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def seq := {f : ℕ → option α // ∀ {n}, f n = none →

f (n + 1) = none}↪→



Generalized Continued Fractions in Lean
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/- Fix a type -/

variable (α : Type*)

/-- A gcf_pair consists of a partial numerator a

and partial denominator b -/↪→
structure gcf_pair := (a : α) (b : α)

def seq := {f : ℕ → option α // ∀ {n}, f n = none →

f (n + 1) = none}↪→

/-- A generalized continued fraction consists of a

leading head term (the "integer part") and a

sequence of partial partial numerators an and

partial denominators bn -/

↪→

↪→

↪→

structure gcf := (head : α) (seq : seq (gcf_pair

α))↪→



Evaluate Generalized Continued Fractions

1 def convergents (g : gcf α) (n : ℕ) : α :=

2 g.head + if n = 0 then 0 else aux n g.seq



Evaluate Generalized Continued Fractions

1 def aux : ℕ → seq (gcf_pair α) → α

2 | 0 s := match s.head with

3 | none := 0

4 | some ⟨a, b⟩ := a / b

5 end

6 | (n + 1) s := match s.head with

7 | none := 0

8 | some ⟨a, b⟩ := a / (b + aux n s.tail)

9 end

10

11 def convergents (g : gcf α) (n : ℕ) : α :=

12 g.head + if n = 0 then 0 else aux n g.seq
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1 /-- A continued fraction is a gcf whose partial

numerators are equal to 1. -/↪→

2 def cf := {g : gcf α // ∀ (n : ℕ) (a : α),

(partial_numerators g).nth n = some a → a = 1}↪→
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Please Help Me

A few minutes and messages from Kevin Buzzard later…

http://wwwf.imperial.ac.uk/~buzzard/


The “Solution”

We first need to define the casting

1 instance cf_to_gcf : has_coe (cf β) (gcf β)

2 := by {unfold cf, apply_instance}

3

4 /- Best practice: create a lemma for your cast -/

5 @[simp, elim_cast]

6 lemma coe_cf (c : cf β) : (↑c : gcf β) = c.val

7 := by refl

Now this works:

1 variable (c : cf α)

2 #check convergents (c : gcf α) 0
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The “Solution”

We first need to define the casting

1 instance cf_to_gcf : has_coe (cf β) (gcf β)

2 := by {unfold cf, apply_instance}

3

4 /- Best practice: create a lemma for your cast -/

5 @[simp, elim_cast]

6 lemma coe_cf (c : cf β) : (↑c : gcf β) = c.val

7 := by refl

This, however, still does not work:

1 variable (c : cf α)

2 #check convergents c 0
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The Proof Is Trivial

1 lemma floor_rat_eq_num_div_denom (n d : ℤ) :

2 ⌊rat.mk n d⌋ = n / d
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The Proof Is Trivial

1 lemma floor_rat_eq_num_div_denom (n d : ℤ) :

2 ⌊rat.mk n d⌋ = n / d

Alright, I am sold!
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Proving… Please Wait

Something seems wrong



Now It Is Trivial

1 lemma floor_rat_eq_num_div_denom (n : ℤ) (d : ℕ) :

2 ⌊rat.mk n d⌋ = n / d

That’s better!



A Short Note About Tactics

<Show two short examples in VS Code>



Results
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Collected Treasures

Definition of (generalized) continued fractions and their
evaluation

1 structure gcf := (head : α) (seq : seq (gcf_pair

α))↪→

2 def cf := {g : gcf α // ∀ (n : ℕ) (a : α),

(partial_numerators g).nth n = some a → a = 1}↪→

3 def convergents (g : gcf α) (n : ℕ) : α := ...



Collected Treasures

Computable continued fractions for discrete linear ordered
floor fields

1 def get_cf [discrete_linear_ordered_field α]

[floor_ring α] (v : α) : cf α := ...↪→

Also works for R – just not computable…
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Collected Treasures

Termination proof for archimedian fields

1 theorem termination_iff_rat [archimedean α] (v : α)

:↪→

2 Terminates (get_gcf v) ↔ ∃ (q : ℚ), v = (q : α)

Including a theorem a mathematician would never prove:

1 theorem translate_rat_get_cf {q : ℚ}

2 (v_eq_q : v = q) :

3 ((get_gcf q : gcf ℚ) : gcf α) = get_gcf v :=
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Collected Treasures

Finite correctness of the computation

1 theorem get_gcf_finite_correctness

2 (terminates: Terminates (get_gcf v)) :

3 ∃ (n : ℕ), v = convergents (get_gcf v) n



Collected Treasures

Some interesting inequalities, and finally:

1 theorem epsilon_convergence : ∀ (ε > (0 : α)),

2 ∃ (N : ℕ), ∀ (n ≥ N),

3 |v - convergents (get_gcf v) n| < ε :=

But sadly no library for sequence limits in Lean :(
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Lessons Learnt

• Lean’s type system is very expressive and great for
definitions…

• …if one knows the gotchas.

• Support on Zulip is fantastic.
• Existing tactics help a LOT…

• …but no integration of automated theorem provers yet.
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We Need You!

Help us making interactive theorem proving
an even better place!
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Image Sources i

• Salt shaker: Modified from bit.ly/2K8Jw8s

• Link 1: bit.ly/2wMGOwE
• Link 2: bit.ly/2RaypfX
• Link 3: bit.ly/2MNGUPt
• Clock: bit.ly/2HOc9GC
• Melting clock: bit.ly/2MKWknv

bit.ly/2K8Jw8s
bit.ly/2wMGOwE
bit.ly/2RaypfX
bit.ly/2MNGUPt
bit.ly/2HOc9GC
bit.ly/2MKWknv
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