
Integration of a modelling language and a distributed
programming language

Alexis Grall

11/06/2019

advisors :
Dominique Mery and Horatiu Cirstea

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 1 / 39

1 Introduction

2 Event-B

3 DistAlgo

4 Stop-and-wait ARQ

5 Model for the stop-andwait ARQ and its transformation

6 Conclusion

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 2 / 39

Introduction

Main objective : automatically translate models of distributed algorithms
into executable programs.

The models are obtained by refinement with the Event-B method.

The chosen programming language is DistAlgo.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 3 / 39

Introduction

Service

First machine

Second machine

Third machine

Machine to transform Program

Event-B models

DistAlgo program

Induction refines

Communi-
cation refines

Localization refines

Intermediate
Language refines

Transformation

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 4 / 39

1 Introduction

2 Event-B

3 DistAlgo

4 Stop-and-wait ARQ

5 Model for the stop-andwait ARQ and its transformation

6 Conclusion

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 5 / 39

Event-B

Method for modelling systems

Based on set theory

Refinement of models

Proof assistant and model checker.

Framework Rodin is used.

A model consists of contexts and machines

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 6 / 39

Context

A context specifies

Types (which are sets)

Constants

Axioms and theorems

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 7 / 39

Machine

A machine specifies

Variables

Invariants on the variables

Events which define the state transition of the system.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 8 / 39

Events

An INITIALISATION event initialises the variables of the machine.
Other events are made of :

Parameters

Guards on the variables and parameters

Actions which modify the variables

When there exists values for the parameters for which the guards are true,
the event is then enabled.
When an event is enabled, the actions of the event can be observed.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 9 / 39

1 Introduction

2 Event-B

3 DistAlgo

4 Stop-and-wait ARQ

5 Model for the stop-andwait ARQ and its transformation

6 Conclusion

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 10 / 39

DistAlgo

Programming language for distributed algorithms

High level

Based on Python

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 11 / 39

Structure of a DistAlgo program

A DistAlgo program defines some class of processes and a main method.

The main method instantiates the processes of each class of process and
runs them.

A class of processes consists of

A setup method to initialise the local variables of the process.

A run method with the program of the process.

Message handlers that are executed when messages are received.

User methods

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 12 / 39

Program structure

class A(process):
def setup(args):

setup_body
def receive(msg=mexp, from_=pexp):

receive_body
def run():

run_body
class B(process):

...
def main(*args):

a = new(A)
setup(a, (args))
start(a)

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 13 / 39

Communication

Sending a message : send(mexp, to=pexp)

Messages are received at yield points : await statements.
The statement

await(bexp)

triggers the reception of all the messages that arrived before but were not
yet received. The process then waits for the condition bexp to be true while
new messages are received.

When a message is received, corresponding message handlers are executed.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 14 / 39

Communication

sent

channel

transport layer

msgQueue

received

skipmessage handler body

Sender

Receiver

send

copy

yield
point copy

if message handler exists else

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 15 / 39

1 Introduction

2 Event-B

3 DistAlgo

4 Stop-and-wait ARQ

5 Model for the stop-andwait ARQ and its transformation

6 Conclusion

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 16 / 39

Stop-and-wait ARQ

A process p has an array IN of length n he wants to send to a process q
and q wants to copy IN in an array OUT .

Loss of messages can happen.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 17 / 39

Stop-and-wait ARQ

P

IN, ns, n

Q

OUT , nr , n

OUT [0]← IN[0]
nr ← nr + 1

nr ← 0ns ← 0

ns ← ns + 1
...

OUT [i]← IN[i]
nr ← nr + 1

ns ← ns + 1

〈0, IN[0]〉
〈0, IN[0]〉
〈0〉

〈0〉

〈i , IN[i]〉

〈i〉

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 18 / 39

Automata for p

Here is the automata for the program of process p.

P_sendingINITIALISATION P_waiting

done

P_send

P_stop_sending
P_has_received

P_has_not_received

P_receive

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 19 / 39

Automata for q

Here is the automata for the program of process q.

Q_waitingINITIALISATION done

Q_receive_nr

Q_receive_i

Q_done

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 20 / 39

1 Introduction

2 Event-B

3 DistAlgo

4 Stop-and-wait ARQ

5 Model for the stop-andwait ARQ and its transformation

6 Conclusion

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 21 / 39

Context

CONTEXT C
SETS

NODES MESSAGES MESSAGE_TYPES STATES
CONSTANTS

P Q p q class of processes and processes
P_sending P_waiting Q_waiting done reception_states states
send receive lose functions for communication between processes
IN n dest @P array to send, length of IN and dest = q
source @Q source = p

AXIOMS
...

END

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 22 / 39

Transformation of the context

With the context, we can already get the main structure of the program.

class P(process):
...

class Q(process):
...

def main():
p = new(P)
q = new(Q)
IN = . . .
n = . . .
setup(p, (IN, n, q))
setup(q, (n, p))
start({p,q})

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 23 / 39

Machine variables

OUT , ns and nr are variables only for this algorithm.

channel is the variable modelling the communication channels.

pc is a function of NODES → STATES which gives the state of each
process.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 24 / 39

Initialisation

The initialisation of the different variables is the following.
MACHINE
EVENTS
Initialisation

then
act1: OUT := ∅ function with the empty set as domain
act2: ns := 0
act3: nr := 0
act4: channel := emptyChannel

act5: pc := {p 7→ P_sending , q 7→ Q_waiting}
END

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 25 / 39

Setup of P

The setup method for class P is obtained from the Initialisation event.

class P(process):
def setup(IN, n, dest):

self.ns = 0
self.pc = "P_sending"

def run():
...

def receive(. . .):
. . .

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 26 / 39

Events of p

The different events of p are the transitions of its automata.

P_sendingINITIALISATION P_waiting

done

P_send

P_stop_sending
P_has_received

P_has_not_received

P_receive

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 27 / 39

Events of p

P_stop_sending is a local event of computation.
P_send is a sending event.
P_has_received is an await event.
P_has_not_received is an await event.
P_receive is a reception event.

Here, P_waiting is the only reception state. Events P_has_not_received
and P_has_received are enabled in this reception state and thus are await
events.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 28 / 39

P_stop_sending

The event is enabled when ns is greater than the length of IN. It means
that p has received all the needed acknowledgements from q and can stop
sending data.

P_stop_sending =̂

when
grd1: ns ≥ n

grd2: pc(p) = P_sending

then
act1: pc(p) := done

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 29 / 39

P_send

The sending event is enabled when ns is less than the length of IN. In this
case, p wants to send IN[ns] to q.

P_send =̂

when
grd1: pc(p) = P_sending

grd2: ns < n

then
act1: channel := send(channel 7→ (p 7→ dest) 7→ (data 7→
data2msg(ns 7→ IN(ns))))

act2: pc(p) := P_waiting

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 30 / 39

Await events

Event P_has_received is an await event which is enabled when p has
received an acknowledgement for the current value of ns.

P_has_received =̂

when
grd1: pc(p) = P_waiting

grd2: received(channel 7→ (dest 7→ p) 7→ (ack 7→ nat2msg(ns)))

then
act1: ns := ns + 1
act2: pc(p) := P_sending

Event P_has_not_received is similar but is enabled when p has not
received an acknowledgement for the current value of ns and thus does not
increment ns.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 31 / 39

Reception event

The reception event is enabled when pc(p) is in a reception state
(P_waiting for this example) and a message is ready to be received by p.

P_receive =̂

any
s m

where
grd1: pc(p) ∈ reception_states

grd2: s ∈ NODES

grd3: m ∈ MESSAGE_FUNCTIONS ×MESSAGES

grd4: readyToBeReceived(channel 7→ (s 7→ p) 7→ (m))

then
act1: channel := receive(channel 7→ (s 7→ p) 7→ m)

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 32 / 39

Transformation of the machine

The different value of pc(p) will corresponds to different methods of the
class of p. The value of pc(p) will determine which methods to execute.

class P(process):
def setup(IN, n, dest):

. . .
def PSending ():

. . .
def PWaiting ():

. . .
def run():

state = {"P_sending":PSending , "P_waiting"
:PWaiting}

while(self.pc != "done"):
states[self.pc]()

def receive(. . .):
. . .

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 33 / 39

PSending

The two events that are enabled in the state P_sending are P_send and
P_stop_sending . They are translated in the method PSending.

def PSending ():
P_stop_sending
if(self.ns>self.n):

self.pc = "done"
P_send
elif(self.ns <=self.n):

send((’data’, (self.ns , self.IN[self.
ns])), to=self.dest)

self.pc = "P_waiting"

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 34 / 39

PWaiting

The two events P_has_received and P_has_not_received are enabled
in the state P_waiting which is a reception state. The events are therefore
await events and translated in the PWaiting method.

def PWaiting ():
P_has_received
if await(received ((’ack’, self.ns), from_=

self.dest):
self.ns = self.ns+1
self.pc = "P_sending"

P_has_not_received
elif(not(received ((’ack’, self.ns), from_=

self.dest)):
self.pc = "P_sending"

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 35 / 39

Receive method

A reception event is enabled in a reception state and does not change the
value of pc . It is translated by a receive method.

P_receive
def receive(msg=(m), from_=s):

pass

It does not do anything special apart from receiving the message in our
case.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 36 / 39

1 Introduction

2 Event-B

3 DistAlgo

4 Stop-and-wait ARQ

5 Model for the stop-andwait ARQ and its transformation

6 Conclusion

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 37 / 39

Conclusion

I showed with the example of the stop-and-wait algorithm how to transform
a specific Event-B model of a distributed algorithm into a program.

The rules of this transformation are currently being defined on a
sublanguage of Event-B.

The next goal will be to prove that this transformation is correct and to
implement an automatic translation based on this transformation from
Event-B to DistAlgo.

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 38 / 39

End slide

Questions ?

Alexis Grall Integration of a modelling language and a distributed programming language11/06/2019 39 / 39

	Introduction
	Event-B
	DistAlgo
	Stop-and-wait ARQ
	Model for the stop-andwait ARQ and its transformation
	Conclusion

