
Disseminating a Library of Formal Proofs for Flexible and

Persistent Searching

Author: Polina Boneva

1st supervisor: Robert Y. Lewis
2nd reader: Gabriel Ebner

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

June 1, 2021

Abstract

Mathlib is a continuously growing library of theorems and their proofs, axioms, definitions and

other instances of formalized mathematics (The mathlib Community, 2020). Mathlib is readable both by

the human eye and Lean, the programming language and proof-assistant system that does the

automated job of reading and validating mathematical concepts (Avigad, De Moura, & Kong, 2021). A

problem the current space holds is that there are no automated capabilities of Lean to organize the

global structure of the written proofs. Thus, the correct purpose and place of each more complex

declaration included in the library’s architecture must be checked directly by experts who have other

research and work to do (van Doorn et al., 2020).

The complete contents of mathlib are translated to a documentation in an HTML format (van

Doorn, F., Ebner, G., & Lewis, R. Y., 2020). To help to traverse the data in mathlib, we have created an

index that represents some elements from the library partially, just enough for it to allow a quick search

in the most easily recognizable elements to both experts and novices. These elements include the name

of the collection the theorem is in, the theorem's declarative primary name, and its human-readable

description. Ultimately, flexibility is just as important when it comes to the exploration of mathlib, and

for that, we have included two extra parts of each declaration of a theorem: its attributes and kind. Both

serve as filtering mechanisms to distinguish between all the described types of mathematical concepts in

the library.

Introduction

Mathlib is currently one of the main places where human knowledge in theoretical mathematics

is being translated for the computer to keep, use, and proofread automatically, whilst being written in a

programming language designed specifically for those purposes - Lean. Naturally, it is becoming

increasingly difficult to traverse the data with ease, which is only becoming more noticeable because of

its ever-growing usability and user load. Ten months ago, there were a total of over 60 000 declarations

of all kinds: theorems, axioms, definitions, constants, structures, constructors, etc. Now their count is

over 85 000. Experts' manual work on proofreading new theorems inevitably calls for quick navigation in

the realm of existing data of pure mathematics (van Doorn et al., 2020). As this project is entirely

dependent on the community of people who care for it and use it in their work, they are the ones who

have created scripts in both Lean and Python. These scripts serve to take the entire contents of mathlib

and translate them in a unified structure in a single JSON object used to create HTML files for displaying

the data with helpful color-coding on a per-module basis, as they are in the library itself (van Doorn et

al., 2020). It is a perfect reflection of the written declarations in mathlib (Lean-Prover Community, n.d.).

The continuous integration of mathlib into its documentation involves collecting all of its

components and differentiating between them in order to have a syntax that covers each part of the

data concisely. User's needs, however, are growing with their number: to modify, extend, query, and

maintain the source as best as possible so that the library proves sustainable in the long run (van Doorn

et al., 2020). The ever-expanding corpus of mathematical knowledge is gradually being translated into

machine languages, all of which do their best to allow for quick traversal of the whole system, even with

the growing complexity in included declarations. The following paper will describe a way to approach a

collection of formal proofs so that one stays on top of the information and understands its structure so

they can use it in all ways imaginable. This will be achieved by extracting the most necessary parts of the

data for easy exploration of the whole library and preparing for future modification of any variety.

Related Literature

The previous search offered a string-based lookup of the query into the names of each

declaration. Only the 20 top results are shown, which means that any others cannot be reached in any

way. It was a good beginning and served its purpose of suggesting what can be done in the future. The

current search also searches the syntax of the indexed data directly. Unlike SErAPIS (Stathopoulos,

Paulson, & Koutsoukou-Argyraki, 2020), it does not offer any semantic suggestions. It does not translate

mathematical concepts to similar concepts of a related kind. Still, it does provide more functionality in

terms of the type of data that can be searched, as well as filtering and prioritization. It does, much like

FindFacts, rely on a ready-made index which is to be accessed by the loaded documentation only once

(Huch, F., & Krauss, A., 2020). It cannot work offline at the moment, even though the way the index is

made by a pre-processing script, it could be made to function without an internet connection, as one is

not needed when one makes no use of a separate server. Currently, we have seen no need to make the

index offline, but should there be such a request, it will not be difficult to redirect the automated

creation of searchable data towards each computer that needs access to it without an internet

connection.

Some problems we have encountered are also described by the researchers and developers of

Isabelle, another great mathematical library that aims to reach the goals of flexible querying with a

semantic translation of mathematical concepts in the full range of data they cover (Stathopoulos, Y.,

Koutsoukou-Argyraki, A., & Paulson, L., 2019). The biggest challenge in terms of syntax is the look and

feel of formal language, as it is described by various programming languages to be read by machines

(Stathopoulos, Koutsoukou-argyraki, & Lawrence, 2019). It cannot be searched easily because the

symbols are not easily accessible on keyboards, unlike Latin letters. This makes the distinction between

them a challenge more suited for creating two different search mechanisms: one for the search of

declarative proofs with mathematical symbols and one for the search of theorem statements,

descriptions, and names where the English language serves a good purpose. Last but not least, each

created functionality should be extensively tested by the users of the system in an ordered and

well-defined manner (Stathopoulos et al., 2019).

Work Process

The mathlib library is at its beginning stage. It has yet to reveal its full potential for automated

self-checking of proofs, building proofs by itself when needed and designing its own structure as it

evolves, even though its size grows exponentially and the importance of the data gathered until now

cannot be understated (Hartnett, 2020). For the past ten months, its size has grown by about 30% of

what it used to be. This increase in size can only serve as a sign that the people interested in its

usefulness and reliability are growing fond of it. The recent escalating development of libraries like

mathlib brings this future to us even faster. The sheer hope people hold in their hearts and minds is what

drives them forward to learn a new language, be it Lean, Coq or Isabelle, to describe their hand-written

knowledge for a machine to store and read. It can then be used for our current and future not yet

imagined purposes (Hartnett, 2020). All this leads us to the natural question of: how can people find

their way in the ever-growing library of formal proofs easily, effectively, consistently and in the most

useful way for all types of human knowledge: novice, expert, mid and even curious non-mathematicians

who might one day be part of it all.

The maintainers of the system are also its users. Still, not all of its users are its maintainers, and

all of them do not have this as the primary job but use it as a mere tool to do their actual job of

discovering, proving, and extending mathematical knowledge for the world (van Doorn et al., 2020).

Hence, their needs are not equal. It can be pretty challenging to find their common denominator and

work in its direction so that everyone is at least somewhat satisfied, as opposed to some people having

no use of what others find entirely in their lane of work.

Communal Application and Goals

The core components of amazing documentation include a flexible, easily extensible, all-covering

search functionality which offers filtering on demand by the user, useful and maybe even changeable by

the user prioritization, and automated self-development, meaning it can handle data expansion without

breaking and needing manual readjustment. In the same fashion, it should offer sleek design,

color-coding of results that match the color-coding of the documentation and highlights on the matched

terms in the full text of the results. It should also be fast and offer a small set of results at first search, as

Figure 1

A Declaration in Mathlib

{
Args,
Attributes,
Constructors,
Doc_string,
Equations,
Filename,
Is_meta,
Kind,
Line,
Name,
Structure_fields,
Type

}

Note. A sample set of the keys a declaration in Mathlib is comprised of. Kind and Attributes are required
for filtering the data.

Figure 2

A Tactic in Mathlib

{

Category,

Decl_names,

Description,

Import,

Name,

Tags

}

well as the full scope of results on demand. Searching should happen easily in a search box, filtering

should be obvious and easy to use, and one should be able to combine filters if needed. Each of the

components of a good search: good indexing, query and data refinement in the act of searching,

filtering, prioritization, and user experience, can be improved on its own in a wide variety of ways, but

we will mention only some of them which according to us are to be developed as part of the next stage

of enhancements. Likewise, when it is done, it will become apparent what should be covered in its next

step, and so on.

Because this library is subject to a communal effort by people who have great use of it, it is

natural that their recommendations and needs should be covered extensively. They, however, have many

other things to do and so can only give feedback with regards to their currently existing needs and the

capabilities of each ready-made functionality (van Doorn, Ebner, & Lewis, 2020). Both transform with

time, so this ongoing process has only just started. In the light of this here searching mechanism to be

helpful in the future, we also have in mind that our work here can be used not only in Lean-based

libraries but can manage to divide and collect all kinds of mathematical knowledge into atoms of data

which can be used as a base in all sorts of libraries of extensive theoretical and practical knowledge, as

long as it is described in a similar manner as the JSON we extract from mathlib.

The mechanism for traversing and mapping the library has to take care of covering a wide range

of users because this will only serve for the better of the whole project (van Doorn et al., 2020). To divide

and conquer the library in such a way that the atoms, formed after breaking up its contents into most

fundamental pieces of value, cover all types of data structures together seems a daunting task at first.

One has to start from the beginning and answer the question: what is mathlib comprised of now, and

what are its uses for the mathematicians and their development? On the one hand, the theorems,

axioms, constants, constructors, structures, and definitions are all constituted from the data described in

Fig. 1. On the other hand, there are the tactics in mathlib that are the beginning of automated theorem

processing by Lean: they can self-sufficiently suggest ways to prove a theorem as one is writing it (Avigad

et al., 2021). Their structure in the single JSON export from mathlab's complete write out of its contents

– let's call it the JSON, as it is the only one and currently the most crucial, is comprised of the elements

described in Fig. 2.

We have aimed at creating a basis for further searching developments where the full data of

mathlib is taken into account. The main focus of our work is to create a single JSON of five items, three of

which are found in both searchable structures and two - in the more extensive one. To be more exact,

the pieces of information we have included in the searchable data structure carry the most fundamental

value of the largest piece of information described in mathlib, which means that less extensive data in

mathlib may not carry values for each item in the index that is used for searching. However, this is not a

problem because wherever information is missing, it is simply left empty, and it does not affect the

search capabilities of the query at all. The lowest common denominator happens to be of the highest

demanding structure, as expected.

Work Method

A few things need to be taken into consideration before deciding how to build the base of the

index for searching. First and foremost, we need to answer the "What?" of the goals the searching

mechanism has for the community and its aims for the future. Next, we need to answer the "Why?" for

every part of the fundamental structures required for the index that will be used for traversing mathlib's

contents. Lastly, we should answer the "How?" of the goals accomplishment journey and reaching the

destination most flexibly and understandably so that future development can be done by others as well,

not just by the people who have started the process.

Fundamental Structures

In order to accomplish our goals, we will begin with extracting the core of what constitutes a

theorem and its proof and developing a stand-alone categorization of the components, which is

Figure 3

The keys of an item in the index for querying

{

Name,

Description,

Module,

Attributes,

Kind

}

Note. This is the lowest common denominator set for all sets of keys that comprise the mathematical

knowledge covered in mathlib.

irrelevant to the way they are implemented. The name of any declarations and tactics is of immediate

importance not only because it is unique and most distinguishable for every declaration in the library but

also because it is one of the two leads one needs to have access to to be taken to the place of the

documentation where the theorem, axiom, etc., or tactic is described in detail. The name of the module

the declaration is in, together with the declaration's name, combined with the root of the website,

comprise together the domain path to the exact location of the item in the documentation. Hence,

whichever parts of the total data are included besides those two, the names of the declaration and

module they are in must always be part of the indexed item for searching. At this time of development of

the full-ranged searchable data structure, we have included only a single piece of information on top of

those because it is most useful at this time and easiest to look into: the human-readable comment that is

carried along with each declaration/tactic in the library, should there be any at all (Fig. 3). Not all

declarations have the privilege of having a description, but most of them do, thanks to the communal

effort of many caring theoretical and practical scientists who have decided to include one (van Doorn,

Ebner, & Lewis, 2020).

In the light of us being at the beginning stage of mathlib’s development, the two main

distinctions in the data we are looking to traverse easily, tactics and declarations, do not cover nearly all

the cases a theorem-prover has to make use of. Still, they are a fundamental part of the library that will

only grow in importance (van Doorn et al., 2020). We begin by extracting the part of the syntax that

would be necessary for searching, filtering and prioritization of results. The values described in Fig. 3

show what has been taken into account from each set of values in Fig. 1 and Fig. 2. This way, we are

closer to building a solid foundation for further information retrieval handling like combining references

between theorems in a knowledge graph, transcribing mathematical concepts and symbols into

semantically understandable human-language texts of mathematical information, stemming,

lemmatization and suggesting related queries.

Naturally, since we are on our way to create a single index for diverse types of structures, we can

make distinctions between them already while creating it. Later we can use each structure's data to

differentiate between them when querying. For example, the datasets in Fig. 1 and Fig. 2 are separate

while in the pre-processing script. Some kind of a distinction can be included as part of the searchable

data structure in order to later filter tactics out of the theorems, axioms, definitions, structures, and

other mathematical concepts not part of the processing engine but part of the system. This filtering will

be done at a later stage in development. As for now, we focused primarily on what is readily available in

the data extracted directly from mathlib: in our case, the winners of the filtering mechanism were the

attributes and kind of each declaration.

Filtering

The kind of a declaration, as described in Fig.1, holds one of the values of ['structure', 'theorem',

'definition', 'constant', 'axiom', 'inductive']. Moreover, the attributes of a declaration can be one of

['simp', 'nolint', 'ext', 'instance', 'class']. No kinds or attributes are described in the tactics' part of the

system scope; thus, the attributes and kind keys of the resulting index will be empty for the tactics in the

resulting index. This is not a problem because it will further distinguish between a tactic and a

declaration when one wants to look up anything, should they be using any of the filters. The search

functionality offers the following combination of filters at the moment of writing: each filter (attributes,

kind) has its options, and upon selecting some of them, the user is presented with results that combine

the selected options with an OR. Should one choose a combination of filters of both attributes and kind,

one will receive results that match each of the filters together with an AND between their two sets of

OR-combined selection of filters. For example, a user might select 'definition' and 'constant' of the

attributes filter and 'nolint' and 'class' of the kind filter. Hence, they will see results that match their

query as a string and have the following combination of attributes and kind: 'definition' or 'constant' and

'nolint' or 'class'.

Prioritization

Prioritization of results will be based on ordering the importance of each component in the index

and the number of matches in each component. The highest priority is given to the name of the

declaration, followed by its descriptive comment, and lastly, the name of the module it is in. This is

because we have focused on exact matches of the query into the data. After all, many names of

declarations hold stand-alone word combinations like "iff", "sa", "la", "lt", etc. Those mathematical

concepts happen to be part of often-used words like "difficult", "same", "later", "halt", etc. Hence, it

would be best if the search method distinguishes between searching into the name of the declaration,

where it would be most beneficial to search for exact query matches, and its description, where it would

be best to search for partial matches. This is set as part of the system's further development and will be

used to prioritize direct and full matches over partial ones. The number of matches in the name are

scored three times higher than their count in the module name. Moreover, the number of matches in

the description is scored twice as high as those in the module names. In conclusion, the hierarchy of

scores is sufficient at this time to distinguish between the best and worst results found. Further

development can be done in many aspects, one of which is evaluating the number of instances found all

over mathlib for each declaration.

Advantages of the Presented Index

As a result, we extracted a single unified index containing the essential information carried in the

declarations and tactics. The searchable data structure is big enough to cover the highest-demanding

structure but small enough to be used as an atom for further combinations in collections of any kind.

Here we mean any collected mathematical knowledge, which hopefully will become more accessible and

easier to traverse regardless of the language it is described in because its size only grows bigger and

increases in complexity.

Tactics and theorems might be completely different and serve unrelated purposes. Still, they are

part of the same corpus and are equally crucial for the development and correctness of mathlib as a

trustworthy library of formal proofs. Hence, we have included them both in the same index hoping that

this will bridge the gap between them and will allow users to traverse them both or separately, as they

wish. Further improvements have to be made to distinguish between tactics and theorems to be part of

the user-inputted filters, but this will be easy to add to the automated generating script as part of the

ready-made index before it is created and sent to the client for querying.

An important part of our index integration is that it is created automatically during the

generation of the documentation of mathlib, which by itself is also an automated process and is run

often enough to be up-to-date with any new additions. We believe this first step towards having a

greater and better overview of mathlib's contents is sufficient to be submitted as a stand-alone basis of

future development because the fundamental parts of the system are included, and many thoughts on

further development have emerged in the process.

Last but not least, we need to mention that there are some mathlib components to be added to

the searchable index in the future in the next stage of enhancements. These include the number of

instances of each theorem for prioritization of results and the descriptive texts found in the modules,

which are not connected to a specific declaration but constitute an important part of the documentation

and library itself. It will be easy to include them in the index because they will have a module name and a

description, but they do not have an anchor for themselves on the webpage. This has to be included first

to be able to reach the exact place of the descriptive comment from the set of results. It can be hidden,

meaning it will not show itself as a "name" to the querying user, but once they select the result because

of the matches in the module name or description itself, the name and the module name will be used in

combination with the website root to take the user to the anchor we have created specifically for the

chosen module comment.

Conclusion

Altogether, this paper describes the beginning stages of dividing, structuring, and re-combining a

mathematical body of knowledge to search through it extensively. Many limitations have risen from the

journey of this work, and most of them have been overcome, but a lot of improvements are to be

included in future developments to help bypass the rest of them. Future work will include

better-searching mechanisms that cover both strict and partial matching; filtering between different

types of mathlib contents; user-inputted prioritization dependent on individual needs and preferences;

color-coding and visual enhancements to ease the work process of mathematicians and novices in the

field; semantic as well as syntactic search; conceptual suggestions on query typing; and much more. This

communal effort proves what humanity is capable of once we work together. We are hopeful that the

future holds many bridges between different programming languages used for the formalization of

theoretical knowledge, which will serve each other and help inspire each other for better, more flexible,

more abstract, and simultaneously more profound development of ideas, concepts, and correct, reliable

proofs of those of them that stand to serve higher purposes in our lives.

Bibliography

Avigad, J., De Moura, L., & Kong, S. (2020). Theorem Proving in Lean (Release 3.4.0).

Hartnett, K. (2020). Building the Mathematical Library of the Future. Quanta Magazine.

https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/

Huch, F., & Krauss, A. (2020). FindFacts : A Scalable Theorem Search. In Isabelle Workshop 2020.

https://files.sketis.net/Isabelle_Workshop_2020/Isabelle_2020_paper_3.pdf

Lean-Prover Community. (2021). Index - Mathlib . Mathlib Documentation.

https://leanprover-community.github.io/mathlib_docs/

The mathlib Community: The Lean mathematical library. In: CPP. ACM, New York, NY, USA (2020).

https://doi.org/10.1145/3372885.3373824

Stathopoulos, Y., Koutsoukou-Argyraki, A., & Paulson, L. (2019). Developing a Concept-Oriented Search

Engine for Isabelle Based on Natural Language : Technical Challenges. In Artificial Intelligence

and Theorem Proving (AITP) 2020.

https://www.researchgate.net/publication/340390131_Developing_a_Concept-Oriented_Sear

ch_Engine_for_Isabelle_Based_on_Natural_Language_Technical_Challenges

Stathopoulos, Y., Koutsoukou-Argyraki, A., & Paulson, L. (2020). SErAPIS : A Concept-Oriented Search

Engine for the Isabelle Libraries Based on Natural Language. In Isabelle Workshop 2020.

https://files.sketis.net/Isabelle_Workshop_2020/Isabelle_2020_paper_4.pdf

van Doorn, F., Ebner, G., & Lewis, R. Y. (2020). Maintaining a library of formal mathematics. In Lecture

Notes in Computer Science. https://doi.org/10.1007/978-3-030-53518-6_16

