
Making TLA+ Model Checking Symbolic

Igor Konnov

Joining Interchain Foundation in August

Jure Kukovec Thanh-Hai Tran

VeriDis + Matryoushka seminar, Amsterdam, June 2019

Why TLA+?

Rich specification language

TLA+ is used in industry, e.g.,

TLA+ tools maintained at and

- an interactive proof system (TLAPS)

- a model checker (TLC), state enumeration

Raft

Paxos (Synod), Egalitarian Paxos, Flexible Paxos

Apache Kafka several bugs found

Igor Konnov 3 of 46

TLA+

First-order logic with sets (ZFC)

Rich expression syntax:

- operations on sets, functions, tuples, records, sequences

Temporal operators:

- 2 (always), 3 (eventually), ; (leads-to), no Nexttime

Practice: safety properties, 2Invariant

Igor Konnov 4 of 46

APALACHE-MC 0.5.0 github.com/konnov/apalache

Symbolic model checker that works under the assumptions of TLC:

Fixed and finite constants (parameters)

Finite sets, function domains and co-domains

TLC’s restrictions on formula structure

Bounded model checking to check safety

As few language restrictions as possible

Technically,

Quantifier-free formulas in SMT: QF_UFNIA

Unfolding quantified expressions: ∀x ∈ S : P as
∧

c∈S
P[c/x]

Igor Konnov 6 of 46

APALACHE-MC 0.5.0 github.com/konnov/apalache

Symbolic model checker that works under the assumptions of TLC:

Fixed and finite constants (parameters)

Finite sets, function domains and co-domains

TLC’s restrictions on formula structure

Bounded model checking to check safety

As few language restrictions as possible

Technically,

Quantifier-free formulas in SMT: QF_UFNIA

Unfolding quantified expressions: ∀x ∈ S : P as
∧

c∈S
P[c/x]

Igor Konnov 6 of 46

an example

A service for reliable broadcast

one process broadcasts a message bcast

unforgeability: if no correct process received bcast, 000 . . . 0
then no correct process ever accepts bcast

correctness: if all correct processes received bcast, 111 . . . 1
then some correct process eventually accepts bcast

relay: if a correct process accepts bcast, 011 . . . 1
then all correct processes eventually accept bcast

Igor Konnov 8 of 46

Reliable broadcast by Srikanth & Toueg 87

� �
local myvali ∈ {0,1} -- did process i receive bcast?

while true do
i f myvali = 1 and not sent ECHO before
then send ECHO to all

i f received ECHO from at least n-2t distinct processes
and not sent ECHO before

then send ECHO to all

i f received ECHO from at least n - t distinct processes
then accept

od� �
resilience: of n > 3t processes, f ≤ t processes are Byzantine

Igor Konnov 9 of 46

How to check its properties?

I read that paper about Byzantine Model Checker

Model the algorithm as a threshold automaton

Verify safety and liveness for all n, t , f : n > 3t ∧ t ≥ f ≥ 0

I have heard this talk by Leslie Lamport

Let’s write it in TLA+

Run the TLC model checker for fixed parameters

Igor Konnov 10 of 46

Declaration and initialization

EXTENDS In tegers , F i n i t e S e t s

N 4
= 12 T 4

= 3 F 4
= 3

Corr 4
= 1 . . (N − F − 1) Faulty 4

= (N − F) . . N

VARIABLES pc , rcvd , sent

Init 4
= ∧ pc ∈ [Corr → {“V0“, “V1“}] some processes receive the broadcast

∧ sent = {} no messages sent initially

∧ rcvd ∈ [Corr → {}] no messages received initially

Transition relation

Next 4
=

∃p ∈ Corr :
∧ Receive(p)
∧ ∨ UponV1(p)
∨ UponNonFaulty(p)
∨ UponAccept(p)
∨ UNCHANGED 〈pc, sent〉

Receive (p) 4
=

∃newMessages ∈ SUBSET(sent ∪ Faulty) :
rcvd ′ = [rcvd EXCEPT ![self] = rcvd [p] ∪ newMessages]

Actions

UponV1(p) 4
=

∧ pc[p] = “V1”

∧ pc′ = [pc EXCEPT ![p] = “SE”] ∧ sent ′ = sent ∪ {p}

UponNonFaulty (p) 4
=

∧ pc[p] ∈ {“V0”, “V1”} ∧ Cardinality(rcvd ′[p]) >= N − 2 ∗ T

∧ pc′ = [pc EXCEPT ![p] = “SE”] ∧ sent ′ = sent ∪ {p}

UponAccept (p) 4
=

∧ pc[p] ∈ {“V0”, “V1”, “SE”} ∧ Cardinality(rcvd ′[p]) >= N − T

∧ pc′ = [pc EXCEPT ![p] = “AC”]

∧ sent ′ = sent ∪ (IF pc[p] 6= “SE” THEN {p} ELSE {})

Safety?

unforgeability: if no correct process received bcast, 000 . . . 0
then no correct process ever accepts bcast

* a non-inductive invariant

Unforg 4
= ∀p ∈ Corr : pc[p] 6= “AC”

* restricted initial states

In i tNoBcas t 4
= Init ∧ pc ∈ [Corr → {“V0”}]

Check that every state reachable from InitNoBcast satisfies Unforg

Breaking unforgeability

12 processes, 4 faults n = 3f

APALACHE-MC: a counterexample in 5 minutes

- 12K SMT constants, 34K SMT assertions depth 6

TLC: a counterexample after 2 hrs 21 min

- 600M states depth 6

how does it work?

What is hard about TLA+?

Rich data

sets of sets, functions, records, tuples, sequences

No types

TLA+ is not a programming language

No imperative statements like assignments

TLA+ is not a programming language

No standard control flow

TLA+ is not a programming language

Igor Konnov 18 of 46

Essential steps

TLA+

specification
Flat TLA+

specification

Assignments
& symbolic
transitions

Types Reduction
rules

SMT
(UF_NIA)

Extracting assignments and symbolic transitions

similar to TLC treat some x ′ ∈ {. . . } as assignments

Simple type inference

propagate types at every step x : Int gives us {x} : Set[Int]

Bounded model checking

overapproximate the contents of data structures

Igor Konnov 19 of 46

assignments & symbolic transitions

Symbolic transitions [Kukovec, K., Tran, ABZ’18]

Next 4
= ∃p ∈ Corr :
∧ Receive(p)
∧ ∨ UponV1(p)
∨ UponNonFaulty(p)
∨ UponAccept(p)
∨ UNCHANGED 〈pc, sent〉

Automatically partitioning Next into four transitions:

∃p ∈ Corr :
∧ Receive(p)
∧UponV1(p)

∃p ∈ Corr :
∧ Receive(p)
∧UponAccept(p)

∃p ∈ Corr :
∧ Receive(p)
∧UponNonFaulty(p)

∃p ∈ Corr :
∧ Receive(p)
∧ UNCHANGED 〈pc, sent〉

Igor Konnov 21 of 46

Symbolic transitions [Kukovec, K., Tran, ABZ’18]

Next 4
= ∃p ∈ Corr :
∧ Receive(p)
∧ ∨ UponV1(p)
∨ UponNonFaulty(p)
∨ UponAccept(p)
∨ UNCHANGED 〈pc, sent〉

Automatically partitioning Next into four transitions:

∃p ∈ Corr :
∧ Receive(p)
∧UponV1(p)

∃p ∈ Corr :
∧ Receive(p)
∧UponAccept(p)

∃p ∈ Corr :
∧ Receive(p)
∧UponNonFaulty(p)

∃p ∈ Corr :
∧ Receive(p)
∧ UNCHANGED 〈pc, sent〉

Igor Konnov 21 of 46

How does TLC find assignments?

TLC detects assignments as it explores a formula:

- from left to right:

x ′ = 1 ∧ x ′ ∈ {1,2,3}

- treating action-level disjunctions as non-deterministic choice(
x ′ = 1 ∨ x ′ = 2

)
∧ x ′ ≥ 2

- expecting the same kind of assignments on all branches

(x ′ = 1 ∧ y ′ = 2) ∨ x ′ = 3

Igor Konnov 22 of 46

Finding symbolic assignments (with SMT)

Looking for assignment strategies that:

- cover every Boolean branch
- have exactly one assignment per variable per branch
- do not contain cyclic assignments(

(y ′ = x ′ ∧ x ′ ∈ {2,3, y ′}) ∨ (x ′ = 2 ∧ y ′ ∈ {x ′})
)
∧ x ′ = 3

Sometimes, we do better than TLC (above)

Sometimes, worse, e.g., when x = 0:

x > 0 ∨ (x ′ = x + 1 ∨ y ′ = x − 1)

Definitions and the framework in: [Kukovec, K., Tran, ABZ’18]

Igor Konnov 23 of 46

Finding symbolic assignments (with SMT)

Looking for assignment strategies that:

- cover every Boolean branch
- have exactly one assignment per variable per branch
- do not contain cyclic assignments(

(y ′ = x ′ ∧ x ′ ∈ {2,3, y ′}) ∨ (x ′ = 2 ∧ y ′ ∈ {x ′})
)
∧ x ′ = 3

Sometimes, we do better than TLC (above)

Sometimes, worse, e.g., when x = 0:

x > 0 ∨ (x ′ = x + 1 ∨ y ′ = x − 1)

Definitions and the framework in: [Kukovec, K., Tran, ABZ’18]

Igor Konnov 23 of 46

Simple types

Igor Konnov 24 of 46

Types: scalars and functions

Basic:
constants: Const “a”, “hello”

integers: Int -1, 1024

Booleans: Bool FALSE, TRUE

Finite sets:
Set [τ] Set [Set [Int]]

Function-like:
functions: τ1 → τ2 Int → Bool

tuples: τ1 × · · · × τn Int × Bool × (Int → Int)

records: [Const 7→ τ1, . . . ,Const 7→ τn] [“a” 7→ Int , “b” 7→ Bool]

sequences: Seq(τ) Seq[Int]

Igor Konnov 25 of 46

Simple type inference

Knowing the types at the current state

Compute the types of the expressions and of the primed variables

if X has type Set [Int]

X ′ ∈ [X → X] has type Int → Int

y in {y ∈ X : y > 0} has type Int

{} and 〈〉 are polymorphic constructors for sets and sequences

hence, we ask the user to specify the type, e.g., {} <: {Int}

records also require type annotations

Igor Konnov 26 of 46

Bounded model checking

Igor Konnov 27 of 46

Old recipe for bounded symbolic computations

Two symbolic transitions that assign values to x

Next 4
= A ∨ B

Translate TLA+ expressions to SMT with some J·K

state 0 state 1 state 2 . . .

JInitK x 7→ i0 JA[i0/x]K x ′ 7→ a1 JA[c1/x]K x ′ 7→ a2
JB[i0/x]K x ′ 7→ b1 JB[c1/x]K x ′ 7→ b2 . . .
Jx ′ ∈ {a1,b1}K x ′ 7→ c1 Jx ′ ∈ {a2,b2}K x ′ 7→ c2

Igor Konnov 28 of 46

What is J·K?

Igor Konnov 29 of 46

Our idea

Mimic the semantics implemented by TLC

Compute layout of data structures, constrain contents with SMT

Define operational semantics by reduction rules (for finite models)

trade efficiency for expressivity

Igor Konnov 30 of 46

Static picture of TLA+ values and relations between them

Arena:

c5

c4 c3 = FALSE

c1 = 22 c2 = 4

1 2

1 2

SMT:

integer sort Int

Boolean sort Bool

name, e.g., "abc", uninterpreted sort

finite set:
- a constant c of uninterpreted sort setτ
- propositional constants for members

in〈c1,c〉, . . . , in〈cn,c〉

Arenas for sets: {{1,2}, {2,3}}

c6 : Set[Set[Int]]

c4 : Set[Int] c5 : Set[Int]

c1 : Int c2 : Int c3 : Int

1 2

1 2 1 2

SMT defines the contents, e.g., to get {{1}, {2}}:

in〈c1,c4〉 ∧ ¬in〈c2,c4〉 ∧ in〈c2,c5〉 ∧ ¬in〈c3,c5〉

Igor Konnov 32 of 46

Tuples and records: 〈"a",3, [b 7→ 0, c 7→ 3]〉

c15 : Name ∗ Int ∗ [b : Int, c : Int]

c14 : [b : Int, c : Int]

c11 : Name c12 : Int c13 : Int

1 2

3

2 1

Arena and types precisely define the contents of tuples and records

Igor Konnov 33 of 46

A warning about records

It is common to combine records of different types, like in Paxos:

{
[type 7→ "1a",bal 7→ 1]

}
∪
{

[type 7→ "2a",bal 7→ 3, val 7→ 1]
}

The user annotates record constructors:

[type 7→ "1a",bal 7→ 1]

<: [type 7→ STRING,bal 7→ INT, val 7→ INT]

The unspecified fields may be assigned arbitrary values by SMT

Igor Konnov 34 of 46

Functions and sequences

a function f : τ1 → τ2 is encoded with its relation:

{〈x , f [x]〉 : x ∈ DOMAIN f}

a sequence is encoded as a triple:

〈fun, start ,end〉

Igor Konnov 35 of 46

Abstract reduction system

A state is
〈
e | Ar | ν | Φ

〉
:

a TLA+ expression e and arena Ar,

a valuation ν : Vars → Cells ∪ {⊥}

SMT constraints Φ

Reduction rules:

simplify the expression, enrich the arena and add constraints

Igor Konnov 36 of 46

A reduction sequence

{} ∈ {{1}} c1 ∈ {{1}} c1 ∈ {{c2}}
c1 ∈ {c3} c1 ∈ c4

c5

Arena: c1, c2, c3,

c3 → c2,

c4,

c4 → c3,

c5

SMT: c1 : USSI c2 : Int

c2 = 1

c3 : USI

in〈c2,c3〉

c4 : USSI

in〈c3,c4〉

c5 ↔
in〈c3,c4〉
∧

c1 = c3
. . .

Equalities

Integers, Booleans, and string constants

SMT equality (=)

Sets, functions, records, tuples, and sequences

- lazy, define X = Y when needed e.g., X ⊆ Y ∧ Y ⊆ X

- avoid redundant constraints

- use locality thanks to arenas, cache equalities

Igor Konnov 38 of 46

KERA+: a core language of TLA+ action operators

define reductions for a small set of operators

prove soundness only for these reductions

Igor Konnov 39 of 46

is it fast?

Igor Konnov 40 of 46

Are we faster than TLC?

Inductive invariants APALACHE TLC

TwoPhase, n = 7 4s 2h44m

Bounded model checking

TwoPhase, n = 7, k = 10 1h29m 13s

bcastByz, n = 6, k = 11 1h00m 3h42m

bcastFolk, n = 20, k = 10 41s timeout

Paxos, a = 3, b = 4, k = 13 1h42m < 1m

Igor Konnov 41 of 46

Safety of Paxos: 3 acceptors, 5 ballots

0h 0m

2h 3,75m

4h 7,5m

6h 11,25m

8h 15m

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BMC: a=3, b=5, deadlocks BMC: a=3, b=5, VotingInv
TLC: a=3, b=5, VotingInv TLC: a=3, b=5, deadlocks

Igor Konnov 42 of 46

Performance of SMT solvers

We use Microsoft Z3

SMT solvers are fragile, jumping from hours to seconds and back

Removing uninterpreted functions and integers as much as possible

Mixture of propositional and integer constraints

Bottleneck = UNSAT + non-determinism

Carefully add quantifiers?

Igor Konnov 43 of 46

Performance of SMT solvers

We use Microsoft Z3

SMT solvers are fragile, jumping from hours to seconds and back

Removing uninterpreted functions and integers as much as possible

Mixture of propositional and integer constraints

Bottleneck = UNSAT + non-determinism

Carefully add quantifiers?

Igor Konnov 43 of 46

Problematic patterns

VARIABLE x

Init 4
= x = 0

Next 4
= x ′ = 1− x ∨ x ′ = x

Invariant 4
= x 6= 3

executions, k ≤ 20

incremental mode

z3: 44 sec

cvc4: 900 sec

yices2: 99 sec

SMT solvers do not like control non-determinism

Igor Konnov 44 of 46

Conclusions

Framework for TLA+ model checking with SMT

Bounded model checking alone is not enough

Need for reductions, abstractions, etc.

TLC works surprisingly well

Igor Konnov 46 of 46

