
Context
Projects

Leveraging Automatic Deduction for Verification

Antoine Defourné

11-14th of June, 2019

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

Summary

Supervisors: Stephan Merz, Pascal Fontaine and
Jasmin Blanchette
Cofunded by Matryoshka and the region of Lorraine
Date of start: 1st of March 2019
TLA+, TLAPS, Set Theory, Automatic Deduction. . .

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

TLA+ in a nutshell

TLA+ = Temporal Logic of Actions + Set Theory
A specification language based on untyped set theory
A set of tools: TLC, TLAPS. . .
TLAPS is the interactive prover for TLA+, developped by INRIA
and Microsoft Research.

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

A Little Example

VARIABLES s, i

Init == /\ i = 1
/\ s = [n \in {0, 1} |-> 1]

Next == /\ i’ = i + 1
/\ s’ = [n \in 0..(i+1) |->

IF n = i+1 THEN
s[i-1] + s[i]

ELSE s[n]]

Spec == Init /\ [][Next]_<<s, i>>

TypeInv == /\ i \in Nat \ {0}
/\ s \in [0..i -> Nat]

THEOREM Spec => []TypeInv
<1>1 Init => TypeInv

BY DEF Init, TypeInv
<1>2 TypeInv /\ UNCHANGED <<s, i>>

=> TypeInv’
BY DEF TypeInv

<1>3 TypeInv /\ Next => TypeInv’
BY DEF TypeInv, Next

<1> QED
BY ONLY PTL, <1>1, <1>2, <1>3
DEF Spec

Interestingly, s has a “type” at each step, but no “type” overall.

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

A Little Example

VARIABLES s, i

Init == /\ i = 1
/\ s = [n \in {0, 1} |-> 1]

Next == /\ i’ = i + 1
/\ s’ = [n \in 0..(i+1) |->

IF n = i+1 THEN
s[i-1] + s[i]

ELSE s[n]]

Spec == Init /\ [][Next]_<<s, i>>

TypeInv == /\ i \in Nat \ {0}
/\ s \in [0..i -> Nat]

THEOREM Spec => []TypeInv
<1>1 Init => TypeInv

BY DEF Init, TypeInv
<1>2 TypeInv /\ UNCHANGED <<s, i>>

=> TypeInv’
BY DEF TypeInv

<1>3 TypeInv /\ Next => TypeInv’
BY DEF TypeInv, Next

<1> QED
BY ONLY PTL, <1>1, <1>2, <1>3
DEF Spec

Interestingly, s has a “type” at each step, but no “type” overall.

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

In [Van14] two tasks were carried out:
1 Support for SMT back-ends

(SMT-LIB) ;
2 Two type systems (elementary,

with refinements)

École doctorale IAEM Lorraine

Thèse

Présentée et soutenue publiquement pour l’obtention du titre de

Docteur de l’Université de Lorraine

Mention: Informatique

Automatisation de preuves et
synthèse de types pour la théorie des
ensembles dans le contexte de TLA+

par Hernán Vanzetto

8 décembre 2014

Membres du jury

Rapporteurs:
M. Sylvain Conchon pr Université Paris-Sud
M. David Delahaye mcf hdr Conservatoire National des Arts et Métiers

Examinateurs:
M. Jasmin Blanchette Chercheur Technische Universität München, Allemagne
M. Kaustuv Chaudhuri cr inria INRIA Saclay Île-de-France (co-directeur)
M. Horatiu Cirstea mcf hdr Université de Lorraine, LORIA
M. Leslie Lamport Chercheur Microsoft Research, États-Unis
M. Stephan Merz dr inria INRIA Grand-Est, LORIA (directeur)
M. David Pichardie pr École Normale Supérieure de Rennes

Laboratoire Lorrain de Recherche en Informatique et ses Applications

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

The Long-term Goal

The goal is to make TLAPS support HOL solvers.
Set theory is “already” higher-order logic: first-class functions,
constructs like set comprehension. . .
In order to preserve efficiency, we will have to take into account
the assets and flaws of current HOL solvers.

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

My Experience with TLA+/ TLAPS

The Good

Expressiveness of the
language
It feels natural

The Bad

Basic facts (about set
membership) have to be
proved and invoked
Need to expand many
definitions very often
No way to control how
universals are instantiated

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

My Experience with TLA+/ TLAPS

The Good

Expressiveness of the
language
It feels natural

The Bad

Basic facts (about set
membership) have to be
proved and invoked
Need to expand many
definitions very often
No way to control how
universals are instantiated

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

NatEven == { n \in Nat : \E k \in Nat : n = 2 * k }

LEMMA Basic == \A m, n \in NatEven : m + n = n + m
OBVIOUS

Will this proof succeed?

No! because the facts m \in Nat and n \in Nat cannot be
infered.

NatEven == { n \in Nat : \E k \in Nat : n = 2 * k }

LEMMA Basic == \A m, n \in NatEven : m + n = n + m
BY DEF NatEven

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

NatEven == { n \in Nat : \E k \in Nat : n = 2 * k }

LEMMA Basic == \A m, n \in NatEven : m + n = n + m
OBVIOUS

Will this proof succeed?
No! because the facts m \in Nat and n \in Nat cannot be
infered.

NatEven == { n \in Nat : \E k \in Nat : n = 2 * k }

LEMMA Basic == \A m, n \in NatEven : m + n = n + m
BY DEF NatEven

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

Some Short-term Goals

Better encodings (better leverage of type information)
Better user control of instantiations
A soft type system

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

Work in Progress: Instances with Triggers

id(S) == [x \in S |-> x]

LEMMA Example == ASSUME NEW S
PROVE \E f \in [S -> S] :

\A x \in S : f[x] = x
BY SMT WITH id(S) DEF id

(declare−sort u ())
(declare−fun app (u u) u)
(declare−fun S () u)
(declare−fun trigger (u) Bool)

(assert (trigger (id S)))

(assert (not (
exists ((f u)) (

! (forall ((x u)) (= (app f x) x))
:pattern ((trigger f))))))

Antoine Defourné Leveraging Automatic Deduction for Verification

Context
Projects

Hernán Vanzetto.
Proof automation and type synthesis for set theory in the
context of TLA+.
PhD thesis, University of Lorraine, Nancy, France, 2014.

Leslie Lamport and Lawrence C. Paulson.
Should your specification language be typed.
ACM Trans. Program. Lang. Syst., 21(3):502–526, 1999.

Antoine Defourné Leveraging Automatic Deduction for Verification

Encoding Without Types

From goal ∀x ∈ Z, x + 0 = x
To:

Goal ∀xU, x ∈ Z ⇒ x +U
(
↓IntU 0

)
= x

Axioms ∀xU, x ∈ Z ⇒ ∃nInt, x = ↓IntU n

∀m, nInt,
(
↓IntU m

)
+U

(
↓IntU n

)
= ↓IntU (m + n)

∀m, nInt,
(
↓IntU m

)
=

(
↓IntU n

)
⇒ m = n

...

Antoine Defourné Leveraging Automatic Deduction for Verification

Abstraction

Example: from P({x ∈ A : φ(x)})
To:

∃k,P(k)
∧ ∀x , x ∈ k ⇔ x ∈ A ∧ φ(x)

In SMT-LIB:
(declare−sort u ())

(declare−fun k () u)

(assert (P k))
(assert (forall ((x u))

(! (<=> (in x k) (and (in x A) (φ x)))
:pattern ((in x k)))))

Antoine Defourné Leveraging Automatic Deduction for Verification

	Context
	Projects
	Appendix

