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Abstract. We present a complete superposition calculus for first-order
logic with an interpreted Boolean type. Our motivation is to lay the foun-
dation for refutationally complete calculi in more expressive logics with
Booleans, such as higher-order logic, and to make superposition work ef-
ficiently on problems that would be obfuscated when using clausification
as preprocessing. Working directly on formulas, our calculus avoids the
costly axiomatic encoding of the theory of Booleans into first-order logic
and offers various ways to interleave clausification with other derivation
steps. We evaluate our calculus using the Zipperposition theorem prover,
and observe that, with no tuning of parameters, our approach is on a par
with the state-of-the-art approach.

1 Introduction

Superposition is a calculus for equational first-order logic that works on problems
given in clausal normal form. Its immense success made preprocessing clausifica-
tion a predominant mechanism in modern automatic theorem proving. However,
this preprocessing is not without drawbacks. Clausification can transform sim-
ple problems, such as s → s where s is a large formula, in a way that hides
its original simplicity from the superposition calculus. Ganzinger and Stuber’s
superposition-like calculus [13] operates on clauses that contain formulas as well
as terms and replaces preprocessing clausification by inprocessing—meaning pro-
cessing during the operation of the calculus itself. Inprocessing clausification
allows superposition’s powerful simplification engine to work on formulas. For
example, unit equalities can rewrite formulas s and t in s ↔ t before clausifi-
cation duplicates the occurrences into s → t and t → s. Whole formulas rather
than simple literals can be removed by rules such as subsumption resolution [4].

Another issue with Boolean reasoning in the standard superposition calculus
is that, in first-order logic, formulas cannot appear inside terms although this is
often desirable for problems coming from software verifiers or proof assistants.
Instead, authors of such tools need to resort to translations. Kotelnikov et al.
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studied effects of these translations in detail. They showed that simple axioms
such as the domain cardinality axiom for Booleans (∀(x : o). x ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) can
severely slow down superposition provers. To support more efficient reasoning on
problems with first-class Booleans, they describe the FOOL logic, which admits
functions that take arguments of Boolean type and quantification over Booleans.
They further describe two approaches to reason in FOOL: The first one [17]
requires an additional rule in the superposition calculus, whereas the second
one [16] is completely based on preprocessing.

Our calculus combines complementary advantages of Ganzinger and Stuber’s
and of Kotelnikov et al.’s work. Following Kotelnikov et al., our logic (Sect. 2)
is similar to FOOL and supports nesting formulas inside terms, as well as quan-
tifying over Booleans. Following Ganzinger and Stuber, our calculus (Sect. 3)
reasons with formulas and supports inprocessing clausification.

Our calculus also extends the two approaches. To reduce the number of
possible inferences, we generalize Ganzinger and Stuber’s Boolean selection
functions, which allow us to restrict the Boolean subterms in a clause on which
inferences can be performed. The term order requirements of our calculus are
less restrictive than Ganzinger and Stuber’s. In addition to the lexicographic
path order (LPO), we also support the Knuth-Bendix order (KBO) [15], which
is known to work better with superposition in practice.

Our proof of refutational completeness (Sect. 4) lays the foundation for com-
plete calculi in more complex logics with Booleans. Indeed, Bentkamp et al. [8]
devised a refutationally complete calculus for higher-order logic based on our
completeness theorem. Our theorem incorporates a powerful redundancy crite-
rion that allows for a variety of inprocessing clausification methods (Sect. 5).

We implemented our approach in the Zipperposition theorem prover (Sect. 6)
and evaluated it on thousands of problems that target our logic ranging from
TPTP to SMT-LIB to Sledgehammer-generated benchmarks (Sect. 7). Without
fine-tuning, our new calculus performs as well as known techniques. Exploring
the strategic choices that our calculus opens should lead to further performance
improvements. In addition, we corroborate the claims of Ganzinger and Stuber
concerning applicability of formula-based superposition reasoning: We find a set
of 17 TPTP problems (out of 1000 randomly selected) that Zipperposition can
solve only using the techniques described in this paper. We refer to our technical
report [25] for more details on our calculus and the complete completeness proof.

2 Logic

Our logic is a first-order logic with an interpreted Boolean type. It is essentially
identical to the UF logic of SMT-LIB [5], including the Core theory, but without
if-then-else and let expressions, which can be supported through simple transla-
tions. It also closely resembles Kotelnikov et al.’s FOOL [17], which additionally
supports if-then-else and let expressions.

Our logic requires an interpreted Boolean type o and allows for an arbitrary
number of uninterpreted types. The set of symbols must contain the logical
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symbols >>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ : o; ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o → o; ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→ : (o × o) → o; and the overloaded symbols
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ : (τ × τ) → o for each type τ . The logical symbols are printed in bold
to distinguish them from the notation used for clauses below. Throughout the
paper, we write tuples (a1, . . . , an) as ān or ā.

The set of terms is defined inductively as follows. Every variable is a term. If
f : τ̄n → υ is a symbol and t̄n : τ̄n is a tuple of terms, then the application f(t̄n)
(or simply f if n = 0) is a term of type υ. If x is a variable and t : o a Boolean
term, then the quantified terms ∀x. t and ∃x. t are terms of Boolean type. We
view quantified terms modulo α-renaming. A formula is a term of Boolean type.

The root of a term is f if the term is an application f(t̄n); it is x if the term
is a variable x; and it is ∀ or ∃ if the term is a quantified term ∀x. t or ∃x. t. A
variable occurrence is free in a term if it is not bound by ∀ or ∃. A term is ground
if it contains no free variables. Substitutions are defined as usual in first-order
logic and they rename quantified variables to avoid capture.

A literal s ≈̇ t is an equation s ≈ t or a disequation s 6≈ t. Unlike terms
constructed using the function symbols ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ and 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈, literals are unoriented. A clause
L1 ∨ · · · ∨ Ln is a finite multiset of literals Lj . The empty clause is written as
⊥. Terms t of Boolean type are not literals. They must be encoded as t ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
and t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, which we call predicate literals. Both are considered positive literals
because they are equations, not disequations.

We have considered excluding negative literals s 6≈ t by encoding them as
(s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, following Ganzinger and Stuber. However, this approach requires
an additional term order condition to make the conclusion of equality factoring
small enough, excluding KBO. To support both KBO and LPO, we allow neg-
ative literals. Regardless, our simplification mechanism will allow us to simplify
negative literals of the form t 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and t 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> into t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> and t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, respectively,
thereby eliminating redundant representations of predicate literals.

The semantics is a straightforward extension of standard first-order logic only
adding the interpretation of the Boolean type as a two element domain, as in
Kotelnikov et al.’s FOOL logic. Some of our calculus rules introduce Skolem sym-
bols, which are intended to be interpreted as witnesses for existentially quantified
terms. Still, our semantics treats them as uninterpreted symbols. To achieve a
satisfiability-preserving calculus, we assume that these symbols do not occur in
the input problem. More precisely, we inductively extend the signature of the
input problem by a symbol sk∀ȳ.∃z.t : τ̄ → υ for each term of the form ∃z. t over
the extended signature, where υ is the type of z and ȳ : τ̄ are the free variables
occurring in ∃z. t, in order of first appearance.

3 The Calculus

Following standard superposition, our calculus employs a term order and a literal
selection function to restrict the search space. To accommodate for quantified
Boolean terms, we impose additional requirements on the term order. To support
flexible reasoning with Boolean subterms, in addition to the literal selection
function, we introduce a Boolean subterm selection function.
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Term Order The calculus is parameterized by a strict well-founded order �
on ground terms that fulfills: (O1) u � ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ � >>>>>>>>>>>>>>>>>>>>>>>>> for any term u that is not >>>>>>>>>>>>>>>>>>>>>>>>> or
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥; (O2) ∀x. t � {x 7→ u}t and ∃x. t � {x 7→ u}t for any term u whose only
Boolean subterms are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥; (O3) subterm property; (O4) compatibility
with contexts (not necessarily below ∀ and ∃); (O5) totality. The order is
extended to literals, clauses, and nonground terms as usual [2]. The nonground
order then also enjoys (O6) stability under grounding substitutions.

Ganzinger and Stuber’s term order restrictions are similar but incompatible
with KBO. Using an encoding of our terms into untyped first-order logic we
describe how both LPO and the transfinite variant of KBO [19] can satisfy
conditions (O1)–(O6).

Our encoding represents bound variables by De Bruijn indices, which become
new constant symbols dbn for n ∈ N. Quantifiers are represented by two new
unary function symbols, also denoted by ∀ and ∃. All other symbols are simply
identified with their untyped counterpart. Regardless of symbol precedence or
symbol weights, KBO and LPO enjoy properties (O3)–(O6) when applied to the
encoded terms. They are even compatible with contexts below quantifiers.

To satisfy (O1) and (O2), let the precedence for LPO be >>>>>>>>>>>>>>>>>>>>>>>>> < ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ < f < ∀ <
∃ < db0 < db1 < · · · where f is any other symbol. For KBO, we can use the same
symbol precedence and a symbol weight function W that assigns each symbol
ordinal weights (of the form ωa + b with a, b ∈ N), where W(>>>>>>>>>>>>>>>>>>>>>>>>>) = W(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) =
1, W(∀) =W(∃) = ω, and W(f) ∈ N \ {0} for any other symbol f.

Selection and Eligibility Following an idea of Ganzinger and Stuber, we
parameterize our calculus with two selection functions: one selecting literals and
one selecting Boolean subterms.

Definition 1 (Selection functions). The calculus is parameterized by a lit-
eral selection function FLSel and a Boolean subterm selection function FBSel .
The function FLSel maps each clause to a subset of its literals. The selection
function FBSel maps each clause to a subset of its Boolean subterms. The
literals FLSel(C) and the subterms FBSel(C) are selected in C. The following
restrictions apply: (S1) A literal can only be selected if it is negative or of the
form s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. (S2) A Boolean subterm can only be selected if it is not >>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or
a variable. (S3) A Boolean subterm can only be selected if its occurrence is not
below a quantifier. (S4) The topmost terms on either side of a positive literal
cannot be selected.

The interplay of maximality w.r.t. term order, literal and Boolean selection
functions gives rise to a new notion of eligibility:

Definition 2 (Eligibility). A literal L is (strictly) eligible w.r.t. a substitution
σ in C if it is selected in C or there are no selected literals and no selected Boolean
subterms in C and σL is (strictly) maximal in σC. The eligible subterms of a
clause C w.r.t. a substitution σ are inductively defined as follows: (E1) Any
selected subterm is eligible. (E2) If a literal s ≈̇ t with σs 6� σt is either eligible
and negative or strictly eligible and positive, then s is eligible. (E3) If a subterm
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is eligible and its root is not ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈, ∀, or ∃, all of its direct subterms are also
eligible. (E4) If a subterm is eligible and of the form s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t or s 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ t, then s is
eligible if σs 6� σt and t is eligible if σs 6� σt. The substitution σ is left implicit
if it is the identity substitution.

The Core Inference Rules The following inference rules form our calculus:
D︷ ︸︸ ︷

D′ ∨ t ≈ t′ C[u]
Sup

σ(D′ ∨ C[t′])

C︷ ︸︸ ︷
C ′ ∨ u′ ≈ v′ ∨ u ≈ v

Factor
σ(C ′ ∨ v 6≈ v′ ∨ u ≈ v′)

C︷ ︸︸ ︷
C ′ ∨ u 6≈ u′

Irrefl
σC ′

C︷ ︸︸ ︷
C ′ ∨ s ≈ t

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim
σC ′

C[u]
BoolRw

σC[t′]

C[∀z. v]
∀Rw

C[{z 7→ sk∀ȳ.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬v(ȳ)}v]

C[∃z. v]
∃Rw

C[{z 7→ sk∀ȳ.∃z.v(ȳ)}v]

C[u]
BoolHoist

C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ u ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
C[s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t]

≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Hoist
C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ s ≈ t

C[s 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ t]
6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈Hoist

C[>>>>>>>>>>>>>>>>>>>>>>>>>] ∨ s ≈ t

C[∀x. t]
∀Hoist

C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ {x 7→ y}t ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
C[∃x. t]

∃Hoist
C[>>>>>>>>>>>>>>>>>>>>>>>>>] ∨ {x 7→ y}t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

The rules are subject to the following side conditions:

Sup (1) σ = mgu(t, u); (2) u is not a variable; (3) σt 6� σt′; (4) D ≺ C[u];
(5) u is eligible in C w.r.t. σ; (6) t ≈ t′ is strictly eligible in D w.r.t. σ;
(7) the root of t is not a logical symbol; (8) if σt′ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the subterm u is at
the top level of a positive literal.

Factor (1) σ = mgu(u, u′); (2) σu 6≈ t 6∈ σC for any term t; (3) no Boolean
subterm and no literal is selected in C; (4) σu is a maximal term in σC;
(5) σv is maximal in {t | σu ≈ t ∈ σC}.

Irrefl (1) σ = mgu(u, u′); (2) u 6≈ u′ is eligible in C w.r.t. σ.
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim (1) σ = mgu(s ≈ t,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>>); (2) s ≈ t is strictly eligible in C w.r.t. σ.
BoolRw (1) (t, t′) is one of the following pairs, where x is a fresh variable:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, >>>>>>>>>>>>>>>>>>>>>>>>>), (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (>>>>>>>>>>>>>>>>>>>>>>>>>∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥),
(>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, >>>>>>>>>>>>>>>>>>>>>>>>>), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, >>>>>>>>>>>>>>>>>>>>>>>>>), (>>>>>>>>>>>>>>>>>>>>>>>>> →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ >>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>),
(>>>>>>>>>>>>>>>>>>>>>>>>> →→→→→→→→→→→→→→→→→→→→→→→→→ >>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x, >>>>>>>>>>>>>>>>>>>>>>>>>), (x 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ x, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥); (2) σ = mgu(t, u); (3) u is not a
variable; (4) u is eligible in C w.r.t. σ.

?Rw (where ? ∈ {∀,∃}) (1) v is a term that may refer to z; (2) ȳ are the
free variables occurring in ∀z. v and ∃z. v, respectively, in order of first
appearance; (3) the indicated subterm is eligible in C; (4) for ∀Rw, C[>>>>>>>>>>>>>>>>>>>>>>>>>] is
not a tautology; (5) for ∃Rw, C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] is not a tautology. (In an implementation,
the tautology check can be approximated by checking if the affected literal
is of the form ∀z. v ≈ >>>>>>>>>>>>>>>>>>>>>>>>> or ∃z. v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.)
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BoolHoist (1) u is a Boolean term whose root is an uninterpreted predicate;
(2) u is eligible in C; (3) u is not a variable; (4) u is not at the top level of
a positive literal.

?Hoist (where ? ∈ {≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈,∀,∃}) (1) the indicated subterm is eligible in C; (2) y
is a fresh variable.

Rationale for the Rules Our calculus is a graceful generalization of superpo-
sition: if the input clauses do not contain any Boolean terms, it coincides with
standard superposition. In addition to the standard superposition rules Sup,
Factor, and Irrefl, our calculus contains various rules to deal with Booleans.
For each logical symbol and quantifier, we must consider the case where it is true
and the case where it is false. Whenever possible, we prefer rules that rewrite
the Boolean subterm in place (with names ending in Rw). When this cannot be
done in a satisfiability-preserving way, we resort to rules hoisting the Boolean
subterm into a dedicated literal (with names ending in Hoist). For terms rooted
by an uninterpreted predicate, the rule BoolHoist only deals with the case that
the term is false. If it is true, we rely on Sup to rewrite it to >>>>>>>>>>>>>>>>>>>>>>>>> eventually.

Example 3. The clause a ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> can be refuted by the core inferences as
follows. First we derive a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> (displayed on the left) and then we use it to
derive ⊥ (displayed on the right). In this and the following example, we assume
eager selection of literals whenever the selection restrictions allow it.

a ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
BoolHoist

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
BoolHoist

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
BoolRw

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ >>>>>>>>>>>>>>>>>>>>>>>>> ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
BoolRw

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim

a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
Factor

>>>>>>>>>>>>>>>>>>>>>>>>> 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
Irrefl

a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>

a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
a ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a ≈ >>>>>>>>>>>>>>>>>>>>>>>>> a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>

Sup
>>>>>>>>>>>>>>>>>>>>>>>>> ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬a ≈ >>>>>>>>>>>>>>>>>>>>>>>>>

Sup
>>>>>>>>>>>>>>>>>>>>>>>>> ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>> ≈ >>>>>>>>>>>>>>>>>>>>>>>>>

BoolRw
>>>>>>>>>>>>>>>>>>>>>>>>> ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>>

BoolRw
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>>

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim
⊥

The derivation illustrates how BoolHoist and Sup replace uninterpreted predi-
cates by >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ to allow BoolRw to eliminate the surrounding logical symbols.

Example 4. The clause (∃x. ∀y. y 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> can be refuted as follows:

(∃x. ∀y. y 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
∃Rw

(∀y. y 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ sk∃x.∀y.y 6666666666666666666666666≈x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
∀Hoist

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ (y′ 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ sk∃x.∀y.y 6666666666666666666666666≈x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim

(y′ 6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈ sk∃x.∀y.y 6666666666666666666666666≈x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈6≈Rw

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim

⊥
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Redundancy Criterion In standard superposition, a clause is defined as re-
dundant if all of its ground instances follow from smaller ground instances of
other clauses. We keep this definition, but use a nonstandard notion of ground
instances, inspired by constraint superposition [23]. In our completeness proof,
this new notion of ground instances ensures that ground instances of the con-
clusion of ∀Rw, ∃Rw, ∀Hoist, and ∃Hoist inferences are smaller than the
corresponding instances of their premise by property (O2).

Definition 5 (Redundancy of clauses). The ground instances of a clause C
are all ground clauses of the form γC where γ is a substitution such that for all
variables x, the only Boolean subterms of γx are ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and >>>>>>>>>>>>>>>>>>>>>>>>>. A ground clause C
is redundant w.r.t. a ground clause set N if there exist clauses C1, . . . , Ck ∈ N
such that C1, . . . , Ck |= C and C � Ci for all 1 ≤ i ≤ k. A nonground clause C
is redundant w.r.t. clauses N if C is strictly subsumed by a clause in N or every
ground instance of C is redundant w.r.t. ground instances of N .

In standard superposition, an inference is defined as redundant if all its
ground instances are, and a ground inference is defined as redundant if its con-
clusion follows from other clauses smaller than the main premise. We keep this
definition as well, but we use a nonstandard notion of ground instances for some
of the Boolean rules. In our report, we define a slightly stronger variant of in-
ference redundancy via an explicit ground calculus, but the following notion is
also strong enough to justify the few prover optimizations based on inference
redundancy we know from the literature (e.g., simultaneous superposition [7]).

Definition 6 (Redundancy of inferences). A ground instance of a ∀Rw,
∃Rw, ∀Hoist, or ∃Hoist inference is an inference obtained by applying a
grounding substitution to premise and conclusion, regardless of whether the
result is a valid ∀Rw, ∃Rw, ∀Hoist, or ∃Hoist inference. A ground instance of
an inference ι of other rules is an inference ι′ of the same rule such that premises
and conclusion of ι′ are ground instances of the respective premises and conclu-
sion of ι. For ι′, we use selection functions that select the ground literals and
Boolean subterms corresponding to the ones selected in the nonground premises.
A ground inference with main premise C, side premises C1, . . . , Cn, and conclu-
sion D is redundant w.r.t. N if there exist clauses D1, . . . , Dk ≺ C in N such
that D1, . . . , Dk, C1, . . . , Cn |= D. A nonground inference is redundant if all its
ground instances are redundant.

A clause set N is saturated if every inference from N is redundant w.r.t. N.

Simplification Rules The redundancy criterion is a graceful generalization of
the criterion of standard superposition. Thus, the standard simplification and
deletion rules, such as deletion of trivial literals and clauses, subsumption, and
demodulation, can be justified. Demodulation below quantifiers is justified if the
term order is compatible with contexts below quantifiers.

Some calculus rules can act as simplifications. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim can always be a simpli-
fication. Given a clause on which both ?Rw and ?Hoist apply, where ? ∈ {∀,∃},
the clause can be replaced by the conclusions of these rules. If ?Rw does not
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apply because of condition 4 or 5, ?Hoist alone can be a simplification. Also
justified by redundancy, the rules BoolHoist and ?Hoist can simultaneously
replace all occurrences of the eligible subterm they act on. For example, applying
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈Hoist to p(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ q(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ yields p(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ q(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ y.

While experimenting with our implementation, we have observed that the
following simplification rule from Vampire [18] can substantially shorten proofs:

s 6≈ t ∨ C[s]
LocalRw

s 6≈ t ∨ C[t]

In this rule, we require s � t.
Interpreting literals of the form s ≈ >>>>>>>>>>>>>>>>>>>>>>>>> as s 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ as s 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> we

can apply the rule even to these positive literals. This especially convenient with
rules such as BoolHoist. Consider the clause C = pi(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ q ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, assume
no literal is selected and the Boolean selection function always selects a subterm
p(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥). Applying BoolHoist to C we get p(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>∨pi−1(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨q ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. This
can then be simplified to a tautological clause p(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ p(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ q ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
using i − 2 LocalRw steps. If we did not use LocalRw, BoolHoist would
produce i − 2 intermediary clauses starting from C, none of which would be
recognized as a tautology.

Many rules of our calculus replace subterms with >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. After this replace-
ment, resulting terms can be simplified using Boolean equivalences that specify
the behavior of logical operations on >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. To this end, we use the rule
BoolSimp [33], similar to simp of Leo-III [27, Sect. 4.2.1]:

C[s]
BoolSimp

C[t]

This rule replaces s with t whenever s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t is contained in a predefined
set of tautological equations. In addition to all equations that Leo-III uses
for simp, we also include more complex ones, such as (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u →→→→→→→→→→→→→→→→→→→→→→→→→ u) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ u and
(u1 →→→→→→→→→→→→→→→→→→→→→→→→→ · · · →→→→→→→→→→→→→→→→→→→→→→→→→ un →→→→→→→→→→→→→→→→→→→→→→→→→ v1 ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ · · · ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ vm) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ >>>>>>>>>>>>>>>>>>>>>>>>> where ui = vj for some i and j. The
exhaustive list is given in our technical report. Using BoolSimp and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥Elim,
the twelve steps of Example 3 can be replaced by just two simplification steps.

BoolSimp simplifies terms with logical symbol roots if one argument is either
>>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or if two arguments are identical. Thus, after simplification, BoolRw
applies only in two remaining cases: if all arguments of a logical symbol are
distinct variables and if the sides of a (dis)equation are different and unifiable.
This observation can be used to streamline the implementation of BoolRw.

4 Refutational Completeness

Our calculus is dynamically refutationally complete. All the rules that do not
introduce Skolem symbols are also sound.
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Completeness Theorem 7. Let S0 be an unsatisfiable set of clauses. Let
(Si)

∞
i=0 be a fair derivation—i.e., a derivation where

⋃∞
i=0

⋂∞
j=i Sj is saturated.

Then ⊥ ∈ Si for some i.

We outline some key parts of the proof here and refer to our technical
report [25] for the details. We first define a ground version of our calculus
with standardly inherited redundancy criterion and prove it complete. Devising
suitable ground analogues of the rules ∀Rw and ∃Rw was difficult because the
arguments of the Skolems depend on the variables occurring in the premise.
Therefore, we parameterize the ground calculus by a function that provides
ground Skolem terms in the ground versions of these rules. When lifting the
completeness result to the nonground level, we instantiate the parameter with
a specific function that allows us to lift the ∀Rw and ∃Rw inferences.

To prove the ground calculus complete, we employ the framework for reduc-
tion of counterexamples [3]. It requires us to construct an interpretation I given
a saturated unsatisfiable clause set that does not contain ⊥. Then we must show
that any counterexample—i.e., a clause that does not hold in I—can be reduced
to a smaller (≺) counterexample by some inference.

The interpretation I is defined by a normalizing rewrite system as in the
standard completeness proof of superposition. To ensure a correct interpretation
of Booleans, we incrementally add Boolean rewrite rules along with the rules
produced by clauses as usual. If a counterexample can be rewritten by a Boolean
rule, we reduce it by a ?Rw or ?Hoist inference. If it can be rewritten by a rule
produced by a clause, we reduce it by a Sup inference.

We derive the dynamic completeness of our nonground calculus using the
saturation framework [35]. It gives us a nonground clause set N to work with.
We then have to choose the parameters of our ground calculus such that all of
its inferences from the grounding of N are redundant or liftable. We show that
inferences rewriting below variables are redundant. Other inferences we show to
be liftable—i.e., they are a ground instance of some inference from N .

5 Inprocessing Clausification Methods

Our calculus makes preprocessing clausification unnecessary: A problem specified
by a formula f can be represented as a clause f ≈ >>>>>>>>>>>>>>>>>>>>>>>>>. Our redundancy criterion
allows us to add various sets of rules to steer the inprocessing clausification.

Without any additional rules, our core calculus rules perform all the neces-
sary reasoning about formulas. We call this method inner delayed clausification
because the calculus rules tend to operate on the inner Boolean subterms first.

The outer delayed clausification method adds the following rules to the cal-
culus, which are guided by the outermost logical symbols. Let s and t be Boolean
terms. Below, we let s+ range over literals of the form s ≈ >>>>>>>>>>>>>>>>>>>>>>>>> and s 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and s−
over literals of the form s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and s 6≈ >>>>>>>>>>>>>>>>>>>>>>>>>.
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s+ ∨ C
+OuterClaus

oc(s, C)

s− ∨ C
−OuterClaus

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s, C)

s ≈ t ∨ C
≈OuterClaus

s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ C s ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ C
s 6≈ t ∨ C

6≈OuterClaus
s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ C s ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ C

The rules +OuterClaus and −OuterClaus are applicable to any term
s whose root is a logical symbol, whereas the rules ≈OuterClaus and
6≈OuterClaus are only applicable if neither s nor t is >>>>>>>>>>>>>>>>>>>>>>>>> or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Clearly,
our redundancy criterion allows us to replace the premise of all Outer-
Claus-rules with their conclusions. Nonetheless, the rules ≈OuterClaus and
6≈OuterClaus are not used as simplification rules since destructing equiva-
lences disturbs the syntactic structure of the formulas, as noted by Ganzinger
and Stuber [13]. The function oc(s, C) analyzes the shape of the formula s and
distributes it over the clause C. For example, oc(s1 →→→→→→→→→→→→→→→→→→→→→→→→→ s2, C) = {s1 ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ s2 ≈
>>>>>>>>>>>>>>>>>>>>>>>>> ∨ C}, and oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s1 ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ s2), C) = {s1 ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ C, s2 ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ C}. This function also
replaces quantified terms by either a fresh free variable or a Skolem in the body
of the quantified term, depending on the polarity. The full definition of oc(s, C)
is specified in our technical report.

A third inprocessing clausification method is immediate clausification. It first
preprocesses the input problem using a standard first-order clausification proce-
dure such as Nonnengart and Weidenbach’s [24]. Then, during the proof search,
when a clause C appears on which OuterClaus rules could be applied, we
apply the standard clausification procedure on the formula ∀x̄. C instead (where
x̄ are the free variables of C), and replace C with the clausification results.
With this method, the formulas are clausified in one step, making intermediate
clausification results inaccessible to the simplification machinery.

Renaming Common Formulas Following Tseitin [31], clausification proce-
dures usually rename common formulas to prevent a possible combinatorial ex-
plosion caused by naive clausification. In our two delayed clausification methods,
we realize this idea using the following rule:

C1[σ1f ] · · · Cn[σnf ]
Rename

C1[σ1p(x̄)] · · · Cn[σnp(x̄)] R1 · · · Rm

Here, the formula f has a logical root, x̄ are the distinct free variables in f ,
p is a fresh symbol, σi is a substitution, and the clauses R1, . . . , Rm are the
result of simplifying a definition clause R = p(x̄) ≈ f as described below. The
rule avoids exponential explosion by replacing n positions in which results of
f ’s clausification will appear into a single position in R. Optimizations such as
polarity-aware renaming [24, Sect. 4] also apply to Rename.
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Several issues arise with Rename as an inprocessing rule. We need to ensure
that in R, f � p(x̄), since otherwise demodulation might reintroduce a formula
f in the simplified clauses. This can be achieved by giving the fresh symbol p
a precedence smaller than that of all symbols initially present in the problem
(other than >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥). To ensure the precedence is well founded, the precedence
of p must be greater than that of symbols previously introduced by the calculus.
For KBO, we additionally set the weight of p to the minimal possible weight.

For Rename to be used as a simplification rule, we need to ensure that the
conclusions are smaller than the premises. This is trivially true for all clauses
other than the clause R. For example, let Ci = f ≈ >>>>>>>>>>>>>>>>>>>>>>>>> (σi is the identity). Clearly,
R is larger than Ci. However, we can view the definition clause R as two clauses
R+ = p(x̄) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ f ≈ >>>>>>>>>>>>>>>>>>>>>>>>> and R− = p(x̄) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ f ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then, we can apply
a single step of the OuterClaus rules to R+ and R− (on their subformula
f), which further results in clauses R1, . . . , Rm. Inspecting the OuterClaus
rules, it is clear that m ≤ 4, which makes enforcing this simplification tolerable.
Furthermore, as f is simplified in each of R1, . . . , Rm, they are smaller than any
premise Ci.

Another potential source of a combinatorial explosion in our calculus are
formulas that occur deep in the arguments of uninterpreted predicates. Consider
the clause C = pi(x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ qj(y) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> where i, j > 2. If the first and the second
literal are eligible in C, any clause pi1(x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ pi2(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ · · · ∨ pik(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈
>>>>>>>>>>>>>>>>>>>>>>>>> ∨ qj1(y) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ qj2(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ · · · ∨ qjl(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> (where i1+· · ·+ik = i and j1+
· · ·+ jl = j) , resulting from multiple BoolHoist applications, can be obtained
in many different ways. This explosion can be avoided using the following rule:

s ≈ t ∨ C
RenameDeep

p(x) ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ C R1 · · · R4

where p is a fresh symbol, x̄ are all free variables occurring in s ≈ t, the clauses
R1, . . . , R4 result from simplifying R = p(x̄) ≈ (s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t) as described above, and
we impose the same precedence and weight restrictions on p as for Rename. Fi-
nally, we require that both s ≈ t and C contain deep Booleans where a Boolean
subterm u|p of a term u is a deep Boolean if there are at least two distinct proper
prefixes q of the position p such that the root of u|q is an uninterpreted predicate.

Similarly to Rename, the definition clause R can be larger than the premise.
As OuterClaus-rules might not apply to s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t, we need a different solution:

C[u]
BoolHoistSimp

C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ u ≈ >>>>>>>>>>>>>>>>>>>>>>>>> C[>>>>>>>>>>>>>>>>>>>>>>>>>] ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

In this rule u is a non-variable Boolean subterm, different from >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, whose
indicated occurrence is not in a literal u ≈ b where b is >>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or a variable.
Clearly, both conclusions of BoolHoistSimp are smaller than the premise. As
before, observing that R is equivalent to two clauses R+ = p(x̄) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ s ≈ t and
R− = p(x̄) ≈ >>>>>>>>>>>>>>>>>>>>>>>>>∨s 6≈ t, we simplify R+ and R− into clauses that are guaranteed
to be smaller than the premise. This is achieved by applying BoolHoistSimp
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to one of the deep Boolean occurrences in both R+ and R−, which produces
R1, . . . , R4 and reduces the size of resulting clauses enough for them to be smaller
than the premise of RenameDeep. The RenameDeep rule can be applied
analogously to negative literals s 6≈ t.

6 Implementation

Zipperposition [11] is an automatic theorem prover designed for easy prototyping
of various extensions of superposition. So far, it has been extended to support
induction, arithmetic, and various fragments of higher-order logic. We have im-
plemented our calculus and its extensions described above in Zipperposition.

Zipperposition has long supported λ as the only binder. Because introducing
new binders would significantly complicate the implementation, we decided to
represent the terms ∀x. t and ∃x. t as ∀(λx. t) and ∃(λx. t), respectively.

We introduced a normalized presentation of predicate literals as either s ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
or s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. As Zipperposition previously encoded them as s ≈ >>>>>>>>>>>>>>>>>>>>>>>>> or s 6≈ >>>>>>>>>>>>>>>>>>>>>>>>>,
enforcing the new encoding was a source of tedious implementation effort.

Factor inferences happen even when the maximal literal is selected since
the discovery of condition (3) as described in Sect. 3 came after the evaluation.

Zipperposition’s existing selection functions were not designed with Boolean
subterm selection in mind. For instance, a function that selects a literal L with
a selectable Boolean subterm s can make s eligible, even if the Boolean selection
function did not select s. To mitigate this issue, we can optionally block selection
of literals that contain selectable Boolean subterms.

We implemented four Boolean selection functions: selecting the leftmost in-
nermost, leftmost outermost, syntactically largest or syntactically smallest se-
lectable subterm. Ties are broken by selecting the leftmost term. Additionally,
we implemented a Boolean selection function that does not select any subterm.

Vukmirović and Nummelin [33, Sect. 3.4] explored inprocessing clausification
as part of their pragmatic approach to higher-order Boolean reasoning. They
describe in detail how the formula renaming mechanism is implemented. We
reuse their mechanism, and simplify definition clauses as described in Sect. 5.

7 Evaluation

The goal of our evaluation was to answer the following questions:

1. How does our approach compare to preprocessing?
2. How do the different inprocessing clausification methods compare?
3. Is there an overhead of our calculus on problems without first-class Booleans?
4. What effect do Boolean selection, LocalRw, and BoolHoistSimp have?

We filtered TPTP [29] and SMT-LIB [5] to get first-order benchmarks that
actually do use the Boolean type. In TPTP THF we found 145 such problems
(TPTP Bool) and in the UF section of SMT-LIB 5507 such problems. Martin
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Desharnais and Jasmin Blanchette generated 1253 Sledgehammer problems that
target our logic. To measure the overhead of our calculus, we randomly chose
1000 FOF and CNF problems from the TPTP (TPTP FO). Even with this
sample the experiment could take up to (145+5507+1253+1000) × #modes ×
300 s ≈ 9 CPU months. On StarExec servers, evaluation roughly took three days
under low load. Otherwise evaluating on all 13 000 FOF and CNF problems could
have taken 2.5 times longer.

SMT-LIB interprets the symbol ite as the standard if-then-else function [5,
Sect. 3.7.1]. Whenever a term s = ite(t1, t2, t3) of type τ occurs in a problem, we
replace s with fτ (t1, t2, t3), where fτ is a fresh symbol denoting the ite function
of a particular return type. To comply with SMT-LIB, we add the following
axioms: ∀x y. fτ (>>>>>>>>>>>>>>>>>>>>>>>>>, x, y) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x and ∀x y. fτ (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x, y) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y. SMT-LIB allows the use
of let variable bindings [5, Sect. 3.6.1]. We simply replace each variable with
its definition in the body of the let bindings.

Currently, among competing superposition-based provers only E and Vampire
support first-order logic with interpreted Booleans, and they do so through pre-
processing. We could not evaluate Vampire in the first-order mode with FOOL
preprocessing because it yielded unsound results on TPTP Bool benchmarks.
We were able to run E on all benchmarks, except for the ones in SMT syntax.

We used Zipperposition’s first-order portfolio, which invokes the prover se-
quentially with up to 13 configurations in different time slices. To compare
different features, we ran different modes that enable a given feature in all of the
portfolio configurations. All experiments were performed on the StarExec Iowa
servers [28], equipped with Intel Xeon E5-2609 0 CPUs clocked at 2.40GHz. We
set the CPU time limit to 300 s. Figure 1 displays the results. An empty cell
indicates that a mode is not evaluated on that benchmark set. An archive with
the raw evaluation data is publicly available.4

A preprocessing transformation that removes all Boolean subterms occurring
as arguments of symbols [34, Sect. 8], similar to Kotelnikov et al.’s FOOL clausi-
fication approach [16], is implemented in Zipperposition. To answer question 1,
we enabled preprocessing and compared it to our new calculus parameterized
with the Boolean selection function that selects the smallest selectable subterm.
The mode using our new calculus performs immediate inprocessing clausifica-
tion, and we call it base, while the mode that preprocesses Boolean subterms is
denoted by preprocess in Figure 1.

The obtained results do not give a conclusive answer to question 1. On both
TPTP Bool and Sledgehammer problems, some configuration of our new calculus
manages to prove one problem more than preprocessing. On SMT-LIB bench-
marks, the best configuration of our calculus matches preprocessing. This shows
that our calculus already performs roughly as well as previously known tech-
niques and suggests that it will be able to outperform preprocessing techniques
after tuning of its parameters.

For context, we provide the evaluation of E on supported benchmarks. On
TPTP FO benchmarks it solves 643 problems, on TPTP Bool benchmarks 144

4 https://doi.org/10.5281/zenodo.4550787

https://doi.org/10.5281/zenodo.4550787
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Fig. 1: Number of problems solved per benchmark set and Zipperposition mode.
The x-axes start from the number of problems solved by all evaluated modes.

problems, and on Sledgehammer benchmarks 674 problems. Note that there is
no straightforward way to compare these results with Zipperposition.

Our base mode uses immediate inprocessing clausification. To answer ques-
tion 2, we compared base with a variant of base with outer delayed clausification
(base+outer) and with a variant with inner delayed clausification (base+inner).
In the delayed modes, we invoke the Rename rule on formulas that are discov-
ered to occur more than four times in the proof state.

The results show that inner delayed clausification, which performs the laziest
form of clausification, gives the worst results on most benchmark sets. Outer
delayed clausification performs roughly as well as immediate clausification on
problems targeting our logic. On purely first-order problems, it performs slightly
worse than immediate clausification. However, outer delayed clausification solves
17 problems not solved by immediate clausification on these problems. This
suggests that it opens new possibilities for first-order reasoning that need to be
explored further with specialized strategies and additional rules.

We found a problem with a conjecture of the form s →→→→→→→→→→→→→→→→→→→→→→→→→ s that only the de-
layed clausification modes can prove: the TPTP problem SWV122+1. The subfor-
mula renaming mechanism of immediate clausification obfuscates this problem,
whereas delayed clausification allows BoolSimp to convert the negated conjec-
ture to ⊥ directly, completing the proof in half a second.

To answer question 3, we compared the mode of Zipperposition in which all
rules introduced by our calculus are disabled (off ) with base on purely first-order
problems. Our results show that both modes perform roughly the same.

To answer question 4, we evaluated the Boolean selection functions we have
implemented: syntactically smallest selectable term (used in base), syntactically
largest selectable term (selmax), leftmost innermost selectable term (selli), left-
most outermost selectable term (sello), and no Boolean selection (sel∅). We also
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evaluated two modes in which the rules LocalRw and BoolHoistSimp (BHS)
are enabled. None of the selection functions influences the performance greatly.
Similarly, we observe no substantial difference regardless of whether the rules
LocalRw and BoolHoistSimp are enabled.

8 Related Work and Conclusion

The research presented in this paper extends superposition in two directions:
with inprocessing clausification and with first-class Booleans. The first direc-
tion has been explored before by Ganzinger and Stuber [13], and others have
investigated it in the context of other superposition-related calculi [1,4,9,20,21].

The other direction has been explored before by Kotelnikov et al., who devel-
oped two approaches to cope with first-class Booleans [16,17]. For the quantified
Boolean formula fragment of our logic, Seidl et al. developed a translation into
effectively propositional logic [26]. More general approaches to incorporate theo-
ries into superposition include superposition for finite domains [14], hierarchic
superposition [6], and superposition with (co)datatypes [10].

For SMT solvers [22], supporting first-class Booleans is a widely accepted
standard [5]. In contrast, the TPTP TFX format [30], intended to promote first-
class Booleans in the rest of the automated reasoning community, has yet to gain
traction. Software verification tools could clearly benefit from its popularization,
as some of them identify terms and formulas in their logic, e.g., Why3 [12].

In conclusion, we devised a refutationally complete superposition calculus
for first-order logic with interpreted Booleans. Its redundancy criterion allows
us to flexibly add inprocessing clausification and other simplification rules. We
believe our calculus is an excellent choice for the basis of new superposition
provers: it offers the full power of standard superposition, while supporting rich
input languages such as SMT-LIB and TPTP TFX. Even with unoptimized
implementation and basic strategies, our calculus matches the performance of
earlier approaches. In addition, the freedom it offers in term order, literal and
Boolean subterm selection opens possibilities that are yet to be explored. Overall,
our calculus appears as a solid foundation for richer logics in which the Boolean
type cannot be efficiently preprocessed, such as higher-order logic [8]. In future
work, we plan to tune the parameters and would find it interesting to combine
our calculus with clause splitting techniques, such as AVATAR [32].
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