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Automated Reasoning Has Many Applications

formal verification

train safety exploit
generation

automated
theorem proving

bioinformaticssecurity planning and
scheduling

term rewriting

termination

encode decodeautomated reasoner
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Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Representations

Matrix Multiplication

The Collatz Conjecture
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The Right Representation is Crucial

What makes a problem hard?

New angle: does the representation enable efficient reasoning?

The famous pigeonhole principle: Can n+ 1 pigeons be placed
in n holes such that no hole contains multiple pigeons?

I Hard for many automated reasoning approaches

I Easy for a little kid given the right representation

source: pecanpartnership.co.uk/2016/01/05/beware-pigeon-hole-
overcoming-stereotypes-build-collaborative-culture
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Artisan Representations (joint work)

Architectural 3D Layout
[VSMM ’07]
Henriette Bier

Edge-matching Puzzles
[LaSh ’08]

Graceful Graphs
[AAAI ’10]
Toby Walsh

Clique-Width
[SAT ’13, TOCL ’15]
Stefan Szeider

Firewall Verification
[SSS ’16]
Mohamed Gouda

Open Knight Tours
Moshe Vardi
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Inprocessing [Järvisalo, Heule, and Biere ’12]

How to fix a poor representation fully automatically?

Reformulate CDCLReformulate

Example: Bounded Variable Addition [Manthey, Heule, and Biere ’12]

Replace (a ∨ d) (a ∨ e)
(b ∨ d) (b ∨ e)
(c ∨ d) (c ∨ e)

by (x ∨ a) (x ∨ b) (x ∨ c)
(x ∨ d) (x ∨ e)

adds 1 variable removes 1 clause

This technique is crucial for hard bioinformatics problems and
turns the naive encoding of AtMostOne into the optimal one.
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Matrix Multiplication

joint work with Manuel Kauers and Martina Seidl
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Matrix Multiplication: Introduction

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =

M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1
c1,2 =

M3 +M5

a1,1·b1,2 + a1,2·b2,2
c2,1 =

M2 +M4

a2,1·b1,1 + a2,2·b2,1
c2,2 =

M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2
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=
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Matrix Multiplication: Introduction

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

I This scheme needs 7 multiplications instead of 8.

I Recursive application allows to multiply n× n matrices
with O(nlog2 7) operations in the ground ring.

I Let ω be the smallest number so that n× n matrices can
be multiplied using O(nω) operations in the ground
domain.

I Then 2 ≤ ω < 3. What is the exact value?
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Efficient Matrix Multiplication: Theory

I Strassen 1969: ω ≤ log2 7 ≤ 2.807

I Pan 1978: ω ≤ 2.796

I Bini et al. 1979: ω ≤ 2.7799

I Schönhage 1981: ω ≤ 2.522

I Romani 1982: ω ≤ 2.517

I Coppersmith/Winograd 1981: ω ≤ 2.496

I Strassen 1986: ω ≤ 2.479

I Coppersmith/Winograd 1990: ω ≤ 2.376

I Stothers 2010: ω ≤ 2.374

I Williams 2011: ω ≤ 2.3728642

I Le Gall 2014: ω ≤ 2.3728639
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Efficient Matrix Multiplication: Practice

I Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

I Want: a matrix multiplication algorithm that beats
Strassen’s algorithm for matrices of moderate size.

I Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

I Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

I Answer: Nobody knows.
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The 3x3 Case is Still Open

Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

I naive algorithm: 27

I padd with zeros, use Strassen twice, cleanup: 25

I best known upper bound: 23 (Laderman 1976)

I best known lower bound: 19 (Bläser 2003)

I maximal number of multiplications allowed if we want to
beat Strassen: 21 (because log3 21 < log2 7 < log3 22).
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Laderman’s scheme from 1976

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3



where . . .

c1,1 = −M6 +M14 +M19

c2,1 = M2 +M3 +M4 +M6 +M14 +M16 +M17

c3,1 = M6 +M7 −M8 +M11 +M12 +M13 −M14

c1,2 = M1 −M4 +M5 −M6 −M12 +M14 +M15

c2,2 = M2 +M4 −M5 +M6 +M20

c3,2 = M12 +M13 −M14 −M15 +M22

c1,3 = −M6 −M7 +M9 +M10 +M14 +M16 +M18

c2,3 = M14 +M16 +M17 +M18 +M21

c3,3 = M6 +M7 −M8 −M9 +M23
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M2 = (a1,1 + a2,1)·(b1,2 + b2,2)

M3 = a2,2·(b1,1 − b1,2 + b2,1 − b2,2 − b2,3 + b3,1 − b3,3)
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Other schemes with 23 multiplications

I While Strassen’s scheme is essentially the only way to do
the 2× 2 case with 7 multiplications, there are several
distinct schemes for 3× 3 matrices using 23
multiplications.

I If we insist in integer coefficients, there have so far (and
to our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

I Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23,
and we expect that there are many others.

I Unfortunately we found no scheme with only 22
multiplications
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How to Search for a Matrix Multiplication Scheme? (1)

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · · )(β

(1)
1,1b1,1 + · · · )

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · · )(β

(2)
1,1b1,1 + · · · )

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci ,j = ∑k ai ,kbk,j for all i , j and compare coefficients.
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How to Search for a Matrix Multiplication Scheme? (2)

This gives the Brent equations (for 3× 3 with 23 multiplications)

∀ i , j , k , l ,m, n ∈ {1, 2, 3} :
23

∑
q=1

α
(q)
i ,j

β
(q)
k,l

γ
(q)
m,n

= δj ,kδi ,mδl ,n

The δu,v on the right refer to the Kronecker-delta, i.e.,
δu,v = 1 if u = v and δu,v = 0 otherwise.

36 = 729 cubic equations

23 · 9 · 3 = 621 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.
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How to Search for a Matrix Multiplication Scheme? (3)

This gives the Brent equations (for 3× 3 with 23 multiplications)

∀ i , j , k , l ,m, n ∈ {1, 2, 3} :
23

∑
q=1

α
(q)
i ,j

β
(q)
k,l

γ
(q)
m,n

= δj ,kδi ,mδl ,n

The search space of the 3× 3 case is enormous, even if

α
(q)
i ,j

, β
(q)
k,l

, γ
(q)
m,n

are restricted to the values in {−1, 0, 1}

Solution: Solve this system in Z2.

Reading α
(q)
i ,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables and + as XOR,

the problem becomes a SAT problem.

Notice that solutions in Z2 may not be solutions in Z
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Lifting

Remember the Brent equations:

∀ i , j , k , l ,m, n ∈ {1, 2, 3} :
23

∑
q=1

α
(q)
i ,j

β
(q)
k,l

γ
(q)
m,n

= δj ,kδi ,mδl ,n

I Suppose we know a solution in Z2.

I Assume it came from a solution in Z with coefficients in {−1, 0,+1}.
I Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

I Plug the 0s of the Z2-solution into the Brent equations.

I Solve the resulting equations.

Can every Z2-solution be lifted to a Z-solution in this way?

I No, and we found some which don’t admit a lifting.

I But they are very rare. In almost all cases, the lifting succeeds.
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How to Search for a Matrix Multiplication Scheme? (4)

This gives the Brent equations (for 3× 3 with 23 multiplications)

∀ i , j , k , l ,m, n ∈ {1, 2, 3} :
23

∑
q=1

α
(q)
i ,j

β
(q)
k,l

γ
(q)
m,n

= δj ,kδi ,mδl ,n

Another solution: Solve this system by restricting equations
with a zero righthand side to zero or two.

Still treat α
(q)
i ,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables.

Notice that this restriction removes solutions, but it even
works for Laderman.

Important challenge: how to break the symmetries?

Most effective approach so far: sort the δj ,kδi ,mδl ,n = 1 terms
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So what?

I Okay, so there are many more matrix multiplication
methods for 3× 3 matrices with 23 coefficient
multiplications than previously known.

I In fact, we have shown that the dimension of the algebraic
set defined by the Brent equation is much larger than was
previously known.

I But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically
nor practically.

I In particular, it remains open whether there is a
multiplication method for 3× 3 matrices with 22
coefficient multiplications. If you find one, let us know.
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Scheme Database

Check out our website for browsing through
the schemes and families we found:

http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/



23/33

The Collatz Conjecture

joint work with Scott Aaronson
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Beyond NP: The Collatz Conjecture

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n+ 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

Can we construct a function for which fun(n) > fun(Col(n)) holds?

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)

5 4 3 2 1 0
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Term Rewriting Termination Example

Given a set of rewriting rules,
will rewriting always terminate?

Example set of rules (Zantema’s “other” Problem):

I aa→R bc

I bb →R ac

I cc →R ab

bbaa→R bbbc →R bacc →R baab →R bbcb →R

accb →R aabb →R aaac →R abcc →R abab

Strongest rewriting solvers use SAT (e.g. AProVE)

Example first solved by Hofbauer and Waldmann (2006)
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Term Rewriting Proof Outline

Prove termination of Zantema’s “other” Problem:

I aa→R bc

I bb →R ac

I cc →R ab

Proof outline:

I Interpret a,b,c by linear functions [a], [b], [c ] from N4 to N4

I Interpret string concatenation by function composition

I Show that if [uaav ] (0, 0, 0, 0) = (x1, x2, x3, x4) and
[ubcv ] (0, 0, 0, 0) = (y1, y2, y3, y4) then x1 > y1

I Similar for bb → ac and cc → ab

I Hence every rewrite step gives a decrease of x1 ∈ N, so
rewriting terminates
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Term Rewriting Termination Proof

The linear functions:

[a](~x) =


1 0 0 3
0 0 2 1
0 1 0 1
0 0 0 0

~x +


1
0
1
0



[b](~x) =


1 2 0 0
0 2 0 1
0 1 0 0
0 0 0 0

~x +


0
2
0
0



[c ](~x) =


1 0 0 1
0 0 0 1
0 1 0 0
0 2 0 0

~x +


1
0
3
0


Checking decrease properties using linear algebra
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Collatz Conjecture (2)

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even
(3n+ 1)/2 if n is odd

Does while(n > 1) n=Col(n); terminate?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)

t(t(~0)) t(f(t(~0))) t(f(f(f(~0)))) t(f(f(~0))) t(f(~0)) t(~0)(
5
1

) (
4
1

) (
3
1

) (
2
1

) (
1
1

) (
0
1

)
using t(~x) =

(
1 5
0 0

)
~x +

(
0
1

)
and f(~x) =

(
1 3
0 0

)
~x +

(
1
0

)
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The Collatz Conjecture as Rewriting System

Consider the following functions:

I Binary system: f (x) = 2x , t(x) = 2x + 1

I Ternary system: p(x) = 3x , q(x) = 3x + 1, r(x) = 3x + 2

I Start and end symbols: c(x) = 1, d(x) = x

D1 : fd →R d

D2 : td →R rd

F1 : fp →R pf

F2 : fq →R pt

F3 : fr →R qf

T1 : tp →R qt

T2 : tq →R rf

T3 : tr →R rt

C1 : cp →R ct

C2 : cq →R cff

C3 : cr →R cft

Interpretation using the functions above:

D1 : 2x → x

D2 : 2x + 1→ 3x + 2 (= (3(2x + 1) + 1)/2)

F1 : 6x → 6x

T3 : 6x + 5→ 6x + 5
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Collatz Rewriting Example

D1 : fd →R d

D2 : td →R rd

F1 : fp →R pf

F2 : fq →R pt

F3 : fr →R qf

T1 : tp →R qt

T2 : tq →R rf

T3 : tr →R rt

C1 : cp →R ct

C2 : cq →R cff

C3 : cr →R cft

ctd → crd → cf td → cfrd → cqfd → cf f fd → cf fd → cfd → cd

D2 C3 D2 F3 C2 D1 D1 D1

3 → 5 → 5 → 8 → 8 → 8 → 4 → 2 → 1

Can we prove termination of the Collatz rewriting system?

The full system is still too hard, but subsystems (removing one
of the rules) are doable (although not with existing tools).
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Results on Proving Termination of Subsystems

missing rule dimension value limit runtime

D1 3 3 1.40
D2 1 1 0.00
F1 4 5 5 828.36
F2 2 3 0.02
F3 2 2 0.01
T1 4 7 25 340.99
T2 5 7 44 056.35
T3 4 6 37 071.33
C1 2 2 0.01
C2 3 4 23.35
C3 4 5 75.89
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Challenges for Collatz Conjecture

The presented system is just one of many possible rewriting
systems that captures the Collatz conjecture.

Which system facilitates efficient reasoning?

How to encode the SAT formula?

I The order encoding for multiplication is very effective

I Reduce the size of the encoding my reusing calculations

Which SAT solving techniques are effective?

I Surprisingly old SAT solvers work better than new ones

I Can local search be effective (we only look for solutions)?
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Encoding Challenges for Hard Problems

Marijn J.H. Heule

Starting at in August

Matryoshka workshop June 12, 2019
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