
Machine learning for instance selection in SMT solving

Jasmin Christian Blanche�e
1, 2

Daniel El Ouraoui
2

Pascal Fontaine
2

Cezary Kaliszyk
3

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

University of Lorraine, CNRS, Inria, and LORIA, Nancy, France

University of Innsbruck, Innsbruck, Austria

13th June 2019

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

2 / 32

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

3 / 32

Motivations

Satis�ability modulo theories (SMT)
Automation

Proof assistant

Verification conditions

Model checking

Solvers

Z3, cvc4, veriT, ...

Instantiation
Hard for SMT solvers

Heuristically solved

Challenge
Improve instantiation techniques

Solve more problems

Be more e�icient

4 / 32

Our tool

Université de Lorraine/UFRN (http://www.verit-solver.org)

5 / 32

http://www.verit-solver.org

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

6 / 32

Context

Ground

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = y

Instantiation

7 / 32

Ground problem

How e�iciently check the satisfiability of a ground formula

(f (a, b) = g(a) ∨ d = b) ∧ d = g(b) ∧ d 6= f (a, b) ∧ b = a ∧ d 6= g(a)(f (a, b) = g(a)
l1

∨ d = b
l2

) ∧ d = g(b)
l3

∧ d 6= f (a, b)
l4

∧ b = a
l5
∧ d 6= g(a)

l6

(l1 ∨ ¬l2) ∧ l3 ∧ l4 ∧ l5 ∧ l6

8 / 32

Ground problem

How e�iciently check the satisfiability of a ground formula

(f (a, b) = g(a) ∨ d = b) ∧ d = g(b) ∧ d 6= f (a, b) ∧ b = a ∧ d 6= g(a)(f (a, b) = g(a)
l1

∨ d = b
l2

) ∧ d = g(b)
l3

∧ d 6= f (a, b)
l4

∧ b = a
l5
∧ d 6= g(a)

l6

(l1 ∨ ¬l2) ∧ l3 ∧ l4 ∧ l5 ∧ l6

8 / 32

Ground problem

How e�iciently check the satisfiability of a ground formula

(f (a, b) = g(a) ∨ d = b) ∧ d = g(b) ∧ d 6= f (a, b) ∧ b = a ∧ d 6= g(a)(f (a, b) = g(a)
l1

∨ d = b
l2

) ∧ d = g(b)
l3

∧ d 6= f (a, b)
l4

∧ b = a
l5
∧ d 6= g(a)

l6

(l1 ∨ ¬l2) ∧ l3 ∧ l4 ∧ l5 ∧ l6

8 / 32

Ground problem

How e�iciently check the satisfiability of a ground formula

(f (a, b) = g(a) ∨ d = b) ∧ d = g(b) ∧ d 6= f (a, b) ∧ b = a ∧ d 6= g(a)(f (a, b) = g(a)
l1

∨ d = b
l2

) ∧ d = g(b)
l3

∧ d 6= f (a, b)
l4

∧ b = a
l5
∧ d 6= g(a)

l6

(l1 ∨ ¬l2) ∧ l3 ∧ l4 ∧ l5 ∧ l6

8 / 32

CDCL(T)

Ground Solver
Conflict clauses

Boolean model

Theory solver SAT solver

Formulas are embedded in SAT

SAT solver produces a boolean model

Theory solvers produce conflict clauses

Conflict clauses guide the SAT solver

9 / 32

First-Order problem

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = y

Instantiation

10 / 32

First-Order problem

How to find an instance such that the problem is UNSAT

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = yb 6= a ∧ f (a) = f (b)
SAT

∧ ∀xy f (x) = f (y)⇒ x = y

f (a) 6= f (b) ∨ a = b

b 6= a ∧ f (a) = f (b) ∧ f (a) 6= f (b)
UNSAT

11 / 32

First-Order problem

How to find an instance such that the problem is UNSAT

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = yb 6= a ∧ f (a) = f (b)
SAT

∧ ∀xy f (x) = f (y)⇒ x = y

f (a) 6= f (b) ∨ a = b

b 6= a ∧ f (a) = f (b) ∧ f (a) 6= f (b)
UNSAT

11 / 32

First-Order problem

How to find an instance such that the problem is UNSAT

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = yb 6= a ∧ f (a) = f (b)
SAT

∧ ∀xy f (x) = f (y)⇒ x = y

f (a) 6= f (b) ∨ a = b

b 6= a ∧ f (a) = f (b) ∧ f (a) 6= f (b)
UNSAT

11 / 32

First-Order problem

How to find an instance such that the problem is UNSAT

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = yb 6= a ∧ f (a) = f (b)
SAT

∧ ∀xy f (x) = f (y)⇒ x = y

f (a) 6= f (b) ∨ a = b

b 6= a ∧ f (a) = f (b) ∧ f (a) 6= f (b)
UNSAT

11 / 32

First-Order problem

How to find an instance such that the problem is UNSAT

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = yb 6= a ∧ f (a) = f (b)
SAT

∧ ∀xy f (x) = f (y)⇒ x = y

f (a) 6= f (b) ∨ a = b

b 6= a ∧ f (a) = f (b) ∧ f (a) 6= f (b)
UNSAT

11 / 32

First-Order problem

How to find an instance such that the problem is UNSAT

b 6= a ∧ f (a) = f (b) ∧ ∀xy f (x) = f (y)⇒ x = yb 6= a ∧ f (a) = f (b)
SAT

∧ ∀xy f (x) = f (y)⇒ x = y

f (a) 6= f (b) ∨ a = b

b 6= a ∧ f (a) = f (b) ∧ f (a) 6= f (b)
UNSAT

11 / 32

First-Order CDCL(T)

Ground Solver
Conflict clauses

Boolean model

Theory solver SAT solver

Instantiation

module

Instances

Assignment

12 / 32

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

13 / 32

State of the art

Conflict based instantiation Introduced by Reynolds, this technique produces relevant

sets of instances. The idea is that, given a ground modelM and a quantified formula

∀(xn : τn).ϕ, we find a substitution σ such thatM |= ¬ϕσ.

Congruence Closure with Free Variable (CCFV) Introduced by Barbosa et al.,

generalizes the idea of Conflict based instantiation by reasoning over equivalence classes.

14 / 32

State of the art

Enumerative instantiation ∀(x : τ).ψ[x] ≡
∧
t∈Dτ

ψ[t]

Enumerate all ground terms over the domain of x (aka. Herbrand universe)

Trigger based instantiation

Triggers
A trigger T for a quantified formula ∀xn.ψ is a set of non-ground terms u1, . . . , un ∈ T(ψ) such

that: {x} ⊆ FV(u1) ∪ . . .∪ FV(un).

E = f (a) ' g(b), a ' g(b)
Q = ∀x f (g(x)) 6' g(x)
T = f (g(x)) f (a) E-matches f (g(x)) under x 7→ b

15 / 32

Strategie

CCFV

ground solver Trigger + Enum

Works Fails

Figure: Instantiation strategie

16 / 32

Summarize

Con�ict based instantiation and CCFV :

Pro E�icient, if find substitution kill the model

Pro All generated instances are useful

Cons Finds contradiction involving only one instance

Enumerative and Trigger based instanciation :

Pro Useful when CCFV fail

Cons Many heuristics

Cons Generates a lot of junk, and many instances

Indeed
This is what we want improve!

17 / 32

Summarize

Con�ict based instantiation and CCFV :

Pro E�icient, if find substitution kill the model

Pro All generated instances are useful

Cons Finds contradiction involving only one instance

Enumerative and Trigger based instanciation :

Pro Useful when CCFV fail

Cons Many heuristics

Cons Generates a lot of junk, and many instances

Indeed
This is what we want improve!

17 / 32

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

18 / 32

Problem

How many lemmas are generated to solve a problem?
around 300 for the UF category of the SMT-LIB

some generate more than 100 000 instances

How many lemmas are needed to solve a problem?
Only 10% of this number, and sometimes much less

Question
Could we select the good one?

19 / 32

Problem

How many lemmas are generated to solve a problem?
around 300 for the UF category of the SMT-LIB

some generate more than 100 000 instances

How many lemmas are needed to solve a problem?
Only 10% of this number, and sometimes much less

Question
Could we select the good one?

19 / 32

Our approach

Instances in a priority queue

Encode instances

Call predictor

Several strategies for selection

ML-Solver

Ground Solver Instance selection

Instantiation

Processing

Instance selection

Instances

Inst1
...

Instn

Delayed

Filter

Predictor

Selected instances

Inst1 rank

...

Instn rank

20 / 32

State description

(l1, . . . , ln , ∀xn . ψ[xn] , x1 7→ t1, . . . , xn 7→ tn)

Model Formula Instances

rounds{


(model1 Qformula1

1 Inst1
1,1 . . . Inst1

1,m)

(model1 Qformula2
1 Inst2

1,1 . . . Inst2
1,m)

.
(modelk Qformulaik Instik,1 . . . Instik,m)

 ↪→


0 x12 x13 . . . x1n
1 x22 x23 . . . x2n
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

0 xd2 xd3 . . . xdn



21 / 32

Experiments

veriT Small proof

Data set

over sampling under sampling

Train

XGBoost

Model C code

Features

importance

XGBoost

predictions

pre processing

balancing data

classification

22 / 32

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

23 / 32

Time evaluation

30s 60s 120s 180s
veriT 2892 2906 2922 2927

veriT(M) 2904 2915 2925 2936

veriT(M2) 2914 2927 2936 2942

veriT(M+M2) 2934 2957 2968 2971

veriT + portfolio 3176 3211 3226 3232

veriT(M+M2) + portfolio 3184 3240 3307 3317

Vampire smtcomp mode 3274 3286 3297 3319

CVC4 modifed portfolio 3311 3348 3392 3402

Table: Results on the benchmarks in the UF category of the SMT-LIB.

24 / 32

Evaluation on test + training set

Figure: comparison of veriT configurations on UF SMT-LIB benchmarks.

25 / 32

Evaluation on test set only

Figure: comparison of veriT configurations on UF SMT-LIB benchmarks.

26 / 32

Contents

1 Introduction

2 CDCL(T)

3 Instantiation techniques

4 Machine learning for instance selection

5 Evaluation

6 Conclusion

27 / 32

Conclusions and future directions

Could be a significant improvement

Reduces the number of instances by two in average

Reinforcement learning

Features embedding can be improved

28 / 32

Thank you for you a�ention

�estions or suggestions?

29 / 32

Evaluation

All Test only

unsat avg less unsat avg less

with learning 1443 113 1317 423 130 363

without learning 1443 318 128 423 264 62

Table: veriT configurations on UF SMTLIB benchmarks with 30s timeout.

30 / 32

Features encoding

Terms abstraction
Variables

Skolem constants

Polarity

Features
FEATURE: Literal→ Σ3

FEATURES: Σ3→ N
Occurrences of term walks

Example
FEATURES (f (x, y) = g(sk1, sk2(x))) = (⊕, =, f) 7→ 1, (⊕, =, g) 7→ 1, (=, f ,©∗) 7→ 2, (=, g, �) 7→ 2, (g, �,©∗) 7→ 1

31 / 32

State description version 2

(Et1 ,Dt1 , . . . , Etn ,Dtn , T1, . . . Tn , x1 7→ t1, . . . , xn 7→ tn)

Model Triggers Instances

Eti is the congruence class of ti
Dti is the set of all terms explicitly disequals with ti
Ti is the set of triggers of xi

This description reduce drastically the size of the problem

32 / 32

	Introduction
	CDCL(T)
	Instantiation techniques
	Machine learning for instance selection
	Evaluation
	Conclusion

