
Efficient Validation of
FOLID Cyclic Induction Reasoning

VeriDis + MATRYOSHKA Workshop, Amsterdam
June 12, 2019

Sorin Stratulat

INRIA, Université de Lorraine

Motivation

+ soundness checking of cyclic pre-proofs in FOL with inductive
definitions (FOLID)

pre-proof: finite derivation tree with backlinks (bud-companion
relations) using CLKIDω (LK + ‘=’ rules + unfold + case)
(Brotherston and Simpson [2011])

⇒ R(0, y) (1)

R(x, 0)⇒ R(sx, 0) (2)

R(ssx, y)⇒ R(sx, sy) (3)

⇒ N(0) (4)

N(x)⇒ N(s(x)) (5)

(R.(1))
Ny ` R(0, y)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗1)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

Motivation

+ soundness checking of cyclic pre-proofs in FOL with inductive
definitions (FOLID)

pre-proof: finite derivation tree with backlinks (bud-companion
relations) using CLKIDω (LK + ‘=’ rules + unfold + case)
(Brotherston and Simpson [2011])

⇒ R(0, y) (1)

R(x, 0)⇒ R(sx, 0) (2)

R(ssx, y)⇒ R(sx, sy) (3)

⇒ N(0) (4)

N(x)⇒ N(s(x)) (5)

(R.(1))
Ny ` R(0, y)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗1)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

Soundness checking

+ annotate paths with traces (Brotherston and Simpson [2011])

Global trace condition: implements the ‘Descente Infinie’ principle

(1) by contradiction, assume that the root sequent Γ ` ∆ is false
+ finite unfoldings for true ind. atoms: N(0), N(s(0)), . . .

(2) show that for every infinite path p in the cyclic derivation,
there is some trace following p such that all successive steps
starting from some point are decreasing and certain steps
occurring infinitely often are strictly decreasing w.r.t. some
semantic ordering defined over the number of unfoldings.

(3) true ind. atoms require infinite unfoldings. Contradiction.

Check: testing the inclusion relation between two Büchi automata

• decidable but doubly exponential

• implemented in the Cyclist prover; the proofs are not certified

Soundness checking

+ annotate paths with traces (Brotherston and Simpson [2011])

Global trace condition: implements the ‘Descente Infinie’ principle

(1) by contradiction, assume that the root sequent Γ ` ∆ is false
+ finite unfoldings for true ind. atoms: N(0), N(s(0)), . . .

(2) show that for every infinite path p in the cyclic derivation,
there is some trace following p such that all successive steps
starting from some point are decreasing and certain steps
occurring infinitely often are strictly decreasing w.r.t. some
semantic ordering defined over the number of unfoldings.

(3) true ind. atoms require infinite unfoldings. Contradiction.

Check: testing the inclusion relation between two Büchi automata

• decidable but doubly exponential

• implemented in the Cyclist prover; the proofs are not certified

Overview

Cyclic Reasoning for FOLID

A Polynomial Procedure for Checking the Global Trace Condition

Certifying Cyclic Proofs with Coq

Cyclic Reasoning for FOLID

CLKIDω
N : a particular case of CLKIDω

+ Stratulat [2017a, 2018]

Γ[{x 7→ u}] ` ∆[{x 7→ u}]
x is a variable not occurring in u (= L)

Γ, x = u ` ∆

+ particular case of (= L) of CLKIDω where x can also be a
non-variable term

The case when the trace value is strictly decreasing

The inductive predicates are defined by axioms of the form

Q1(u1) ∧ . . . ∧Qh(uh) ∧ Pj1(t1) ∧ . . . ∧ Pjm(tm)⇒ Pi(t) (6)

The (Case) rule:

. . . Γ, t′ = t, Q1(u1), . . . , Qh(uh), Pj1 (t1), . . . , Pjm (tm) ` ∆ . . .
(Case Pi)

Γ, Pi(t
′) ` ∆

+ unfolding step: Pj1(t1), . . . , Pjm(tm) are case descendants of
Pi(t

′
).

Traces and progress points

inductive antecedent atoms (IAA) τ1 τ2 . . . τn . . .

Definition (Trace, Progress point)
A trace following some (potentially infinite) path p [N1, N2, . . .] in
a pre-proof tree is a sequence (τi)(i≥0) of IAAs such that:

• τi+1 is τi[{x 7→ u}] if S(N i) ≡ (Γ, x = u ` ∆) is the
conclusion of (= L);

• τi = τi+1[δ] if S(N i) is the conclusion of (Subst) using δ;

• if S(N i) is the conclusion of a (Case)-rule, then either i) τi+1

is τi, or ii) τi is its principal formula and τi+1 is a case
descendant of τi. In this case, i is called a progress point;

• τi+1 = τi if S(N i) is the conclusion of any other rule.

An infinitely progressing trace has infinitely many progress points.

Proofs

Definition (CLKIDω
N proof)

A CLKIDωN pre-proof is a CLKIDωN proof if every infinite path has
an infinitely progressing trace starting from some point.

+ the global trace condition is satisfied

(R.(1))
Ny ` R(0, y)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗1)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

Proofs

Definition (CLKIDω
N proof)

A CLKIDωN pre-proof is a CLKIDωN proof if every infinite path has
an infinitely progressing trace starting from some point.

+ the global trace condition is satisfied

(R.(1))
Ny ` R(0, y)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗1)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

A Polynomial Procedure for
Checking the Global Trace
Condition

The checking procedure

Input: a CLKIDωN pre-proof P

(1) normalize P to a pre-proof tree-set TS that is path-equivalent
to P and every path following its cycles is a concatenation of
root-bud paths (rb-paths) starting from some point

(2) return YES if every rb-path found in a cycle of TS satisfies
some derivability constraints

The normalization procedure

+ exhaustive application of transformation operations to get a
pre-proof tree set

...
Γ ` ∆

(Subst)
Γ[σ] ` ∆[σ]

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ[σ] ` ∆[σ]

...

...
Γ ` ∆ (∗)
(new tree)

...
Γ ` ∆ (∗)

...

becomes
Γ ` ∆ (∗1)

(Subst)
Γ ` ∆

...

...
Γ ` ∆ (∗)
(new tree)

Γ ` ∆ (∗1)
not (Subst)

Γ′ ` ∆′

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆ not (Subst)
Γ′ ` ∆′

...

The normalization procedure

+ exhaustive application of transformation operations to get a
pre-proof tree set

...
Γ ` ∆

(Subst)
Γ[σ] ` ∆[σ]

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ[σ] ` ∆[σ]

...

...
Γ ` ∆ (∗)
(new tree)

...
Γ ` ∆ (∗)

...

becomes
Γ ` ∆ (∗1)

(Subst)
Γ ` ∆

...

...
Γ ` ∆ (∗)
(new tree)

Γ ` ∆ (∗1)
not (Subst)

Γ′ ` ∆′

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆ not (Subst)
Γ′ ` ∆′

...

The normalization procedure

+ exhaustive application of transformation operations to get a
pre-proof tree set

...
Γ ` ∆

(Subst)
Γ[σ] ` ∆[σ]

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ[σ] ` ∆[σ]

...

...
Γ ` ∆ (∗)
(new tree)

...
Γ ` ∆ (∗)

...

becomes
Γ ` ∆ (∗1)

(Subst)
Γ ` ∆

...

...
Γ ` ∆ (∗)
(new tree)

Γ ` ∆ (∗1)
not (Subst)

Γ′ ` ∆′

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆ not (Subst)
Γ′ ` ∆′

...

The normalization procedure

+ exhaustive application of transformation operations to get a
pre-proof tree set

...
Γ ` ∆

(Subst)
Γ[σ] ` ∆[σ]

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ[σ] ` ∆[σ]

...

...
Γ ` ∆ (∗)
(new tree)

...
Γ ` ∆ (∗)

...

becomes
Γ ` ∆ (∗1)

(Subst)
Γ ` ∆

...

...
Γ ` ∆ (∗)
(new tree)

Γ ` ∆ (∗1)
not (Subst)

Γ′ ` ∆′

...

becomes

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆ not (Subst)
Γ′ ` ∆′

...

Properties of normalised pre-proofs

• all companions are root nodes

• the root of the input pre-proof tree is among the root nodes

• every rb-path root-bud in a pre-proof tree has this form

.
bud (Subst)
S′

...
root

+ the (Subst)-step is unique if it exists

Normalising the pre-proof of N(x), N(y) ` R(x, y)

+ application of the second rule on (†)

(R.(1))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′ ` R(x′, 0)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

Derivability constraints

Idea: the global trace condition is implied by some derivability
constraints

To each root r is attached a measureM(r) consisting of a multiset
of IAAs of the sequent labelling r, denoted by S(r).

• initially, the measures are empty multisets;

• for any rb-path r → b from a cycle, if there is a trace between
an IAA A of S(b) and an IAA A′ of S(r), then we add A to
M(rc) and A′ toM(r), where rc is the companion of b.
+ A′ is added only once if r is a the companion of b

Example of measures

(R.(1))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′ ` R(x′, 0)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

(∗): {} (†): {}

+ (∗)→ (†1) does not belong to any cycle

Example of measures

(R.(1))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′ ` R(x′, 0)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

(∗): {} (†): {Nx′}

+ (∗)→ (†1) does not belong to any cycle

Example of measures

(R.(1))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′ ` R(x′, 0)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

(∗): {Ny} (†): {Nx′}

+ (∗)→ (†1) does not belong to any cycle

The soundness checking

An rb-path r → b is valid if for any A ∈M(b), there is A′ ∈M(r)

such that there is a trace between A and A′ and one can set a
relation of multiset extension of the ‘trace with progress points’.

Theorem
Let TS be the normalized pre-proof tree-set of a pre-proof P . If all
rb-paths from the cycles of T S are valid, then P is a proof.

Proof. (sketch) The cycle is a concatenation of valid rb-paths.
There is some root r with non-empty measure. For the nth
occurrence of it rn in any infinite path of the cycle, one can build a
trace for each IAA fromM(rn) back to r1, infinite when n 7→ ∞.

By absurd, we assume that none of the traces is infinitely
progressing when n 7→ ∞. There should be an infinite sub-path for
which none of the traces has progress points. For some k > 0,
there is a trace along the path between rn−k and rn has a progress
point, hence ⊥.

The soundness checking

An rb-path r → b is valid if for any A ∈M(b), there is A′ ∈M(r)

such that there is a trace between A and A′ and one can set a
relation of multiset extension of the ‘trace with progress points’.

Theorem
Let TS be the normalized pre-proof tree-set of a pre-proof P . If all
rb-paths from the cycles of T S are valid, then P is a proof.

Proof. (sketch) The cycle is a concatenation of valid rb-paths.
There is some root r with non-empty measure. For the nth
occurrence of it rn in any infinite path of the cycle, one can build a
trace for each IAA fromM(rn) back to r1, infinite when n 7→ ∞.

By absurd, we assume that none of the traces is infinitely
progressing when n 7→ ∞. There should be an infinite sub-path for
which none of the traces has progress points. For some k > 0,
there is a trace along the path between rn−k and rn has a progress
point, hence ⊥.

Example of soundness checking

(R.(1))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′ ` R(x′, 0)
(R.(2))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(3))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(1))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(2))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

(∗): {Ny} (†): {Nx′}

+ all rb-paths from cycles are valid

Implementation in Cyclist

Cyclist (Brotherston et al. [2012]): cyclic proofs for FOLID and
separation logic

• integrates the Spot model-checker (Duret-Lutz et al. [2016])

• proofs are developped using a breadth-first approach.
+ Spot is called every time a cycle is built.

E-Cyclist : E(xtended)-Cyclist = Cyclist + our method

• the user can choose between the two checking methods.

The proof in E-Cyclist

Complexity

+ polynomial

• The normalisation operations for a pre-proof of n nodes:
#(non-root companions) + #(non-terminal (Subst)-nodes) +
#(other nodes) < 3n

If c is the maximal cost of an operation, the normalisation cost
is 4nc (second operation duplicates it twice)

• The evaluation cost of a derivability constraint is l ∗ p, where l
is the average cardinality of a measure and p is the size of the
rb-path: ≤ l ∗ n. The number of constraints is that of the
buds from cycles: < n. The complexity of the evaluation step
is l ∗ n2.

Statistics of the implementation

+ benchmark (Brotherston et al. [2012])
Theorem Time-E Time SC% Depth Nodes Bckl. Uns./All
O1x ` Nx 2 7 61 2 9 1 0/1
E1x ∨ O2x ` Nx 4 11 63 3 19 2 0/4
E1x ∨ O1x ` Nx 2 9 77 2 13 2 2/5
N1x ` Ox ∨ Ex 3 7 52 2 8 1 0/1
N1x ∧N2y ` Q(x, y) 297 425 40 4 19 3 168/181
N1x ` Add(x, 0, x) 1 5 76 1 7 1 0/1
N1x∧N2y∧Add3(x, y, z) ` Nz 8 14 38 2 8 1 4/5
N1x ∧ N2y ∧ Add3(x, y, z) `

Add(x, sy, sz)

15 22 32 2 14 1 9/10

N1x ∧N2y ` R(x, y) 266 484 48 4 35 5 149/170

Configuration: MacBook Pro (13-inch, 2018)

• Processor 2,7 GHz Intel Core i7

• Memory 16 GB

Our procedure is semi-decidable

+ the procedure may say ‘NO’ for sound cycles; it is not able to
propose the right measures

Certifying Cyclic Proofs with Coq

Adding ordering constraints

Idea: build a multiset extension < of a well-founded ordering over
the IAAs from the measures.

+ two IAAs P (t1, . . . , tn) and P ′(t′1, . . . , t
′
n′) from some trace can

be compared using a rpo with a precedence where P and P ′ have
equivalent values.

N1(root)

θ1

��
.
.
. the rb-path p (θc: cumulative subst. θ1 · · · θn−1)

θn−1

����
Nn

��
Bud

S(Nn) < S(N1)[θc] (in E-Cyclist, Nn is a (Subst)-node)

Example

+ any rpo ordering (we just need that x be smaller than sx, ∀x)

The certifying method

+ adapt the certification method for Spike (Stratulat [2017b])

(1) to define syntactic orderings to Coccinnelle (Contejean et al. [2007])
+ 0: Term id_0 (S y): Term id_S [model_nat y]
+ less is the wfo ordering over multisets of Coccinnelle terms

(2) attach a measure to each root formula
+ F_0:= (fun u1 u2 => (r u1 u2, ((model_nat u2)::nil))).

(3) build the list of Fs for each strongly connected component
+ LF_0:=[F_0]

(4) build the main lemma
+ forall F, In F LF_0 -> forall u1 u2, (forall F’, In F’ LF_0 ->
forall e1 e2, less (snd (F’ e1 e2)) (snd (F u1 u2))
-> fst (F’ e1 e2)) -> fst (F u1 u2).

(5) check all formulas in LF_0, using the well-founded induction principle
+ forall F, In F LF_0 -> forall u1 u2 u3, fst (F u1 u2).

(6) prove the root conjectures
+ forall x y, r x y.

Conclusions and future work

Method to effectively validate a class of CLKIDω pre-proof trees

Related works:

• cyclic proofs with ordering constraints (Stratulat [2017a,
2018])
+ the orderings are not automatically computed
• trace manifolds (Brotherston [2005]): the normalization step

has exponential worst-case time complexity

Open problem:

• (strong) is there always a wfo to check a sound cycle ?
• (weak) is there always a wfo to check a sound pre-proof ?

Future work:

• automatize the certification of E-Cyclist proofs
• implementation of cyclic reasoning in Coq

Thank you !

Efficient Validation of
FOLID Cyclic Induction Reasoning

VeriDis + MATRYOSHKA Workshop, Amsterdam
June 12, 2019

Sorin Stratulat

INRIA, Université de Lorraine

References

J. Brotherston and A. Simpson. Sequent calculi for induction and
infinite descent. Journal of Logic and Computation,
21(6):1177–1216, 2011.

J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic
theorem prover. In APLAS-10 (10th Asian Symposium on
Programming Languages and Systems), volume 7705 of LNCS,
pages 350–367. Springer, 2012.

J. Brotherston. Cyclic proofs for first-order logic with inductive
definitions. In Proceedings of TABLEAUX-14, volume 3702 of
LNAI, pages 78–92. Springer-Verlag, 2005.

E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain.
Certification of automated termination proofs. Frontiers of
Combining Systems, pages 148–162, 2007.

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu. Spot 2.0 — a framework for LTL and ω-automata

1

manipulation. In Proceedings of the 14th International
Symposium on Automated Technology for Verification and
Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer
Science, pages 122–129. Springer, October 2016.

S. Stratulat. Cyclic proofs with ordering constraints. In R. A.
Schmidt and C. Nalon, editors, TABLEAUX 2017 (26th
International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods), volume 10501 of LNAI, pages
311–327. Springer, 2017.

S. Stratulat. Mechanically certifying formula-based Noetherian
induction reasoning. Journal of Symbolic Computation, 80, Part
1:209–249, 2017.

S. Stratulat. Validating back-links of FOLID cyclic pre-proofs. In
S. Berardi and S. van Bakel, editors, CL&C’18 (Seventh
International Workshop on Classical Logic and Computation),

1

number 281 in EPTCS, pages 39–53, 2018.

1

	Cyclic Reasoning for FOLID
	A Polynomial Procedure for Checking the Global Trace Condition
	Certifying Cyclic Proofs with Coq
	References

