, and for GIRw, C[1] is not a tautology.

CVz. 1] C3x. 1]
GVHoIsT GdHoisT
CLlv{z—ult~T C[T]v{z—u}t~L

where

— w is a ground term whose only Boolean subterms are T and L
— the position of the indicated subterm is eligible in C.

Definition 10 (Redundancy on G). Following Bachmair and Ganzinger [4,
Sect. 4.2.2], we define a ground clause C to be redundant w.r.t. a set N of ground
clauses if there exist clauses Ci,...,C) € N such that Cy,...,C = C and C -
C; for all 1 < i < k. We write GRedc(N) for the set of redundant ground clauses
w.r.t. N. A ground inference with main premise C, side premises C1, ..., C,, and
conclusion D is called redundant w.r.t. N if there exist clauses Dy,..., Dy < C
in N such that Dy,...,Dg,C1,...,Cy = D. We write GRed;(N) for the set of
redundant ground inferences w.r.t. N.

Lemma 11. Our redundancy criterion on G is a redundancy criterion in the
sense of the saturation framework.

Proof. By B&G Handbook Theorem 4.7, this is a redundancy criterion in the
sense of B&G. If the ground inference system is reductive, it is also a redun-
dancy criterion in the sense of Waldmann et al.’s framework by B&G Handbook
Theorem 4.8. a

Definition 12 (Grounding function). Given a clause C € Cp, let I'C C Cq
be the set of all ground clauses of the form vC' where «y is a substitution such
that for all variables z, the only Boolean subterms of vz are L and T.

Given a parameter triple ¢ € @ and an inference ¢« € FInf, we define the
set () of ground instances of ¢ to be all inferences +/ € GInf? such that
prems(t') = v prems(t) and concl(¢') = v concl(t) for some substitution v and
such that ¢+ and ¢/ stem from the same inference rule or from BOOLRwW and
GBooLRw, VHOIST and GVHOIST, or JHOIST and GJHOIST, respectively.
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Definition 13 (Redundancy on F). A nonground clause C is redundant
w.r.t. clauses N if C is strictly subsumed by a clause in N (strictly mean-
ing that C is subsumed by but does not subsume the other clause) or every
ground instance of C' is redundant w.r.t. ground instances of N according to the
prior definition. We write FRedc(N) for the set of redundant clauses w.r.t. N.
Similarly a nonground inference is redundant if it is redundant at the level of
ground instances regardless of the parameterization of the grounding. We write
FRed;(N) for the set of redundant inferences w.r.t. N.

A clause set N is saturated w.r.t. an inference system and the inference
component Redj of a redundancy criterion if every inference from clauses in N
is in Redy(N).

4.2 Simplification Rules

The redundancy criterion is a graceful generalization of the criterion of stan-
dard superposition. Thus, the standard simplification and deletion rules, such as
deletion of trivial literals and clauses, subsumption, and demodulation, can be
justified. Demodulation below quantifiers is justified if the term order is com-
patible with contexts below quantifiers.

Some calculus rules can act as simplifications. LELIM can always be a simpli-
fication. Given a clause on which both xRw and *HOIST apply, where x € {V, 3},
the clause can be replaced by the conclusions of these rules. If xRw does not
apply because of condition 4 or 5, xHOIST alone can be a simplification. Also
justified by redundancy, the rules BOOLHOIST and *HOIST can simultaneously
replace all occurrences of the eligible subterm they act on. For example, applying
~HoisTtoplzamy) =~ TVqzmy)~ Lyieldsp(L)xTVvqg(l)=LVz=y.

While experimenting with our implementation, we have observed that the
following simplification rule from Vampire [18] can substantially shorten proofs:

stV Cls]

—————LoCALRwW
s#tVvClt

In this rule, we require s > t.

Interpreting literals of the form s & T as s 2 L and s & L as s £ T we
can apply the rule even to these positive literals. This especially convenient with
rules such as BooLHo1ST. Consider the clause C' = p‘(1l) ~ LV q ~ L, assume
no literal is selected and the Boolean selection function always selects a subterm
p(L). Applying BOOLHOIST to C we get p(L) ~ TVvp'~!(L) ~ LVq~ L. This
can then be simplified to a tautological clause p(L) ~ TV p(l)~ Lvg~ L
using i — 2 LOCALRW steps. If we did not use LOCALRwW, BoOoLHOIST would
produce i — 2 intermediary clauses starting from C, none of which would be
recognized as a tautology.

Many rules of our calculus replace subterms with T or L. After this replace-
ment, resulting terms can be simplified using Boolean equivalences that specify
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the behavior of logical operations on T and L. To this end, we use the rule
BooLSIMP [31], similar to simp of Leo-III [25, Sect. 4.2.1]:

Cls|
Clil

BooLSIMP

This rule replaces s with ¢ whenever s & t is contained in a predefined set of
tautological equations. In addition to all equations that Leo-III uses for simp,
we also include the following ones:
(Tou)~u (Lou)=~T u=asLl)m-u (u=T)=T
(u=—u)m-w (Cu—=u)Ru (u—=u)=T
(1 = 2u, 2>v) =
(up = 2u, 2201 V- Vu,) =
(up A Aup 201 V- Vu,) S

T where u; = - u; for some 7 # j
where u; = v; for some ¢ and j

T
T where u; = v; for some ¢ and j

It is easy to check that applying any equivalence reduces the size of s (assuming =
is not greater than — in weight and precedence). Using BOOLSIMP and LELIM,
the twelve steps of Example 3 can be replaced by just two simplification steps.
BooLS1MP simplifies terms with logical symbol roots if one argument is either
T or L or if two arguments are identical. Thus, after simplification, BOOLRwW
applies only in two remaining cases: if all arguments of a logical symbol are
distinct variables and if the sides of a (dis)equation are different and unifiable.
This observation can be used to streamline the implementation of BOOLRw.

5 Refutational Completeness

Our calculus (FiInf, FRed)—like every other saturation-based calculus—proves
a statement S given a set of axioms T by deriving L from N = T U {=S}. In
this section we are concerned with proving the refutational completeness of our
calculus—i.e., that it always derives | when the input formula N is such that
N E L. Refutational completeness comes in two variants, static and dynamic
completeness. Static completeness applies only on saturated sets of clauses—i.e.,
sets N such that every inference with premises in IV is redundant to N.

Definition 14 (Static Completeness). A calculus is statically complete if
for any saturated set of clauses N such that N = L then 1. € N.

Dynamic completeness is a property that applies on fair derivations. Here a
derivation is a finite or infinite sequence of clause sets (Nj)j such that, at each
step j, N; = L if and only if N;4; = L and the deleted clauses in N; \ N1
are redundant w.r.t. N;;,. Moreover a derivation is fair if every inference from
Neo :=U;[N;>; Nj is redundant w.r.t. some N;.

Definition 15 (Dynamic Completeness). A calculus is dynamically com-
plete if for any fair derivation (Nj)j such that No |E L, 1 € Nuo.
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We follow the usual schema for proving the dynamic completeness of a
saturation-based calculus: We start by proving the static completeness of the
ground variant of the calculus following Bachmair and Ganzinger’s approach [4]
and then we lift this result to the non-ground level and dynamic completeness
by relying on the saturation framework of Waldmann et al. [33], that generalizes
the lifting technique from Bachmair and Ganzinger.

5.1 Ground Layer

In the spirit of Bachmair and Ganzinger’s completeness proof for first-order logic,
our proof idea is, given a saturated set N such that 1 ¢ N, to construct a term
rewrite system that can be viewed as a model of N.

We assume the reader familiar with term-rewriting notions and syntax [1].
Our term rewrite systems are essentially standard first-order term rewrite sys-
tems. We generalize them to our terms with interpreted Booleans by treating all
quantified terms as if they were constants, meaning that a term rewrite system
does not rewrite below quantifiers. For example, the rewrite rule ¥x. ¢ — Vx. p
can rewrite f(Vz. q) into f(Vz. p), but the rewrite rule ¢ — p cannot.

It is well-known that in first-order logic term rewrite systems can be used to
describe interpretations. In the following, we will show under which requirements
a term rewrite system on our logic can also be viewed as an interpretation.

Definition 16 (Interpretable Rewrite System). Let R be a rewrite system
over Tg, R is interpretable when:

(I1) for all Boolean terms t € Tg, either t <35 T or t <75 L;

(I2) =L <5 T; =T «7; L; and corresponding requirements for A, V, and —;

(I3) s & s’ <5 T if and only if s <»}, s’ for all 5,5’ € Tg; and corresponding
requirements for 2;

(I4) Vz.s <>}, T ifand only if {x — u}s <5 T for all u € Tg; and corresponding
requirements for 3.

We define an interpretation (U, J) based on an interpretable rewrite system R.
We use R to denote both the rewrite system and the interpretation.

For each type 7, let U, be the set of equivalence classes [t] of terms ¢t € T¢
modulo <%, Let J(f)(a) = [f(¢)] where ¢ are terms from the equivalence classes
a, respectively. This does not depend on the choice of ¢ because if ¢ <7, ', then
f(t) <% f(¥').

We identify [T] with 1 and [L] with 0. By (I1), this ensures that U, = {0, 1},
J(T) = 1, and J(L) = 0. (I2) ensures that J (=), J(A), J(V), and J (=)
adhere to the requirements of an interpretation. (I3) ensures that J (=) and
J (%) adhere to the requirements of an interpretation and (I4) does the same for
quantifiers.

Lemma 17. Let R be an interpretable rewrite system. Then [t], = [t] for all
teTa.



Superposition with First-Class Booleans and Inprocessing Clausification 15

Proof. By induction on the structure ofﬁf{.
If t = £(5), then [t} = T(O)([s]p)=T ()([s]) = [F(5)] = [t]. If t = Tz s,
then, using the substitution lemma (Lemma 6),

1] = min ([T | w € 7o)
= min {[{z > u}s]z | u € Ta}

Igmin{[{x —u}s] | u € Ta}
14
Wiy, s) = [1).
If t =Vz. s, we argue analogously. O
This lemma shows that R |= ¢ ~ ¢’ if and only if ¢ <7, ¢/, as in first-order
logic. In the following step, we define a closure operation on term rewrite systems
that allows us to turn a term rewrite system into an interpretable one under some

conditions.

Definition 18 (Boolean closure of a term rewrite system). Let R be a
ground term rewrite system. We define A%, and R® by induction over all terms s.

(Al) Let A% = @ if s is not Boolean, if s is reducible by R®, or if s = T or

s=1

(A2) Otherwise, let A% = {s — T} if one of the following conditions holds:
(i) s=-L;
(i) s=TAT;

)

(iii) s=TVtors=tVT;

(iv) s=Ll—=stors=t—=>T,

(v) s=t=t;

(vi) s=t#t and t £1;

(vii) s = V.t and {z — u}t —}. T for all ground terms u in which all
Boolean subterms are either T or L;

(viii) s =3z.t and {x — u}t —%. T for some ground term u in which all

Boolean subterms are either T or L.

(A3) Otherwise, let A} = {s — L}.

Let R* = RUlJ,_, A% and R* = RuJ, A%.

u=<s
Lemma 19. Let R be without critical pairs and oriented by >. Assume for each
rule s — t' € R that all proper Boolean subterms of s’ are T and L and that
the root of s’ is not a logical symbol. Let s be a Boolean term. Then

(1) R® and R* are oriented by = and hence terminating.

(2) R® and R* do not have critical pairs and are thus confluent.

(3) The normal form of any Boolean term smaller than s w.r.t. R® is L or T.
(4) The normal form of any Boolean term w.r.t. R* is L or T.

(5) R* is an interpretable rewrite system.
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Proof. (1) is obvious from Definition 18 and (O1).

For (2), suppose there is a critical pair. Since R does not have critical pairs,
one of the rules of the critical pair must come from some A% for some term u.
Due to condition (A1), A% cannot form a critical pair with some AY,. Thus, the
other rule of the critical pair must stem from R, say s’ — ¢’ € R. Also due to
condition (A1), s’ cannot be smaller or equal to u because that would make u
reducible by R". But s’ = w is not possible either because then s’ would contain
a proper Boolean subterm that is neither T nor L by condition (Al) and by
(03). Contradiction by (O5).

The points (3) and (4) are obvious from Definition 18.

For (5), Condition (I1) follows from part (4). For (I2), since R does not
contain any rules reducing terms rooted by logical symbols, R cannot reduce
-1, =T, or similar terms. Therefore, (12) follows directly form the definition of
the Boolean closure.

For (I3), first assume that s <+}. s’. Let u be their common normal form.
Then s & s’ —5. u & w. Since u cannot be reduced further, and R does
not contain any rules reducing terms rooted by logical symbols, the Boolean
closure will add the rule v & v — T. If on the other hand, s #%. s’, Then
s & s —%5. u = v for distinct normal forms u,u’. Then the Boolean closure
will add the rule u & u' — L. A similar reasoning holds for %.

For (I4), we need to prove the following claim: Let ¢ be a term. Let 6,60’ be
grounding substitutions such that for each variable z in ¢, we have 0z <5. 0'z.
Then we claim that 6t <%. 6’t. Since we do not allow term rewrite systems
to rewrite below quantifiers, this is not entirely trivial. We prove the claim by
induction on the number of nested levels of quantifiers in ¢. If ¢ contains no
quantifiers, we can rewrite freely and the claim is obvious. If ¢ contains a quan-
tified term Vz. s, in suffices to show that 6Vz. s <+%. 6'Vz. s. Since R does not
contain any rules reducing terms rooted by logical symbols, R cannot reduce
OVx. s or §'Vx. s. Hence, either 0{x — u}s —},. T for all ground terms u in
which all Boolean subterms are either T or L and such that 0vVx. s —%5. T
or OVx. s —%. L. The same holds for #’. Therefore, it suffices to show that
O{x — u}s <>%. 0'{x — u}s, which holds by the induction hypothesis.

By the above claim, using (I1), we have {x — u}s —7}. T for all u if and
only if { +— u}s —7%,, T for all u in which all Boolean subterms are either T
or L. The corresponding requirement is similarly satisfied for Jz. s. a

We write R|<s or R|<s for the rewrite system consisting of the rules in R
with a left-hand side < s or =< s, respectively.

Lemma 20. Let t be a ground Boolean term. Let R1|<; = Ra|<; for two ground
rewrite systems Ry and Ry oriented by -. Then, for all s < t, we have Ay =
A, .

2

Proof. By induction on s. The induction hypothesis states that Aj = A% for
all u < s. With the assumption Rj|<; = Ra|<y, it follows that Rf|<; = R3|<:.
Since s < t, in particular Rf|<, = Rj|<s. Inspecting the dependencies on R in
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the definition of A%, we observe that A% depends only on rules in R®|<,. Hence,
AR =A%, O

Although the rewrite systems R in the rest of this section are not necessarily
interpretable, we write R = D if and only if normalizing D with R yields a
clause with a trivial literal (i.e., s & s or s % t for terms s # t).

Definition 21 (Ry). Let N with L ¢ N be a set of ground clauses. By induc-
tion on all ground clauses C € N, let Ac = {s — t} if

(C1) s =t;

(C2) R - C;

(C3) C=C"V s~t where s =t is eligible in C;
(C4) the root of s is not a logical symbol;

(C5) s =t is maximal in C;

(C6) R, U{s — t} = C'; and

(C7) s is irreducible by RY.

Otherwise Ac = 0. Let Rc = Jp o Ap. Let Ry =g Ac.

Finally, let Ry |<c be R}, but without all rules produced by clauses greater
than or equal to C. This means Ry |<c = Rc U (Ry \ Rn).

Lemma 22 shows that Rc and Ry both fulfill the conditions of Lemma 19.

Lemma 22. The rewrite systems Rc and Ry do not have critical pairs and
are oriented by . Moreover, for each of their rules s —» t, all proper Boolean
subterms of s are T or L and the root of s is not a logical symbol.

Proof. By (C1), all rules are oriented by . Suppose there is a critical pair, and
let C' be the larger one of the two clauses producing the critical pair. Then R,
would be reducible by the other rule of the critical pair, contradicting (C7). By
(C4), the root of the rules’ left-hand sides cannot be a logical symbol.

Finally, for each rule s — ¢ in Rc or Ry, we must show that all proper
Boolean subterms of s are T or L. We proceed by induction on the clause C
producing the rule s — t. By the induction hypothesis, Lemma 19 can be
applied to Rc. By Lemma 19(3), the normal form w.r.t. R of any Boolean
term smaller than s is T or L. Thus, if s had a proper Boolean subterm other
than T or L, it would be reducible by R, contradicting (C7). O

Lemma 23. Let s be the maximal term of a clause C € N. Then we have
Ry = R& UUpsc Ap UU,xs A%, -
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Proof.
Ry = |J Acul A%, by definition of Ry and R*
CeN u
= Rc U U Ap U U Agy by definition of R¢
D*C u
=ReU (A%, U | Apu | A%, by Lemma 20, | ] A% = | ] A%,
u=<s D>C urs u=<s u=<s
=RxU |J Apu | A%, by definition of R,
D>C urs

a

Lemma 24. Let C = C' V s = s’ be a clause where s ~ s’ is maximal and
s> s . If R} |=C, then Ry = C.

Proof. We assume that R, = C. Then we have R, = L for some literal L of C.
It suffices to show that Ry = L.

If L =t ~tis a positive literal, then ¢ IR, t'. Since R C R% by Lemma 23,
this implies ¢ | gy t'. Thus, Ry = L.

If L =t 1t is a negative literal, then s =t and s > ¢ and ¢ {gs # t' |re,.
By Lemma 23, R%|<s = Rjy|<s. Since only rules with a left-hand side smaller
than s can be involved in normalizing ¢ and #’, it follows that ¢ | R;ﬁé ] Ry, and

hence Ry = L (using (03), (04)). O
Lemma 25. Let C be a clause. If Ry|<c = C, then Ry = C.

Proof. We assume that Ry |<c |= C. Then we have Ry|<c = L for some literal
L of C. It suffices to show that Ry = L.

If L =1t~1t is a positive literal, then ¢ VR <0 t'. Since Ry |<c C Ry, this
implies t | g« t'. Thus, Ry = L.

If L=t is a negative literal, then t | g« | . #t' | ry ... Without loss of
generality, let t = ¢'. Let s & s’ be the maximal term in C with s > s’. We have
s = tif s & s’ is positive and s = t if s & s’ is negative. Hence, the left-hand
sides of rules in |J,, o Ap are larger than ¢. Since only rules with a left-hand
side < ¢ can be involved in normalizing ¢ and ¢’ and R |<c UUpsc Ap = Ry,
it follows that ¢t | gy # t' | gy and hence R}y = L. O

Superposition by a productive clause preserves the truthfulness of a clause
superposed into. This is the consequence of the following lemma.

Lemma 26. If C'V s~ t produces s — t, then Ry [~ C.

Proof. Let D = C'V s = t. By (C1) and (C5), all terms in D are < s. By (C6),
we have R}, U {s — t} = C. The other rules R} \ (R}, U {s — t}) cannot
reduce C' because their left-hand sides are > s. Indeed, by Lemma 23, the rules
in R% \ (R, U{s — t}) all have their left-hand side greater than or equal to s
and since R% has no critical pairs by Lemma 19(2) these rules cannot have s as
their left-hand side. Consequently, R}, U {s — ¢} [= C implies R} }~= C. O
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Lemma 27. T and L are normal forms in R}.
Proof. By (A1) and (C4), there is no rule that reduces T or L. O

Lemma 28. Let C be a clause. Let t be a Boolean subterm occurring in C.
Suppose that one of the following two conditions holds:

— t is smaller than the maximal term in C'; or
— t is selected.

Then Ry|«c reducest to L or T.

Proof. By Lemma 19(4), R% reduces t to L or T. If this reduction does not
contain any rule from a Ap with D > C, then R}|<c reduces t to L or T
as well. If this reduction does contain a rule from a Ap with D > C, then
by (C1) and (C5), ¢ must be the maximal term of D and thus also of C. The
term ¢t must occur on the top level of a positive literal in D and thus also in C
since by definition of the ordering, t ~ s < t % s’ for any s,s < t. Such terms
may not be selected by the selection restrictions (Definition 1). Thus we have a
contradiction to the condition that ¢ is smaller than the maximal term in C and
to the condition that ¢ is selected. a

Lemma 29. Let C be a clause. Let t be a term that is eligible in C' and reducible
by Ry|<c. Then t has a subterm w such that:

1. The term u is eligible in C'.

The term wu is neither T nor L.

If the root of u is not a logical symbol, there exists a rule w — u' € Ry|<c.
If the root of u is =, A, V, or =, each proper subterm of v is T or L.

If the root of u is & and u | gy | .= T, or root of u is % and u | g,
then the two sides of the (dis)equation are equal.

SN

:J_7

l<c

Proof. We proceed by structural induction on t. First, we observe that when-
ever we can apply the induction hypothesis, we are done. Given an eligible,
R%|<c-reducible proper subterm ¢ of ¢, the induction hypothesis guarantees
the existence of a subterm u of ¢’ with the above five properties. Since w is then
also a subterm of ¢ and the properties do not refer to ¢ itself, such an application
of the induction hypothesis finishes the proof.

We make a case distinction on the root h of t. First, assume that A is not
a logical symbol. If an argument ¢’ of h is reducible by R¥/|<c, we can apply
the induction hypothesis and are done. On the other hand, if no argument of h
reduces, then R%|<c must reduce ¢ by a rule v — «’ where u = ¢. Clearly, u
satisfies the required five properties in this case.

Otherwise, h must a logical symbol. We have ¢t # T, L because Lemma 27
tells us that T and L are irreducible by R} 2 R}y |<c. The cases of connectives,
quantifiers and (dis)equations remain.

We assume h is =, A, V, or —. We proceed as in the case where h was not a
logical symbol. If an argument is reducible by Ry/|<c, the induction hypothesis
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applies. If none of the Boolean arguments reduce, then each of them is either T
or L by Lemma 28. This takes care of property 4 as we choose u = t. Since t is
eligible and the root of ¢ = u is a connective, the other properties are fulfilled as
well.

We assume h is V or 3. Choose u = t. The required properties are easy to
check because t is eligible and the root of t = u is V or 3.

Finally, we assume h = & (the case h = % is analogous). If a strictly larger
argument ¢’ of h reduces by Riy|<c, then ¢’ is eligible and the induction hy-
pothesis applies to t’. Otherwise we choose u = t. Property 5 holds because if
u Ry |co= T, then the two arguments of & must have the same R%|<c-normal
form, since case (v) of Definition 18 is the only rule that reduces a term rooted
by & to T. Thus, the two arguments of h must be equal because otherwise the
strictly larger one would be reducible by Ry |<c. The other properties hold be-
cause t is eligible and the root of t = u is =. a

We employ Bachmair and Ganzinger’s framework of reducing counterexam-
ples [4, Sect. 4.2]. The interpretation R} is our candidate model. A clause C € N
is called a counterezample if Ry F= C. It is a minimal counterexample if C' is
the smallest clause in N w.r.t. > such that Ry & C. An inference reduces a
counterexample C' if its main premise is C, its side premises are true in R},
and its conclusion D is a counterexample smaller than C. An inference system
has the reduction property for counterexamples if for all clause sets N with a
minimal counterexample C, there exists an inference from N that reduces C.

The next lemma deals with counterexamples reducible by SUP or its special-
ized cousins BooLHoisT, s~HoisT, $¢Hoist, GVHoisT, GIHoisT, BOOLRw,
VRw, and JRw.

Lemma 30. Assume RYy = C[s], € N, such that

(a) p is eligible in C,

(b) s is reducible by Ry|<c, and

(c) if p is a topmost position of a positive literal and the root of s is not a logical
symbol, s must be reducible by R¢..

Then our inference system reduces the counterexample C.

Proof. We apply Lemma 29 to s to find an appropriate subterm w of s.

Case 1: We assume that the root of u is not a logical symbol. Then, by
property 3 of Lemma 29, there exists a rule u — v’ € R/|<¢ for some u’. We
can apply BOOLHOIST or SUP to reduce the counterexample as follows:

Case 1.1: We assume that if u — v/ € R, then v/ = L and p is not a
topmost position of a positive literal in C.
We check that BOOLHOIST is applicable:

— The root of u is not a logical symbol as required.
— The position of u in Clu] is eligible by property 1 of Lemma 29.
— The term u is ground and therefore not a variable.
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— Finally, we need to show that the position of u is not a topmost position of a
positive literal in C. If it was, then necessarily s = « and by condition (c) of
this lemma, it follows that s = u is reducible by R¢.. By the assumption of
case 1.1 and the fact that v — «’ € Ry|<c, we have u — v’ € R} \ Rn.
The rules in R}, \ Ry have left-hand sides smaller than s = u. Sou — v’ €
R3y \ Ry \ RE. Since s = u is reducible by R, this contradicts the absence
of critical pairs in R}, which we have shown in Lemma 19(2).

Case 1.2: We assume that case 1.1 does not apply. That means that v —
u' € Re and if v/ = L, then p is a topmost position of a positive literal in C.

Then some clause DVu ~ v’ € N smaller than C produces the rule u — /.
We claim that the counterexample C' is reduced by the superposition inference

Dvu=v Clu]
D v Cu]

This superposition is a valid inference:

— Unification is trivial.

— The term wu is ground and therefore not a variable.

— We have u > v’ by (C1).

— DVu= v < Clu] due to property 3 of Lemma 29.

— The position of u in Clu] is eligible by property 1 of Lemma 29.

— The literal u = ' is eligible in DV u &~ «’ by (C3). It is strictly eligible
because if u ~ v’ also occurred as a literal in D, we would have R}~ U
{u — v} E D, in contradiction to (C6).

— The root of u is not a logical symbol by the assumption of case 1.

— If ' = L, then p is at the top level of a positive literal by the assumption
of case 1.2.

As DV u = u is productive, Ry ¥~ D by Lemma 26. Hence the conclusion
DV C[u] is equivalent to C[u'], which is equivalent to C[u] w.r.t. R} . It remains
to show that the new counterexample D V Clu/], which C is transformed into, is
strictly smaller than C. By (04), C[u'] < C because v’ < u and D < C because
DVu=u < C. Thus, the counterexample C reduces.

Case 2: We assume that the root of u is a logical symbol. By property 2 of
Lemma 29, u # T, L. By Lemma 19(4), R} reduces u to T or to L.

— Case 2.1: The root of u is =, A, V, or —; or the root of u is & and it reduces
to T; or the root of u is % and it reduces to L. We apply BOOLRw. Only two
of its side conditions are relevant on ground clauses, the conditions 1 and 4.
For the condition 1 we must pick the right item from the list. By points 4
and 5 of Lemma 29, the list contains an applicable item. Eligibility of u in
C' (condition 4) holds by property 1 of Lemma 29. Clearly, the conclusion is
false in R} and smaller than C.

— Case 2.2: The root of u is &, say u = s & t, and u reduces to L. We apply
~HOIST:

~HoIsT
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Clearly, the inference conditions are fulfilled and the conclusion is smaller
than C because C[L] < C and the literal in C' where s & ¢ occurs is greater
than s =~ t. The reduction u —)E}‘v 1 necessarily has the form

SRt — ] st — o L
oF

because the final step is the only way to reduce =. Here, s’ and ¢’ are different
R%, normal forms. Hence Ry [ s ~ t/, thus Ry ¥~ s ~ t and Ry
ClL]Vvs=t.

Case 2.3: The root of u is % and it reduces to T. Analogous to the previous
case, using ¢HOIST.

Case 2.4: The root of u is V and it reduces to T. We apply GVRw. Clearly,
the rule is applicable and its conclusion is false in R}, and smaller than C.
Case 2.5: The root of w is 3 and it reduces to L. Analogous to the previous
case, using GIRw.

Case 2.6: The root of u is V, say u = Vz.t, and u reduces to L. We apply

GVHOIST:
CVx.t]

CHLjv{z—ov}t=T

GVHoIsT

for a term v selected as described here: The reduction u —%* 1 necessarily

has the form Vz.t — L and originates from case (A3) of Definition 18
because rewriting under quantifiers is forbidden. In particular, case (vii) of
Definition 18 does not apply. Hence there exists a ground term v whose
Boolean subterms are only T and L such that {x — v}t — L. This is the
v we choose for GYHOIST. Clearly, the inference conditions are fulfilled and
the conclusion is smaller than C. Then the conclusion is a strictly smaller
counterexample.
Case 2.7: root of u is 3 and it reduces to T. Analogous to the previous case,
using GJHOIST.

O

Lemma 31. Our ground inference system has the reduction property for coun-
terexamples.

Proof. Let N be a set of ground clauses that does not contain the empty clause.
Let C' be a minimal counterexample for R}, in N. We must show that there is an
inference from N that reduces C—i.e., the inference has main premise C, side
premises in N, and a conclusion that is a smaller counterexample for R}; than
C. In all the following cases, there is an inference that reduces C.

1.

2.

We assume that C' contains a selected Boolean subterm. Then it cannot
be at a topmost position of a positive literal by the selection restrictions
(Definition 1). By Lemma 28, RY/|<c reduces the selected subterm. Hence
we can apply Lemma 30 to that subterm and are done.

We assume that there is an eligible literal of the form s # s € C. Then
IRREFL reduces C.
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3. We assume that there is an eligible literal s 2 s’ € C' where s > s'. Since
Ry B C, we have Ry|<c £ C by Lemma 25. Therefore Ry|<c [ s % s
and Ry |<c | s = s'. Thus, s must be reducible by R} |<c because s > s'.
Therefore, we can apply Lemma 30 to s.

4. We assume that C = C"” V s =tV s &~ s’ such that:

— no literals or Boolean subterms are selected in C';
— s = s is maximal in C;
— s> &, t; and
- Ry Ed =t
Then we can apply

C=C"Vs~tVs~s'
C'"Vvs#tvsat

FAcTOR

Since C' is false in R}y, we have Ry |= s # t. Since moreover Ry = s' ~ t,
it follows that the conclusion of this inference must be false in R}. Since
s > s',t and s &~ s’ is maximal, the above inference reduces C.

5. We assume that there is a selected literal s ~ L € C with s >= L. Since C'is
false in R, C is also false in R%|<c by Lemma 25. Hence R |<c s~ T.
If the root of s is not a logical symbol, since s reduces to T, s must thus be
reducible by R¢. Therefore, we can apply Lemma 30.

6. We assume that there is a strictly eligible literal s &~ s’ where s is reducible
by R¢. Hence, s is eligible in C'. Thus, we can again apply Lemma 30 to s.

7. We assume that there is a strictly eligible literal s ~ s’ € C' where s > s’
and the root of s is a logical symbol. By (O1), s = T contradicts s > s'. If
s =1, then s/ =T by (01), and LELIM reduces C. If s # T, L then s is
reducible by Lemma 19(4). Thus, we can again apply Lemma 30 to s.

We will now show that one of the above cases applies or the clause C' is
productive, which would be a contradiction to Ry = C.

First, we assume that a Boolean subterm or a literal is selected in C. If a
Boolean subterm is selected, case 1 applies. If a literal is selected, it is either
negative or of the form s ~ L by the selection restrictions. If it is negative, case 2
or 3 applies. If it is of the form s ~ L, s cannot be L because C is false in R}.
If s =T, then case 7 applies. If s = L, then case 5 applies.

Now we may assume that C' contains no selections. Then the maximal literal
must be eligible. If the maximal literal is negative ((C3) does not hold), case 2
or 3 applies. If (C1) does not hold, the literal must be negative because C' is true
in R%. If (C2) does not hold, then by Lemma 24, the maximal literal must be
negative.

So we may assume that C' contains no selections and the maximal literal is
positive. If (C6) does not hold, then R{, U{s — s’} &= C’ where C’ is the
subclause of C' with the maximal literal removed. However, R{, (= C' by Lemma
24 and by the assumption R} f= C. Therefore, RY, = C’. Thus, we must have
C" = C" VvV r =t for some terms r and ¢t where R, U{s — s’} =r ~ t and
R B r &~ t. So r # ¢ and without loss of generality we assume r > ¢. Moreover
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s — s’ must participate in the normalization of r or ¢t by R U {s — s'}.
Since r X s = ', the rule s — s’ can only be used as the first step in the
normalization of r. Hence r = s and R |= s’ =~ ¢. Then case 4 applies. In
particular, it applies if the maximal literal is not strictly maximal.

Now we may assume that C' contains no selections and the maximal literal
is strictly maximal and positive. If (C7) does not apply, then case 6 applies. If
(C4) does not apply, then case 7 applies. O

Theorem 32 (Ground static refutational completeness). Let N C Cg be
a set saturated w.r.t. GInf? and GRed{. Then N |= L if and only if L € N.

Proof. By Theorem 4.9 of Bachmair and Ganzinger’s framework [4] and
Lemma 31. ad

5.2 Nonground Layer

The main effort in passing from the ground static to the nonground dynamic
completeness consists of the lifting of the inferences. We do this in the lemma 34.
However first we rephrase a main result from the saturation framework [33] which
lifts completeness given the lifting of the inferences. We specialize to our calculi
F', G and grounding I" but formulate the theorem in a way which still hints the
generalization.

Recall that a clause D is redundant w.r.t. a clause set N if its ground in-
stances are, symbolically I'D C GRed¢(I'N), or if D is strictly subsumed by
a clause from N. This is equivalent to the condition given in the next theo-
rem. Namely if there exists C' € N subsuming D, then D 3 C and I'D C I'C
so that D is redundant by the both conditions. Otherwise D is not subsumed
and F{C eN | D C} = @& which reduce both conditions to the same form
I'D C GRed¢(I'N).

The inference component of the redundancy posed on F' by the below theorem
is actually stronger, albeit unusefully, than the one in our definition 13. This is
because it considers only a single ground calculus whose parameters (selection
and witness functions) will be fixed indirectly during the lifting of the inferences.
Weakening a redundancy test trivially preserves completeness. Below we write
FiInf N for the set of inferences from a clause set N.

Theorem 33. Let the ground calculus G, which our calculus F' corresponds to,
be statically complete. Let redundancy on F' be given by
i € FRed;N <= I'i C GRed;(I'N)
D € FRed¢N <= I'D C GRedc('N)UT'{C € N|D 2 C}
where 1 is subsumption (or generally any well-founded) strict order. This gives
a valid redundancy criterion for F'. Assume that every inference i from I'N is

liftable, meaningi € I'(FInf N), or redundant w.r.t. I'N, for any F-clause set N.
Then F' is dynamically complete.

Proof. See theorems of Waldmann et al. [33].
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Lemma 34. Let N be an F-clause set. There exists ground selection functions
and a witness function such that every ground inference i € GInf(I'N) from
the grounded clause set I'N is liftable, meaning i € I'(FInf N), or redundant,
meaning i € GRed(I'N).

Proof. We begin by fixing the ground selection and witness functions. Let FLSel
be a literal selection function on F. To choose the right selection function
GLSel € I'(FLSel), we observe that each ground clause C' € I'N must have at
least one corresponding clause D € N such that C' is a ground instance of D. We
choose one of them for each C' € I'N, which we denote by LC € NN I'"{C}
and say that L does ungrounding. Then let GLSel select those literals in C' that
correspond to the literals selected by FPLSel in LC. We define a Boolean subterm
selection function GBSel similarly.
To fix a witness function, we consider a GIRW inference

__ Bl apw
Clpw(C, 3p)]

Lifting this (or any other inference) requires us to take as a premise the un-
grounding LC[3p] of C[3p] which we fixed above. This way the selection side
conditions are satisfied. So the lift of the GIRW must be an 3Rw from LC[3p].
Let v be a grounding substitution s.t. C[3p] = vLC[3p]. By definition of ground-
ing, v can not introduce a quantifier term Jp. Hence the Jp corresponds to a
subterm 3p of LC[3p]. Now by grounding the conclusion from the IRw we have
pw(C,3p) = yp(skapz) = p(skapyz) where z are variables from LC[3p]. This de-
fines the witness function w pointwise or leaves it unconstrained when p discards
its input. (It is a nontrivial but purely technical addition to simultaneously deal
with rewriting V quantifiers.)

We proceed to present the lifting of superposition inferences. Other infer-
ences involving contexts (xHOIST and remaining xRw) are liftable by similar
arguments whereas IRREFL, FACTOR and LELIM by simpler ones. All these we
skip. Let D V¢t ~ t' and CJt] be ground clauses from I'N with a superposition
inference between them:

Dvt=t CJt]
D v Ct]

To lift this inference, we are looking for an inference between the ungroundings
L(DVt~t) and LC[t] as fixed above. Since a substitution can not introduce
the symbols V or ~, we can write L(D Vt ~ t') = DVt ~ 1 with 6D = D, 0t = ¢
and At' = t' for some grounding 6. Since a substitution can introduce a context
boundary, we can only write LC[t] = C[u] where t = yu or u is a variable and ¢ is
a subterm of yu, for some grounding v mapping LC[t] to C[t]. This distinguishes
whether the superposition is below a variable or not. Moreover the distinguished
t and v correspond, meaning that vC[-] can be seen as a context around C[-].
If w is not a variable, ¢ = yu so that ¢ and u have the same root symbol.
This can not be a logical symbol because otherwise the ground superposition
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would not exist. Since 8t = t = yu, terms ¢ and u are unifiable. Routinely one
can check other side conditions too to conclude that
Dvirt Cl
mgu(@, u)(D v ')

is a nonground superposition inference which lifts the original ground superpo-
sition.

If w is a variable, the ground superposition will be redundant. Let g[t] = yu
and define 4/ = v o {u s g[t']}. Now C[t] = vC[u] = ~'Clu] € I'N because
t > t', and by side condition of superposition C[t] = D V t ~ t’ also. Together
~+'C[u] and DVt = t' imply the conclusion DV C[t'] of the ground superposition
because if D is false then DVt ~ ¢’ equates the groundings v and +'.

As a corollary of the two previous results and the static completeness theorem 32
we have:

Theorem 35. Our nonground calculus F' is complete.

6 Inprocessing Clausification Methods

Our calculus makes preprocessing clausification unnecessary: A problem specified
by a formula f can be represented as a clause f ~ T. Our redundancy criterion
allows us to add various sets of rules to steer the inprocessing clausification.

Without any additional rules, our core calculus rules perform all the neces-
sary reasoning about formulas. We call this method inner delayed clausification
because the calculus rules tend to operate on the inner Boolean subterms first.

The outer delayed clausification method adds the following rules to the cal-
culus, which are guided by the outermost logical symbols. Let s and ¢ be Boolean
terms. Below, we let s* range over literals of the form s ~ T and s % L, and s~
over literals of the form s ~ 1L and s % T.

stTvC sTVC
———— + OUTERCLAUS ——————— OUTERCLAUS
oc(s,C) oc(=s, C)
s~tv(C
~OUTERCLAUS
s1lVvtx=xTVvC s=TvtxlvC
s#&tvC
#%OUTERCLAUS

s~1lVvVt=lvC s=TvtxeTVC

The rules +OUTERCLAUS and —OUTERCLAUS are applicable to any term
s whose root is a logical symbol, whereas the rules ~OUTERCLAUS and
#20OUTERCLAUS are only applicable if neither s nor ¢ is T or L. Clearly,
our redundancy criterion allows us to replace the premise of all OUTER-
CLAUS-rules with their conclusions. Nonetheless, the rules *OUTERCLAUS and



Superposition with First-Class Booleans and Inprocessing Clausification 27

#£OUTERCLAUS are not used as simplification rules since destructing equiva-
lences disturbs the syntactic structure of the formulas, as noted by Ganzinger
and Stuber [13]. The behavior of oc(s,C') on a formula s and a clause C' is as
follows:

oc(sAt,C)={s=TVC,t=TVC}

oc(sVt,C)={s=TVtxrTVC}

oc(s=>t,C)={s~LVvitrTVC}

oc(s=t,C)={s=tVC}

ocls #1,C) = {5 £ 1V C)

oc(Vz.5,C)={{z— y}s=TVC}

oc(3z.5,C) = {{z = skvg.3.s(7)}s = TV C}
oc(m(sAt),C)={s~LVvtrLVC}

(

oc(~(sVvt),C)={s~LVvC(Ct~1lVC}
oc(A(s =21),0)={s=TVC,t~LVvC}
oc(~(s=t),C)={s#%tVvC}
oc(-(s%t),C)={s~tVvC}

oc(=(ms), C) = oc(s,C)
oc(n(Vz.8),C) = {{z > skyg.3,.-s(7)}s = LV C}
oc(=(3z.9),C) ={{z = y}s= LV}

In the case of oc(Vz.s,C) or oc(=(3z.5),C), y is a variable not appearing
in s or C; in the case of oc(3z.s,C) and oc(—(Vz. s),C), g are all free variables
appearing in 3z. s or Vz. s, respectively. If 3z. s = o(3z. t) for some substitution
o and the Skolem term skyz 3. + has been used previously, instead of skyg.3,.+(9),
we can use o(skyz.3,.+(Z)) where Z are all free variables of 3z.¢.

A third inprocessing clausification method is immediate clausification. It first
preprocesses the input problem using a standard first-order clausification proce-
dure such as Nonnengart and Weidenbach’s [23]. Then, during the proof search,
when a clause C' appears on which OUTERCLAUS rules could be applied, we
apply the standard clausification procedure on the formula Vz. C instead (where
Z are the free variables of '), and replace C with the clausification results.
With this method, the formulas are clausified in one step, making intermediate
clausification results inaccessible to the simplification machinery.

Renaming Common Formulas Following Tseitin [29], clausification proce-
dures usually rename common formulas to prevent a possible combinatorial ex-
plosion caused by naive clausification. In our two delayed clausification methods,
we realize this idea using the following rule:

Cilorf] -+ Culonf]
Ciloip(@)] -+ Chlowp(z)] R -+ Rp

RENAME
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Here, the formula f has a logical root, T are the distinct free variables in f,
p is a fresh symbol, o; is a substitution, and the clauses Ri,..., R,, are the
result of simplifying a definition clause R = p(Z) ~ f as described below. The
rule avoids exponential explosion by replacing n positions in which results of
f’s clausification will appear into a single position in R. Optimizations such as
polarity-aware renaming [23, Sect. 4] also apply to RENAME.

Several issues arise with RENAME as an inprocessing rule. We need to ensure
that in R, f > p(Z), since otherwise demodulation might reintroduce a formula
f in the simplified clauses. This can be achieved by giving the fresh symbol p
a precedence smaller than that of all symbols initially present in the problem
(other than T and ). To ensure the precedence is well founded, the precedence
of p must be greater than that of symbols previously introduced by the calculus.
For KBO, we additionally set the weight of p to the minimal possible weight.

For RENAME to be used as a simplification rule, we need to ensure that the
conclusions are smaller than the premises. This is trivially true for all clauses
other than the clause R. For example, let C; = f &~ T (o; is the identity). Clearly,
R is larger than C;. However, we can view the definition clause R as two clauses
Rt =p(Z)~ LV f~Tand R~ =p(Z) ~ TV f ~ L. Then, we can apply
a single step of the OUTERCLAUS rules to RT™ and R~ (on their subformula
f), which further results in clauses Rj,...,R,,. Inspecting the OUTERCLAUS
rules, it is clear that m < 4, which makes enforcing this simplification tolerable.
Furthermore, as f is simplified in each of Ry, ..., R,,, they are smaller than any
premise C;.

Another potential source of a combinatorial explosion in our calculus are
formulas that occur deep in the arguments of uninterpreted predicates. Consider
the clause C = pi(z) =~ T V ¢/(y) =~ T where i,j > 2, and an exponent n
denotes that the symbol is applied n times. Under some parameter choices, such
as the one in which the first and the second literal are eligible in C, any clause
Pra)~ TVpr(L)x TV Vpr(Ll) = TVai(y) =T Va2(Ll)~ TV
-V @i(L)~ T (where iy +---+ip =i and j; +--- + j; = j) , resulting from
multiple BOOLHOIST applications, can be obtained in many different ways. This
explosion can be avoided using the following rule:

s~tvC
p(f)zT\/C Ry -+ Ry

RENAMEDEEP

where p is a fresh symbol, T are all free variables occurring in s ~ t, the clauses
Ry,..., Ry result from simplifying R = p(Z) = (s & t) as described above, and
we impose the same precedence and weight restrictions on p as for RENAME. Fi-
nally, we require that both s ~ ¢ and C' contain deep Booleans where a Boolean
subterm u|, of a term u is a deep Boolean if there are at least two distinct proper
prefixes ¢ of the position p such that the root of u|, is an uninterpreted predicate.
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Similarly to RENAME, the definition clause R can be larger than the premise.
As OUTERCLAUS-rules might not apply to s & t, we need a different solution:

Clu)
CL]VurT C[T]Vu= L

BoorLHoI1sTSIMP

In this rule u is a non-variable Boolean subterm, different from T and L, whose
indicated occurrence is not in a literal u ~ b where b is T, L or a variable.
Clearly, both conclusions of BOOLHOISTSIMP are smaller than the premise. As
before, observing that R is equivalent to two clauses RY = p(Z) ~ LV s &~ ¢ and
R~ =p(Z) =~ TVs#t, wesimplify R and R~ into clauses that are guaranteed
to be smaller than the premise. This is achieved by applying BooLHOISTSIMP
to one of the deep Boolean occurrences in both BT and R~, which produces
Ry,..., R4 and reduces the size of resulting clauses enough for them to be smaller
than the premise of RENAMEDEEP. The RENAMEDEEP rule can be applied
analogously to negative literals s % ¢.

Miniscoping Both our core inferences and the clausification rules use Skolemiza-
tion to remove quantifiers. The arity of a created Skolem symbol is the number
of the free variables in the replaced quantification term. These arities can be
reduced by shrinking the quantification terms by moving the quantifiers inwards
when possible. To this end, the miniscoping transformation [23] exhaustively
rewrites

V(fAg) — VfAVyg Ve. fVgr — fVVg
IH(fVg) — 3IfVig dx. f Agxr — fAdg

and their commuted versions and versions for other connectives, and it removes
unused quantification around constant expressions.

We can straightforwardly do inprocessing miniscoping if and only if the term
order orients these equivalences as indicated. This is the case with LPO, as given
in Sect. 3.1, because high-precedence symbols V,3 > A, V get moved inwards. On
the other hand KBO with our encoding always orients the left-hand side rules
in the undesired reverse order.

7 Implementation

Zipperposition [11] is an automatic theorem prover designed for easy prototyping
of various extensions of superposition. So far, it has been extended to support
induction, arithmetic, and various fragments of higher-order logic. We have im-
plemented our calculus and its extensions described above in Zipperposition.
Zipperposition has long supported A as the only binder. Because introducing
new binders would significantly complicate the implementation, we decided to
represent the terms Vz.t and Jx.t as V(Az.t) and I(Ax. t), respectively.
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We introduced a normalized presentation of predicate literals as either s =~ T
or s &= L. As Zipperposition previously encoded them as s ~ T or s % T,
enforcing the new encoding was a source of tedious implementation effort.

FACTOR inferences happen even when the maximal literal is selected since
the discovery of condition (3) as described in Sect. 3 came after the evaluation.

Zipperposition’s existing selection functions were not designed with Boolean
subterm selection in mind. For instance, a function that selects a literal L with
a selectable Boolean subterm s can make s eligible, even if the Boolean selection
function did not select s. To mitigate this issue, we can optionally block selection
of literals that contain selectable Boolean subterms.

We implemented four Boolean selection functions: selecting the leftmost in-
nermost, leftmost outermost, syntactically largest or syntactically smallest se-
lectable subterm. Ties are broken by selecting the leftmost term. Additionally,
we implemented a Boolean selection function that does not select any subterm.

Vukmirovi¢ and Nummelin [31, Sect. 3.4] explored inprocessing clausification
as part of their pragmatic approach to higher-order Boolean reasoning. They
describe in detail how the formula renaming mechanism is implemented. We
reuse their mechanism, and simplify definition clauses as described in Sect. 6.

8 Evaluation

The goal of our evaluation was to answer the following questions:

1. How does our approach compare to preprocessing?

2. How do the different inprocessing clausification methods compare?

3. Is there an overhead of our calculus on problems without first-class Booleans?
4. What effect do Boolean selection, LOCALRwW, and BOOLHOISTSIMP have?

We filtered TPTP [27] and SMT-LIB [6] to get first-order benchmarks that
actually do use the Boolean type. In TPTP THF we found 145 such problems
(TPTP Bool) and in the UF section of SMT-LIB 5507 such problems. Martin
Desharnais and Jasmin Blanchette generated 1253 Sledgehammer problems that
target our logic. To measure the overhead of our calculus, we randomly chose
1000 FOF and CNF problems from the TPTP (TPTP FO). Even with this
sample the experiment could take up to (1454+5507+1253+1000) x #modes x
300s =~ 9 CPU months. On StarExec servers, evaluation roughly took three days
under low load. Otherwise evaluating on all 13 000 FOF and CNF problems could
have taken 2.5 times longer.

SMT-LIB interprets the symbol ite as the standard if-then-else function [6,
Sect. 3.7.1]. Whenever a term s = ite(t1, ta, t3) of type 7 occurs in a problem, we
replace s with f,(¢1,t2,t3), where f; is a fresh symbol denoting the ite function
of a particular return type. To comply with SMT-LIB, we add the following
axioms: Vo y.f(T,z,y) = z and Vo y.f, (L, z,y) = y. SMT-LIB allows the use
of let variable bindings [6, Sect. 3.6.1]. We simply replace each variable with
its definition in the body of the let bindings.
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Currently, among competing superposition-based provers only E and Vam-
pire support first-order logic with interpreted Booleans, and they do so through
preprocessing. We could not evaluate Vampire in first-order mode with FOOL
preprocessing because as soon as a problem contains higher-order constructs, as
do the TPTP Bool benchmarks, Vampire must be used in higher-order mode to
be sound. We were able to run E on all benchmarks, except for the ones in SMT
syntax.

We used Zipperposition’s first-order portfolio, which invokes the prover se-
quentially with up to 13 configurations in different time slices. In each time slice,
the prover is invoked anew, without any knowledge of previous invocations. To
compare different features, we ran different modes that enable a given feature
in all of the portfolio configurations. All experiments were performed on the
StarExec Towa servers [26], equipped with Intel Xeon E5-2609 0 CPUs clocked
at 2.40 GHz. We set the CPU time limit to 300s. Figure 1 displays the results.
An empty cell indicates that a mode is not evaluated on that benchmark set.
An archive with the raw evaluation data is publicly available.?

A preprocessing transformation that removes all Boolean subterms occurring
as arguments of symbols [32, Sect. 8], similar to Kotelnikov et al.’s FOOL clausi-
fication approach [16], is implemented in Zipperposition. To answer question 1,
we enabled preprocessing and compared it to our new calculus parameterized
with the Boolean selection function that selects the smallest selectable subterm.
The mode using our new calculus performs immediate inprocessing clausifica-
tion, and we call it base, while the mode that preprocesses Boolean subterms is
denoted by preprocess in Figure 1.

The obtained results do not give a conclusive answer to question 1. On both
TPTP Bool and Sledgehammer problems, some configuration of our new calculus
manages to prove one problem more than preprocessing. On SMT-LIB bench-
marks, the best configuration of our calculus matches preprocessing. This shows
that our calculus already performs roughly as well as previously known tech-
niques and suggests that it will be able to outperform preprocessing techniques
after tuning of its parameters.

For context, we provide the evaluation of E on supported benchmarks. On
TPTP FO benchmarks it solves 643 problems, on TPTP Bool benchmarks 144
problems, and on Sledgehammer benchmarks 674 problems. Note that there is
no straightforward way to compare these results with Zipperposition.

Our base mode uses immediate inprocessing clausification. To answer ques-
tion 2, we compared base with a variant of base with outer delayed clausification
(base+outer) and with a variant with inner delayed clausification (base+inner).
In the delayed modes, we invoke the RENAME rule on formulas that are discov-
ered to occur more than four times in the proof state. The distribution of the
solution counts between these three modes is displayed in the area proportional
Figure 2.

The results show that inner delayed clausification, which performs the laziest
form of clausification, gives the worst results on most benchmark sets. Outer

4 https://doi.org/10.5281/zenodo.4550787
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TPTP FO TPTP Bool SMT-LIB Sledgehammer

off 379

preprocess 142 1985 : 639
base 380 143 1984 : 638
base+outer 353 142 1978 1 637
base+inner 195 142 1699 1 556
base+selnax 381 140 1982 1 638
base+sel); 381 143 1983 : 638
base+sel), 381 140 1982 1 638
base+selg 380 139 1985 1 640
base+BHS 381 142 1983 : 637
base+LocALRw 380 143 1979 . 638

186 300 139 142 1616 1900 540 600

Fig. 1: Number of problems solved per benchmark set and Zipperposition mode.
The x-axes start from the number of problems solved by all evaluated modes.

TPTP-FO Sledgehammer
SMT-LIB

Immediate

“Easy” tasks
solved by all

“Easy” tasks
solved by all
540

“Easy” tasks
solved by all
Inner
6/16

"mediate
99 /357 Outer
16/97

Inner
23/72

Fig. 2: Counts of unique/uneasy solutions per clausification mode and benchmark

delayed clausification performs roughly as well as immediate clausification on
problems targeting our logic. On purely first-order problems, it performs slightly
worse than immediate clausification. However, outer delayed clausification solves
17 problems not solved by immediate clausification on these problems. This
suggests that it opens new possibilities for first-order reasoning that need to be
explored further with specialized strategies and additional rules.

We found a problem with a conjecture of the form s = s that only the delayed
clausification modes can prove: a large TPTP software verification problem,
SWV122+1. As s contains many quantified subformulas, subformula renaming
obfuscates the problem, and makes base unable to find the proof. On the other
hand, BOOLSIMP rule directly converts the negated conjecture to L, completing
the proof in half a second.
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To answer question 3, we compared the mode of Zipperposition in which all
rules introduced by our calculus are disabled (off) with base on purely first-order
problems. Our results show that both modes perform roughly the same. Some
base modes prove up to two more problems within the last seconds of the time
allotted due to fluctuations in the evaluation environment beyond our control.

To answer question 4, we evaluated the Boolean selection functions we have
implemented: syntactically smallest selectable term (used in base), syntactically
largest selectable term (selyax), leftmost innermost selectable term (sely;), left-
most outermost selectable term (sel},), and no Boolean selection (selg). We also
evaluated two modes in which the rules LOCALRW and BooLHo1sTSmMp (BHS)
are enabled. None of the selection functions influences the performance greatly.
Similarly, we observe no substantial difference regardless of whether the rules
LocALRwW and BOOLHOISTSIMP are enabled.

9 Related Work and Conclusion

The research presented in this paper extends superposition in two directions:
with inprocessing clausification and with first-class Booleans. The first direc-
tion has been explored before by Ganzinger and Stuber [13], and others have
investigated it in the context of other superposition-related calculi [2,5,9,20,21].

The other direction has been explored before by Kotelnikov et al., who devel-
oped two approaches to cope with first-class Booleans [16,17]. For the quantified
Boolean formula fragment of our logic, Seidl et al. developed a translation into
effectively propositional logic [24]. More general approaches to incorporate theo-
ries into superposition include superposition for finite domains [14], hierarchic
superposition [7], and superposition with (co)datatypes [10].

For SMT solvers [22], supporting first-class Booleans is a widely accepted
standard [6]. In contrast, the TPTP TFX format [28], intended to promote first-
class Booleans in the rest of the automated reasoning community, has yet to gain
traction. Software verification tools could clearly benefit from its popularization,
as some of them identify terms and formulas in their logic, e.g., Why3 [12].

In conclusion, we devised a refutationally complete superposition calculus
for first-order logic with interpreted Booleans. Its redundancy criterion allows
us to flexibly add inprocessing clausification and other simplification rules. We
believe our calculus is an excellent choice for the basis of new superposition
provers: it offers the full power of standard superposition, while supporting rich
input languages such as SMT-LIB and TPTP TFX. Even with unoptimized
implementation and basic strategies, our calculus matches the performance of
earlier approaches. In addition, the freedom it offers in term order, literal and
Boolean subterm selection opens possibilities that are yet to be explored. Overall,
our calculus appears as a solid foundation for richer logics in which the Boolean
type cannot be efficiently preprocessed, such as higher-order logic [8]. In future
work, we plan to tune the parameters and would find it interesting to combine
our calculus with clause splitting techniques, such as AVATAR [30].
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