

SPASS-SATT A CDCL(LA) Solver

Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Weidenbach

SPASS-SATT A CDCL(LA) Solver

Translation: fun (=SPASS) sated (=SATT)

Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Weidenbach

SPASS-SATT A CDCL(LA) Solver

Translation: fun (=SPASS) sated (=SATT) being sick/tired of having fun...

Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Weidenbach

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

Signature: $\Sigma_{LA} := \{+, -, <, \leq, \geq, >, 0, 1, 2, \dots\}$

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

Signature:
$$\Sigma_{LA} := \{+, -, <, \leq, \geq, >, 0, 1, 2, \dots\}$$

Multiplication only as syntactic sugar!

E.g.:
$$3 \cdot x \mapsto x + x + x$$

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

Signature:
$$\Sigma_{LA} := \{+, -, <, \leq, \geq, >, 0, 1, 2, \dots\}$$

Multiplication only as syntactic sugar!

E.g.:
$$3 \cdot x \mapsto x + x + x$$

Goal: Quantifier-Free Linear Rational Arithmetic (QF_LRA) \Rightarrow rational solution, i.e., $x, y, ... \in \mathbb{Q}$

Quantifier-Free Linear Integer Arithmetic (QF_LIA)

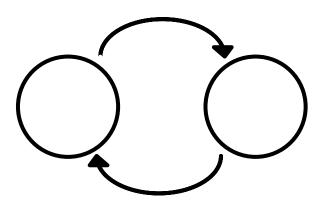
 \Rightarrow integer solution, i.e., $x, y, ... \in \mathbb{Z}$

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

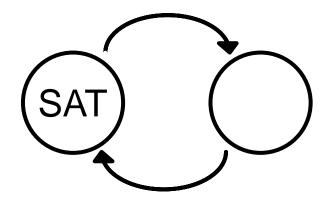
$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$



$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

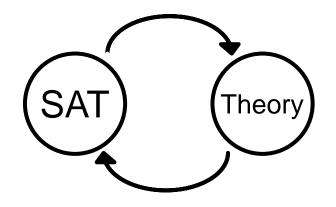


CDCL solver:

CDCL = conflict-driven clause-learning
Decision procedure for propositional CNF formulas

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$



CDCL solver:

CDCL = conflict-driven clause-learning
Decision procedure for propositional CNF formulas

Theory solver:

Decision procedure for conjunctions of theory atoms e.g. Simplex for QF_LRA & Branch-and-Bound for QF_LIA

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

$$(x > 0 \ \lor \ x + y > 0) \land (x < 0 \ \lor \ x + y < 3)$$

 $\land \ (y < 0) \land \neg(x > 0)$

$$A \Leftrightarrow x > 0$$
;

(A)
$$V \quad x + y > 0$$
) $\land (x < 0 \quad V \quad x + y < 3)$
 $\land (y < 0) \land \neg (A)$

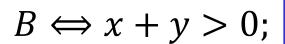
$$A \Leftrightarrow x > 0$$
;

(A)
$$V \quad x + y > 0$$
) $\land \quad (x < 0 \quad V \quad x + y < 3)$
 $\land \quad (y < 0) \quad \land \quad \neg (A)$

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;



$$D \iff x + y > 4$$
;

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$

Unit Propagation

Model:

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$

Unit Propagation

Model:

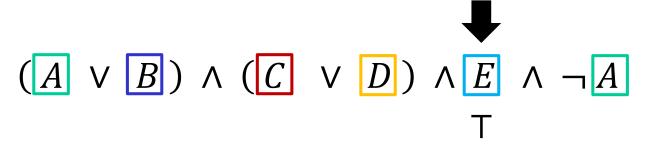
$$A \Leftrightarrow x > 0$$
;

$$B \iff x + y > 0$$
;

$$C \iff x < 0$$
;

$$D \iff x + y > 4$$
;

$$E \Leftrightarrow y < 0$$
;



Unit Propagation

Model: E

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$

Unit Propagation

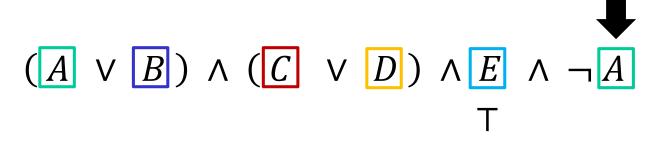
$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;



Unit Propagation

Model: E

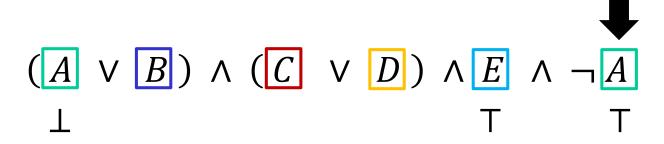
$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \Leftrightarrow x + y > 0$$
;

$$D \iff x + y > 4$$
;



Unit Propagation

Model:
$$E \qquad \neg A$$

$$A \iff x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 \bot

Unit Propagation

Model:
$$E \qquad \neg A$$

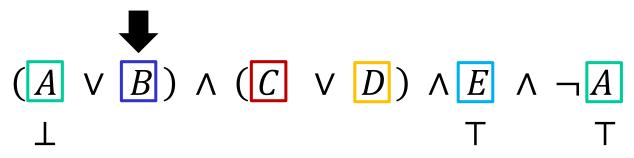
$$A \iff x > 0$$
;

$$C \Leftrightarrow x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;



Unit Propagation

Model:
$$E \qquad \neg A$$

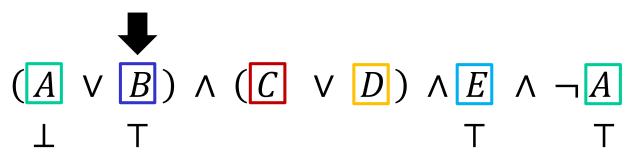
$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;



Unit Propagation

Model:
$$E \quad \neg A \quad B$$

$$A \iff x > 0$$
;

$$A \Leftrightarrow x > 0;$$

$$C \iff x < 0$$
;

$$E \iff y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top$

Unit Propagation

Model:
$$E$$
 $\neg A$ B

$$A \Leftrightarrow x > 0$$
;

$$TT \longleftrightarrow X > 0$$
,

$$C \Leftrightarrow x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top$

Decision

Model:
$$E$$
 $\neg A$ B

$$A \Leftrightarrow x > 0$$
;

$$C \Leftrightarrow x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

$$B \Leftrightarrow x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad T \quad T \quad T \quad T$

Decision

Model:
$$E$$
 $\neg A$ B C^{\dagger}

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad T \quad T \quad T \quad T$

Theory Satisfiable?

Model:
$$E$$
 $\neg A$ B C^{\dagger}

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

$$B \iff x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top \quad \top$

Theory Satisfiable? No!

Model:
$$E \quad \neg A \quad B \quad C^{\dagger}$$

$$A \Leftrightarrow x > 0$$
;

$$C \iff x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

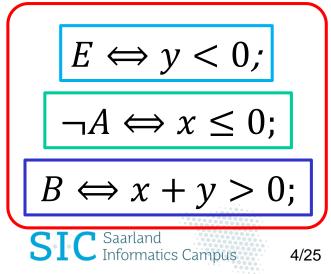
$$B \Leftrightarrow x + y > 0$$
;

$$D \iff x + y > 4$$
;

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top \quad \top$

Theory Satisfiable? No!

Model:
$$E$$
 $\neg A$ B C^{\dagger}



$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top \quad \top$

Conflict Analysis:

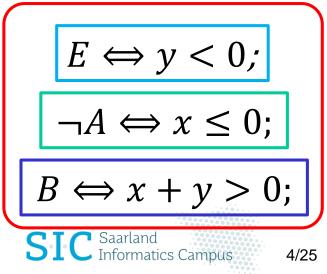
Model:
$$E \quad \neg A \quad B \quad C^{\dagger}$$

$$A \iff x > 0; \qquad B \iff x + y > 0;$$

$$C \iff x < 0; \qquad D \iff x + y > 4;$$

$$E \iff y < 0;$$

$$\text{max planck institut informatik}$$



$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad T \quad T \quad T \quad T$

Conflict Analysis:

Model:
$$E$$
 $\neg A$ B C^{\dagger}

$$(\neg E \land A \land \neg B)$$

$$A \Leftrightarrow x > 0;$$

$$B \Leftrightarrow x + y > 0;$$

$$D \Leftrightarrow x + y > 4;$$

$$E \Leftrightarrow y < 0;$$

$$max \ planck \ institut \ informatik$$

$$E \Leftrightarrow y < 0;$$

$$\neg A \Leftrightarrow x \leq 0;$$

$$B \Leftrightarrow x + y > 0;$$
SIC Saarland Informatics Campus 4/25

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top \quad \top$

Conflict Analysis:

Model:
$$E -A B C^{\dagger}$$

$$A \Leftrightarrow x > 0;$$
 $B \Leftrightarrow x + y > 0;$ $C \Leftrightarrow x < 0;$ $D \Leftrightarrow x + y > 4;$ $E \Leftrightarrow y < 0;$

$$(\neg E \land A \land \neg B)$$

$$\bot \quad \bot \quad \bot$$

$$E \iff y < 0;$$

$$\neg A \iff x \le 0;$$

$$B \iff x + y > 0;$$

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top \quad \top$

Conflict Analysis: UNSAT!

Model:
$$E \quad \neg A \quad B \quad C^{\dagger}$$

max planck institut informatik

$$(\neg E \land A \land \neg B)$$

$$\bot \quad \bot \quad \bot$$

 $E \Leftrightarrow y < 0;$

$$A \iff x > 0$$
;

$$B \iff x + y > 0$$
;

$$C \iff x < 0$$
;

$$D \iff x + y > 4$$
;

$$E \Leftrightarrow y < 0$$
;

$$\Leftrightarrow x + y > 4; \qquad \qquad \neg A \Leftrightarrow x \le 0;$$

$$B \Leftrightarrow x + y > 0;$$

SMT-COMP 2018

QF_LIA (Main Track)

QF_LIA = quantifier-free linear integer arithmetic

Benchmarks: 6947 Time limit: 1200s

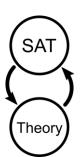
Solver	Solved Score	CPU time Score	Solved
SPASS-SATT	6587.626	72.048	6744
Ctrl-Ergo	6221.467	156.086	6259
MathSATn	6135.114	164.626	6528
SMTInterpol	5915.623	204.123	6286
CVC4	5891.019	194.986	6357
Yices 2.6.0	5867.976	209.452	6232
z3-4.7.1 ⁿ	5733.374	224.539	6195
SMTRAT-Rat	4049.914	515.394	3112
veriT	3155.162	295.434	2734

QF_LRA (Main Track)

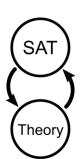
QF_LRA = quantifier-free linear rational arithmetic

Benchmarks: 1649 Time limit: 1200s

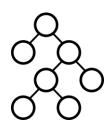
Solver	Solved Score	CPU time Score	Solved
CVC4	1586.833	69.006	1566
SPASS-SATT	1586.396	64.292	1590
Yices 2.6.0	1583.186	63.901	1567
veriT	1568.212	79.840	1527
SMTInterpol	1548.476	102.257	1521
MathSAT ⁿ	1536.458	107.673	1461
z3-4.7.1 ⁿ	1527.249	113.154	1435
opensmt2	1498.663	131.674	1329
Ctrl-Ergo	1450.082	172.097	1354
SMTRAT-Rat	1297.891	275.918	984
SMTRAT-MCSAT	1090.526	409.015	711



Theory solver extensions:

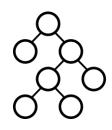


Theory solver extensions:



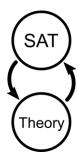
Data-structure improvements:

Theory solver extensions:



Data-structure improvements:

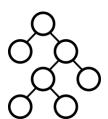
Preprocessing:



- weakened early pruning [Sebastiani07]
- unate propagations and bound refinements [Dutertre06]
- decision recommendations [Yices]

Theory solver extensions:

- unit cube test [Bromberger16]
- bounding transformation [Bromberger18]
- simple rounding and bound propagation [Schrijver86]

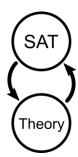


Data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

Preprocessing:

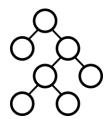
- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]



- weakened early pruning [Sebastiani07]
- unate propagations and bound refinements [Dutertre06]
- decision recommendations [Yices]

Theory solver extensions:

- unit cube test [Bromberger16]
- bounding transformation [Bromberger18]
- simple rounding and bound propagation [Schrijver86]



Data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

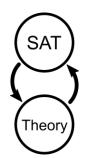
Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

SAT

Bare minimum requirements:

- theory check for complete model
- return theory conflict for learning



Bare minimum requirements:

- theory check for complete model
- return theory conflict for learning

(Weakened) early pruning [Sebastiani07]

- theory check for some partial models (⇒ early conflicts)
- weaker check if full check too expensive

Bare minimum requirements:

- theory check for complete model
- return theory conflict for learning

(Weakened) early pruning [Sebastiani07]

- theory check for some partial models (⇒ early conflicts)
- weaker check if full check too expensive

Theory Propagation

unate propagations and bound refinements [Dutertre06]

Bare minimum requirements:

- theory check for complete model
- return theory conflict for learning

(Weakened) early pruning [Sebastiani07]

- theory check for some partial models (⇒ early conflicts)
- weaker check if full check too expensive

Theory Propagation

unate propagations and bound refinements [Dutertre06]

SAT heuristics based on theory knowledge

decision recommendations [Yices]

Bare minimum requirements:

- theory check for complete model
- return theory conflict for learning

(Weakened) early pruning [Sebastiani07]

- theory check for some partial models (⇒ early conflicts)
- weaker check if full check too expensive

Theory Propagation

unate propagations and bound refinements [Dutertre06]

SAT heuristics based on theory knowledge

decision recommendations [Yices]

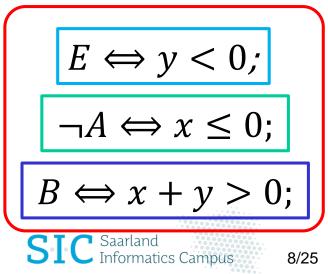
Early Pruning

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top \quad \top$

Theory Satisfiable? No!

Model:
$$E \quad \neg A \quad B \quad C^{\dagger}$$

$$A \Leftrightarrow x > 0;$$
 $B \Leftrightarrow x + y > 0;$ $C \Leftrightarrow x < 0;$ $D \Leftrightarrow x + y > 4;$ $E \Leftrightarrow y < 0;$



Early Pruning

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top$

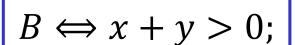
Check for theory satisfiability before each decision!

$$A \Leftrightarrow x > 0$$
;

$$C \Leftrightarrow x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

max planck institut informatik



$$D \iff x + y > 4$$
;

Early Pruning

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top$

Check for theory satisfiability before each decision!

Full theory check is too expensive? (NP for QF_LIA)

$$A \Leftrightarrow x > 0$$
;

$$C \Leftrightarrow x < 0$$
;

$$E \Leftrightarrow y < 0$$
;

max planck institut informatik

$$B \Leftrightarrow x + y > 0$$
;

$$D \iff x + y > 4$$
;

Weakened Early Pruning

$$(A \lor B) \land (C \lor D) \land E \land \neg A$$
 $\bot \quad \top \quad \top \quad \top$

Check for theory satisfiability before each decision!

Full theory check is too expensive? (NP for QF_LIA)

Do a weaker check! (Check only for rational solutions)

$$A \iff x > 0$$
;

$$B \Longleftrightarrow x + y > 0;$$

$$C \iff x < 0$$
;

$$D \iff x + y > 4$$
;

$$E \Leftrightarrow y < 0$$
;

max planck institut informatik

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

$$A \Leftrightarrow x \geq 0$$
;

$$B \iff y \ge x + 1$$
;

$$C \Leftrightarrow y \geq 5$$

Model: A

$$C \iff y \geq 5;$$
max planck institut informatik

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

$$C^{\dagger}$$
 or

Use rational assignment as heuristic

(Assignment is side effect of failed weakened early pruning)

$$A \iff x \ge 0$$
;

$$B \iff y \ge x + 1$$
;

$$C \Leftrightarrow y \geq 5$$
;

Model: A

Assignment: x = 0, y = 1

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

$$C^{\dagger}$$

$$\neg C^{\dagger}$$

Use rational assignment as heuristic (Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model

$$A \Leftrightarrow x \geq 0$$
;

$$B \iff y \ge x + 1$$
;

$$C \Leftrightarrow y \geq 5$$
;

Model: A

Assignment: x = 0, y = 1

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

$$C^{\dagger}$$

Use rational assignment as heuristic

(Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model

(Why? Might reduce time spent on theory checking)

$$A \Leftrightarrow x \geq 0$$
;

$$B \iff y \ge x + 1$$
;

$$C \iff y \ge 5$$
;

Model: A

Assignment:
$$x = 0, y = 1$$

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

$$C^{\dagger}$$

$$\neg C^{\dagger}$$

Use rational assignment as heuristic

(Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model

(Why? Might reduce time spent on theory checking)

$$A \iff x \ge 0$$
;

$$C^{\dagger} \Leftrightarrow 1 \geq 5$$
;

$$\neg C^{\dagger} \Leftrightarrow 1 < 5;$$

$$B \iff y \ge x + 1$$
;

$$\mid \mid B \mid$$

$$C \Leftrightarrow y \geq 5$$
;

Assignment:
$$x = 0, y = 1$$

How to select phase of decision literal? C^{\dagger} or $\neg C^{\dagger}$

$$C^{\dagger}$$

$$\neg C^{\dagger}$$

Use rational assignment as heuristic

(Assignment is side effect of failed weakened early pruning)

Goal: assignment should stay solution for model

(Why? Might reduce time spent on theory checking)

$$A \iff x \ge 0$$
;

$$C^{\dagger} \iff 1 \geq 5$$
;

$$\neg C^{\dagger} \Leftrightarrow 1 < 5;$$

$$B \iff y \ge x + 1$$
;

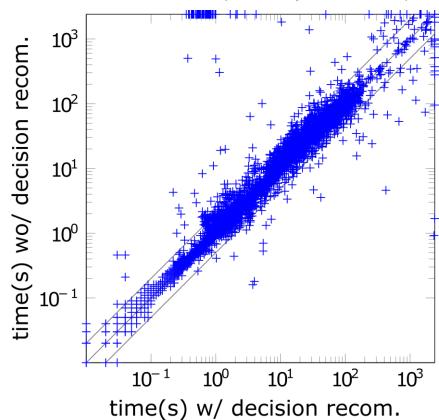
$$A \mid\mid B$$

$$\neg C^{\dagger}$$

$$C \iff y \ge 5$$
;

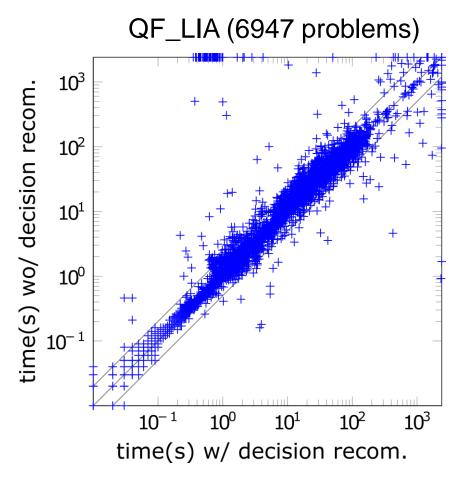
Assignment:
$$x = 0, y = 1$$

QF_LIA (6947 problems)

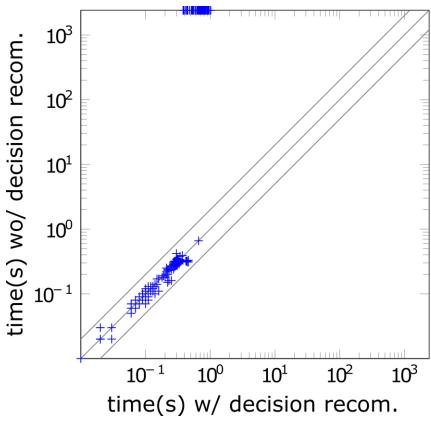


additional instances: 129

twice as fast/slow: 389/58



convert (319 problems)



additional instances: 116

additional instances: 129

twice as fast/slow: 389/58

Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Input: $\{a_i^T x \leq b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Example:

$$2x_2 \le 5x_1, \qquad 3x_2 \ge 4x_1$$

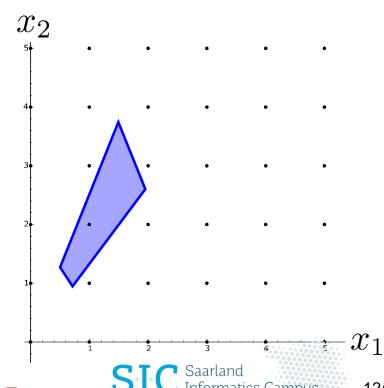
$$2x_2 \le 5x_1$$
, $3x_2 \ge 4x_1$, $2x_2 \le -5x_1 + 15$, $2x_2 \ge -3x_1 + 4$,

Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Example:

$$2x_2 \le 5x_1$$
, $3x_2 \ge 4x_1$, $2x_2 \le -5x_1 + 15$, $2x_2 \ge -3x_1 + 4$,



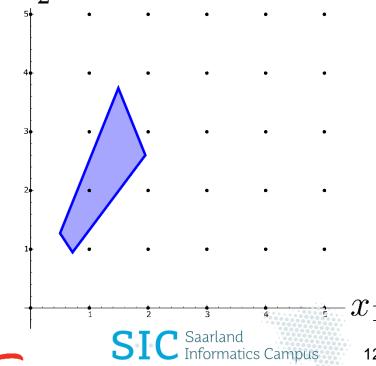
Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Example:

$$2x_2 \le 5x_1$$
, $3x_2 \ge 4x_1$, $2x_2 \le -5x_1 + 15$, $2x_2 \ge -3x_1 + 4$,

 $x_1, x_2 \in \mathbb{Q}$ QF_LRA



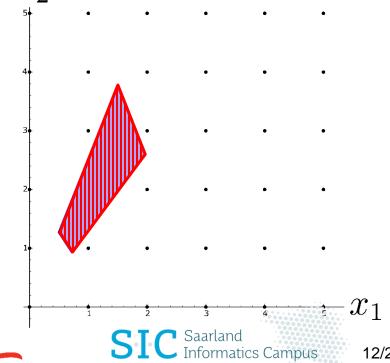
Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Example:

$$2x_2 \le 5x_1$$
, $3x_2 \ge 4x_1$, $2x_2 \le -5x_1 + 15$, $2x_2 \ge -3x_1 + 4$,

QF_LRA $x_1, x_2 \in \mathbb{Q}$



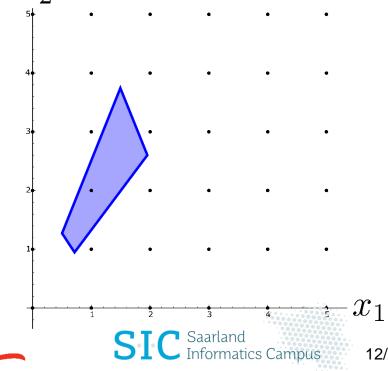
Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Example:

$$2x_2 \le 5x_1$$
, $3x_2 \ge 4x_1$, $2x_2 \le -5x_1 + 15$, $2x_2 \ge -3x_1 + 4$,

QF_LIA $x_1, x_2 \in \mathbb{Z}$



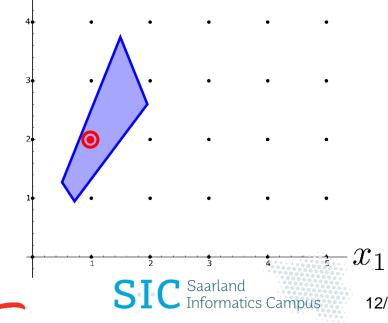
Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Example:

$$2x_2 \le 5x_1$$
, $3x_2 \ge 4x_1$, $2x_2 \le -5x_1 + 15$, $2x_2 \ge -3x_1 + 4$,

 $x_1, x_2 \in \mathbb{Z}$ QF_LIA



Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Solver: QF_LRA: dual simplex

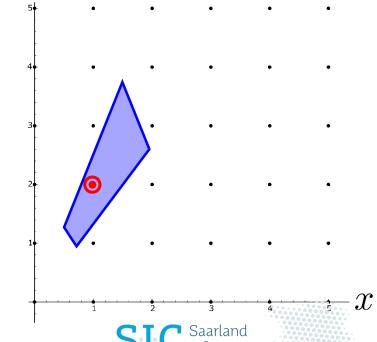
QF_LIA: branch and bound

Example:

$$2x_2 \le 5x_1, \qquad 3x_2 \ge 4x_1,$$

$$2x_2 \le -5x_1 + 15$$
, $2x_2 \ge -3x_1 + 4$,

$$x_1, x_2 \in \mathbb{Z}$$
 QF_LIA



Input: $\{a_i^T x \le b_i \mid i = 1, ..., m\}$

Goal: QF_LRA: $x_1, ..., x_n \in \mathbb{Q}$ or QF_LIA: $x_1, ..., x_n \in \mathbb{Z}$

Solver: QF_LRA: dual simplex

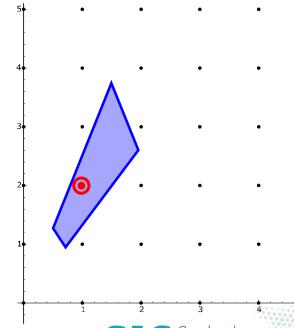
QF_LIA: branch and bound

Example:

$$2x_2 \le 5x_1, \qquad 3x_2 \ge 4x_1,$$

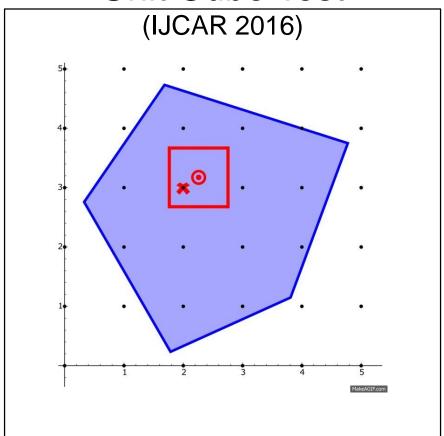
$$2x_2 \le -5x_1 + 15$$
, $2x_2 \ge -3x_1 + 4$,

$$x_1, x_2 \in \mathbb{Z}$$
 QF_LIA



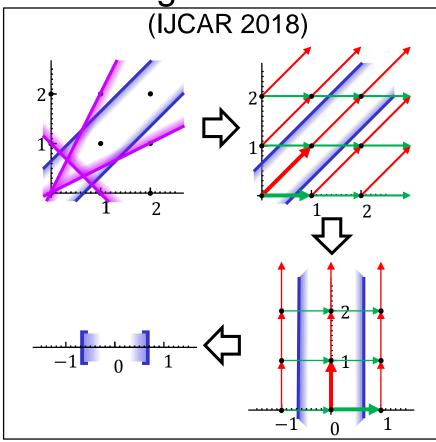
Theory Solver Extensions

Unit Cube Test

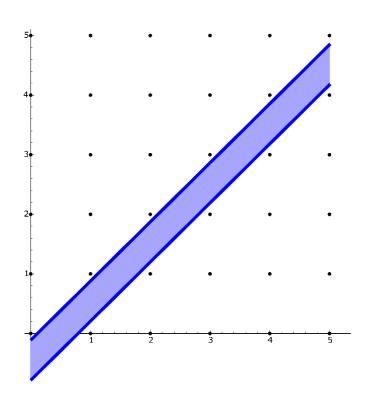


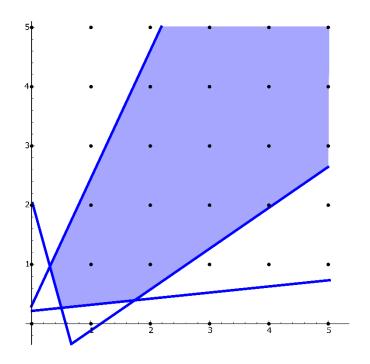
for absolutely unbounded problems

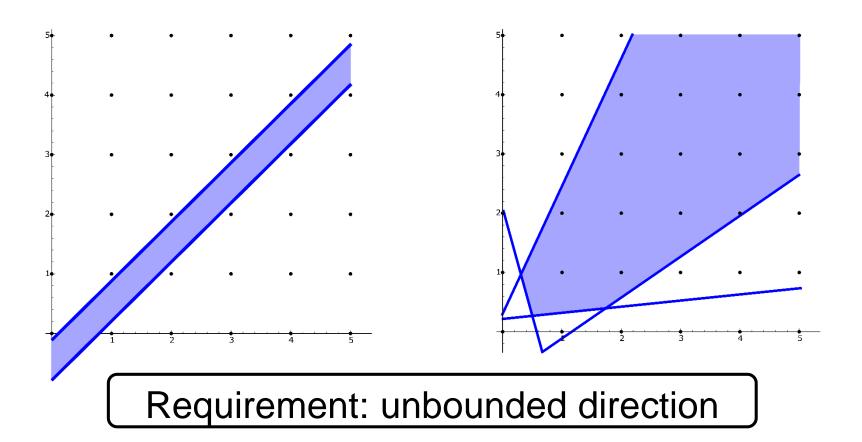
Bounding Transformation

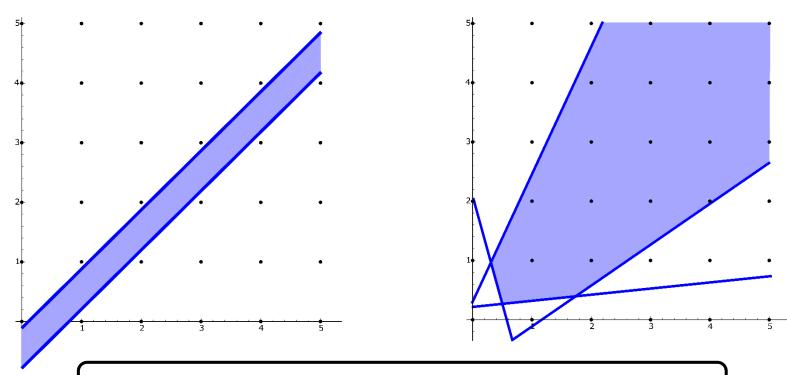


for partially unbounded problems



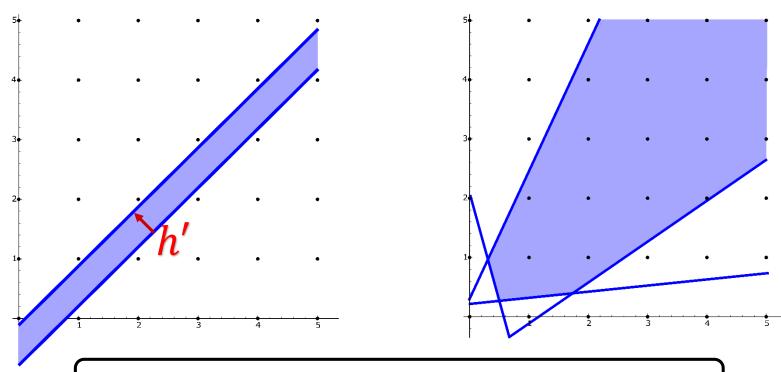






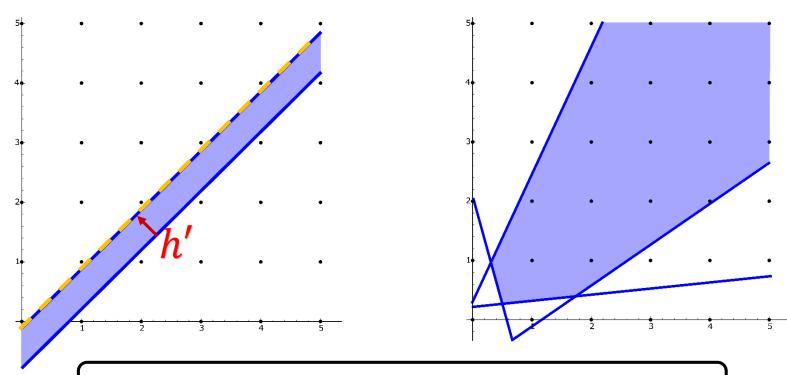
Requirement: unbounded direction

$$\exists l, u \in \mathbb{Z}. \ \forall x \in \mathbb{Q}^n. \{a_i^T x \leq b_i \ \big| \ i = 1, ..., m\} \rightarrow \boxed{\underline{l} \leq h^T x \leq \underline{u}}$$



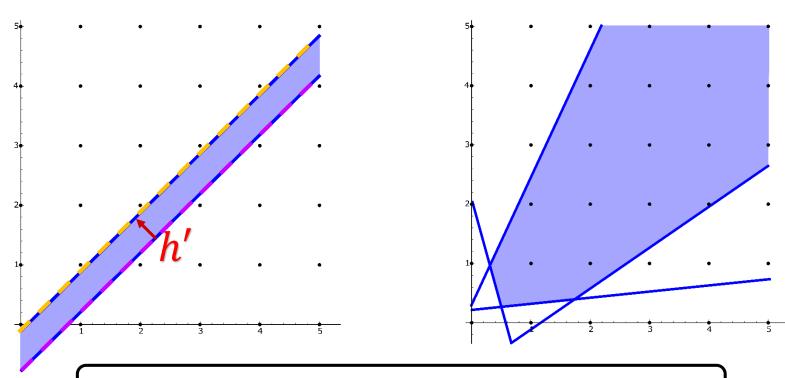
Requirement: unbounded direction

$$\exists l, u \in \mathbb{Z}. \ \forall x \in \mathbb{Q}^n. \{a_i^T x \le b_i \ \big| \ i = 1, \dots, m\} \to \underbrace{l \le h^T x \le u}$$



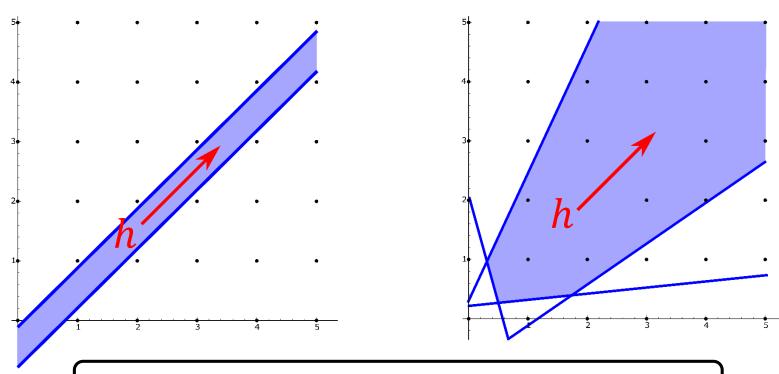
Requirement: unbounded direction

$$\exists l, u \in \mathbb{Z}. \ \forall x \in \mathbb{Q}^n. \{a_i^T x \le b_i \ \big| \ i = 1, \dots, m\} \to \boxed{\underline{l}} \triangleq h^T x \leq \underline{u}$$



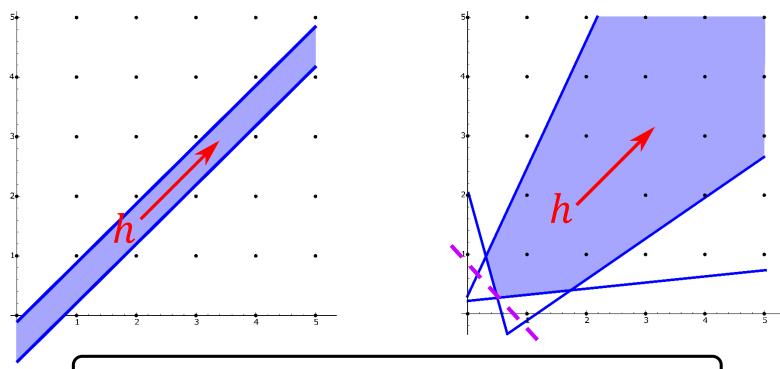
Requirement: unbounded direction

$$\exists l, u \in \mathbb{Z}. \ \forall x \in \mathbb{Q}^n. \{a_i^T x \le b_i \ \big| \ i = 1, \dots, m\} \to \boxed{\underline{l}} \triangleq h^T x \leq \underline{u}$$



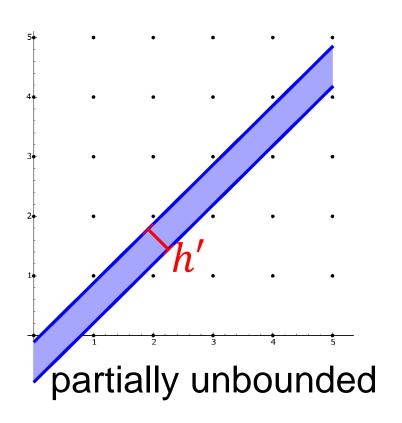
Requirement: unbounded direction

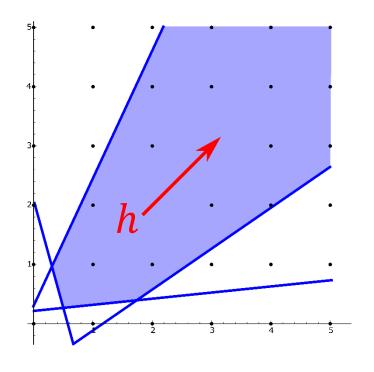
$$\exists l, u \in \mathbb{Z}. \ \forall x \in \mathbb{Q}^n. \{a_i^T x \le b_i \ \big| \ i = 1, \dots, m\} \to \underbrace{l \le h^T x \le u}$$



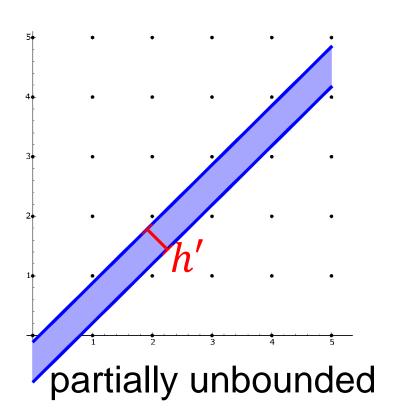
Requirement: unbounded direction

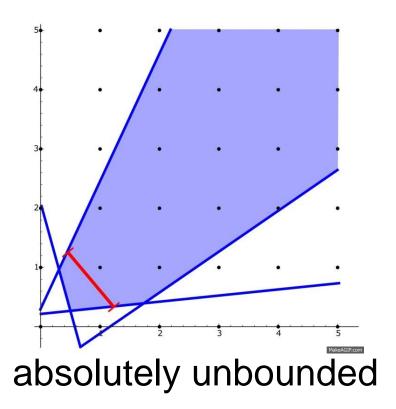
$$\exists l, u \in \mathbb{Z}. \ \forall x \in \mathbb{Q}^n. \{a_i^T x \le b_i \ \big| \ i = 1, \dots, m\} \to \underbrace{l \le h^T x \le u}$$



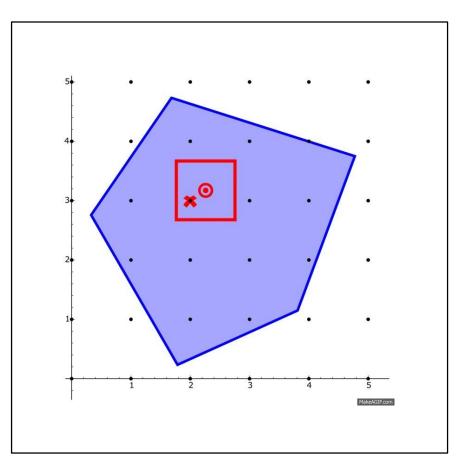


partially unbounded: both bounded and unbounded directions

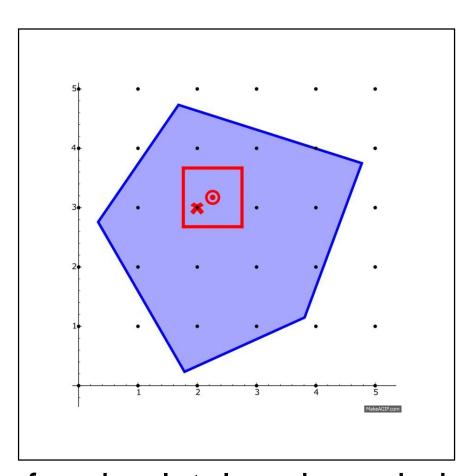




absolutely unbounded: only unbounded directions

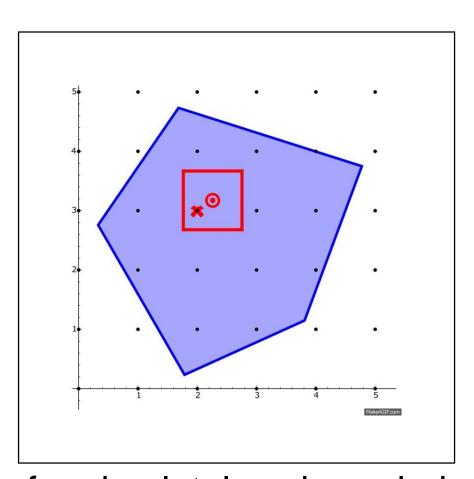


for absolutely unbounded problems



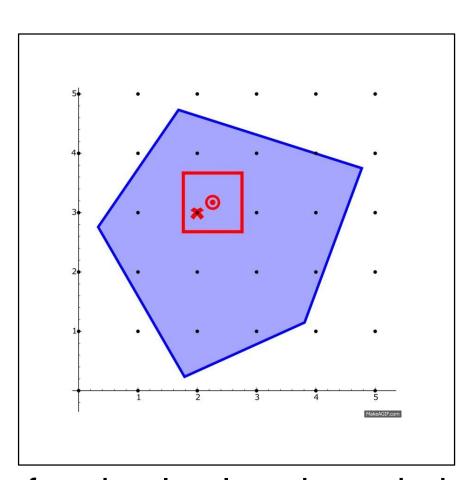
 unit cube guarantees integer solution

for absolutely unbounded problems



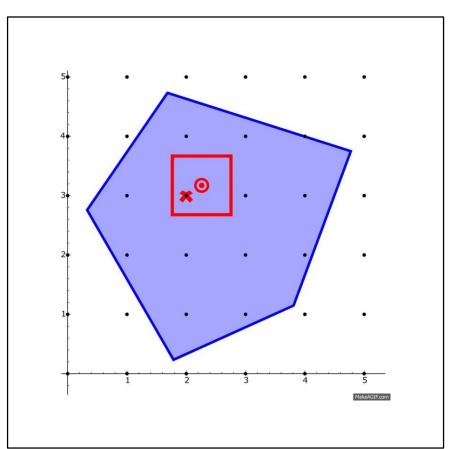
- unit cube guarantees integer solution
- computable in polynomial time

for absolutely unbounded problems



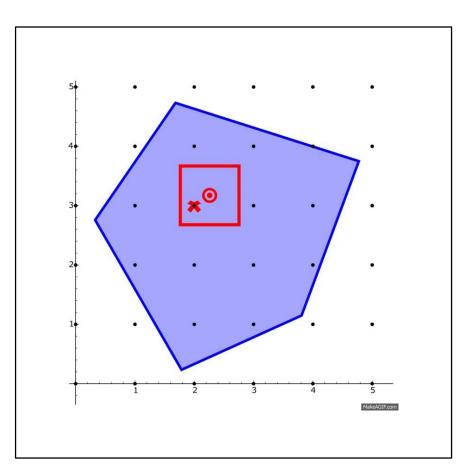
- unit cube guarantees integer solution
- computable in polynomial time
- incremental

for absolutely unbounded problems



for absolutely unbounded problems

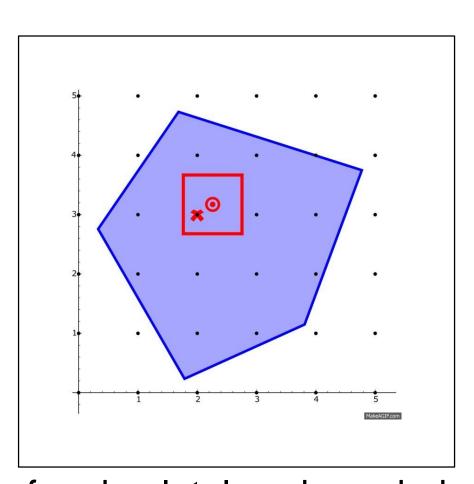
- unit cube guarantees integer solution
- computable in polynomial time
- incremental
- not complete in general



for absolutely unbounded problems

- unit cube guarantees integer solution
- computable in polynomial time
- incremental
- not complete in general
- always succeeds on abs. unbd. problems

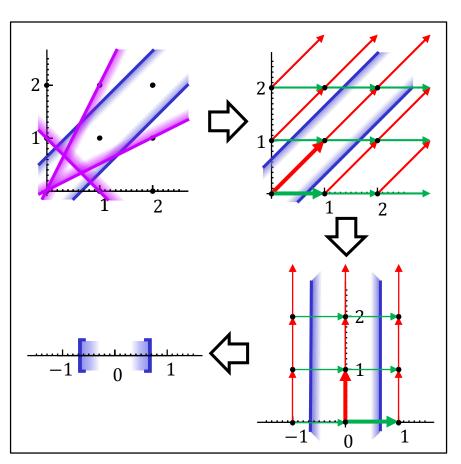
Results: Unit Cube Test (IJCAR 2016)



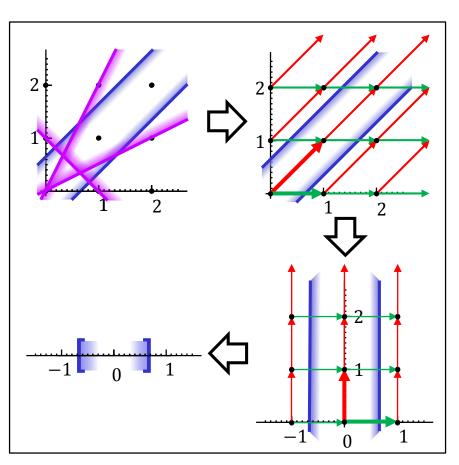
QF_LIA (6947 problems) 10^3 time(s) wo/ unit cubes 10^{2} 10¹ 10⁰ 10^{-1} 10⁰ 10^1 10^{2} 10^{3} time(s) w/ unit cubes

for absolutely unbounded problems

additional instances: 56 more than twice as fast: 705

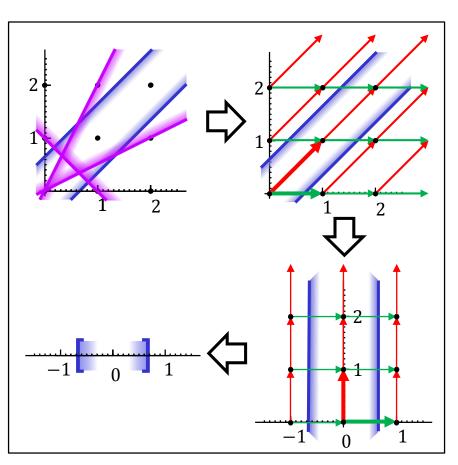


for partially unbounded problems



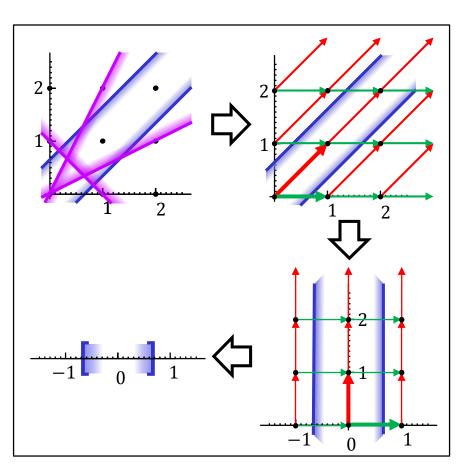
transforms unbounded into bounded problems

for partially unbounded problems



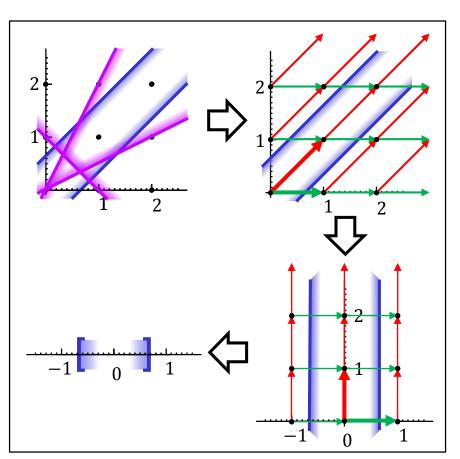
- transforms unbounded into bounded problems
- computable in polynomial time

for partially unbounded problems



for partially unbounded problems

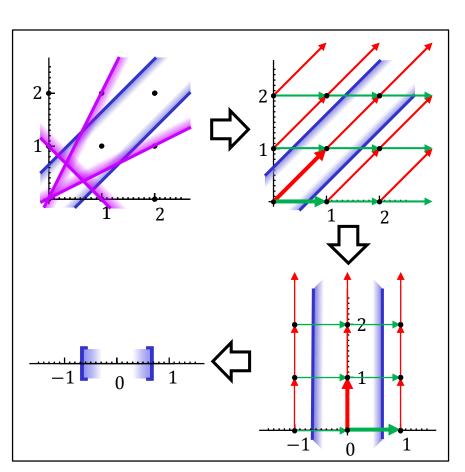
- transforms unbounded into bounded problems
- computable in polynomial time
- solution & conflict conversion (polynomial time)



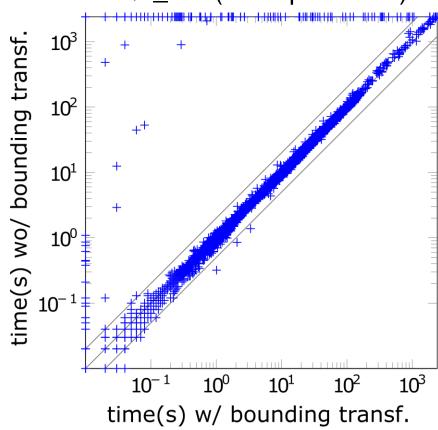
for partially unbounded problems

- transforms unbounded into bounded problems
- computable in polynomial time
- solution & conflict conversion (polynomial time)
- incremental

Results: Bounding Transformation (IJCAR 2018)



QF_LIA (6947 problems)



for partially unbounded problems

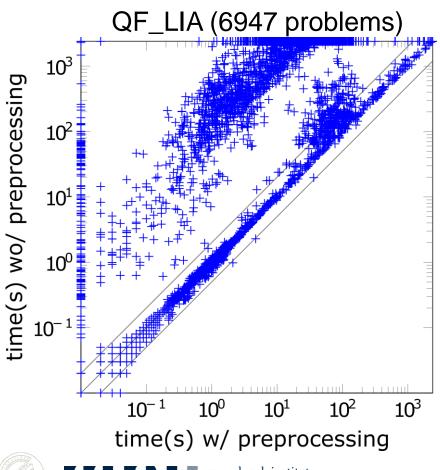
additional instances: 169 more than twice as fast: 167

Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

Preprocessing:

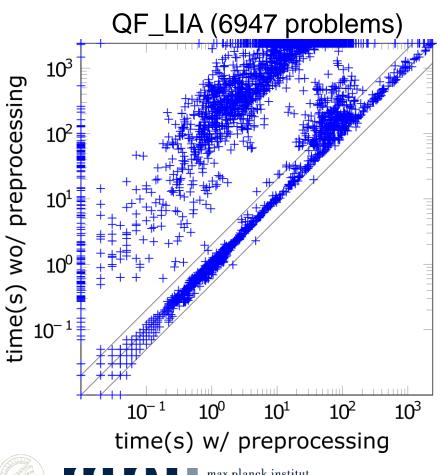
- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]



additional instances:1776

Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]



additional instances:1776

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

UNSAT

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

$$x = 3 \cdot k$$

$$x = 3 \cdot k$$
 for $k \in \mathbb{Z}$

$$0 \equiv_9 3 \cdot (3 \cdot k)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

$$x = 3 \cdot k$$

$$x = 3 \cdot k$$
 for $k \in \mathbb{Z}$

$$0 \equiv_9 3 \cdot (3 \cdot k)$$

$$x = 3 \cdot k + 1$$
 for $k \in \mathbb{Z}$

$$3 \equiv_9 3 \cdot (3 \cdot k + 1)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

UNSAT

Proof by case distinction:

$$x = 3 \cdot k$$

 $x = 3 \cdot k$ for $k \in \mathbb{Z}$

$$0 \equiv_9 3 \cdot (3 \cdot k)$$

$$x = 3 \cdot k + 1$$
 for $k \in \mathbb{Z}$

$$3 \equiv_{9} 3 \cdot (3 \cdot k + 1)$$

$$x = 3 \cdot k + 2$$
 for $k \in \mathbb{Z}$

$$6 \equiv_9 3 \cdot (3 \cdot k + 2)$$

Modular Arithmetic via If-Then-Else

$$2 \equiv_9 3 \cdot x$$

for
$$x \in \mathbb{Z}$$

Modular Arithmetic via If-Then-Else

 $2 \equiv_9 3 \cdot x$

$$0 \le x < 9 \qquad \Lambda \qquad 2 = \underbrace{if (3 \cdot x < 9)}_{\text{then}}$$

$$3 \cdot x \qquad \underbrace{if (3 \cdot x < 18)}_{\text{ev}}$$

 $3 \cdot x - 9$

 $3 \cdot x - 18$

for $x \in \mathbb{Z}$

Modular Arithmetic via If-Then-Else

$$2 \equiv_9 3 \cdot x$$
 for $x, y \in \mathbb{Z}$

$$0 \le x < 9 \qquad \land \qquad 2 = \underbrace{if (3 \cdot x < 9)}_{3 \cdot x}$$

$$if (3 \cdot x < 18)$$

$$y = 3 \cdot x - 9$$

$$y = 3 \cdot x - 18$$

$$2 \equiv_9 3 \cdot x$$
 for $x, y \in \mathbb{Z}$

$$0 \le x < 9 \qquad \land \qquad 2 = \underbrace{if (3 \cdot x < 9)}_{3 \cdot x}$$

$$\land \ ((3 \cdot x < 18)) \lor \ (y = 3 \cdot x - 18))$$

$$\land \ (\neg (3 \cdot x < 18) \ \lor \ (y = 3 \cdot x - 9))$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, y, z \in \mathbb{Z}$$

$$0 \le x < 9$$
 \land $2 = z$

$$if (3 \cdot x < 9)$$

$$z = 3 \cdot x$$

$$z = y$$

$$\land \ ((3 \cdot x < 18) \ \lor \ (y = 3 \cdot x - 18))$$

$$\land \ (\neg (3 \cdot x < 18) \ \lor \ (y = 3 \cdot x - 9))$$

$$2 \equiv_9 3 \cdot x$$
 for $x, y, z \in \mathbb{Z}$

$$\wedge$$
 2 = z

$$\wedge \quad ((3 \cdot x < 9) \quad \lor \quad (z = 3 \cdot x))$$

$$\land \ ((3 \cdot x < 18)) \lor \ (y = 3 \cdot x - 18))$$

$$\land \ (\neg (3 \cdot x < 18) \ \lor \ (y = 3 \cdot x - 9))$$

$$2 \equiv_9 3 \cdot x$$
 for $x, y, z \in \mathbb{Z}$

$$0 \le x < 9$$
 \land $2 = z$

$$\wedge$$
 2 = z

- two new variables
- suboptimally connected

$$\land ((3 \cdot x < 9)) \lor (z = 3 \cdot x))$$

$$\wedge \ (\neg (3 \cdot x < 9) \ \lor \ (z = y))$$

$$\land \ ((3 \cdot x < 18)) \ \lor \ (y = 3 \cdot x - 18))$$

$$\land \ (\neg(3 \cdot x < 18) \ \lor \ (y = 3 \cdot x - 9))$$

$$2 \equiv_9 3 \cdot x$$
 for $x \in \mathbb{Z}$

$$\Lambda \quad 2 = if (3 \cdot x < 9)$$

$$3 \cdot x \quad if (3 \cdot x < 18)$$

$$3 \cdot x - 9 \quad 3 \cdot x - 18$$

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

$$0 \le x < 9 \qquad \land \qquad 2 = \underbrace{if (3 \cdot x < 9)}_{3 \cdot x}$$

$$\underbrace{if (3 \cdot x < 18)}_{9\%}$$

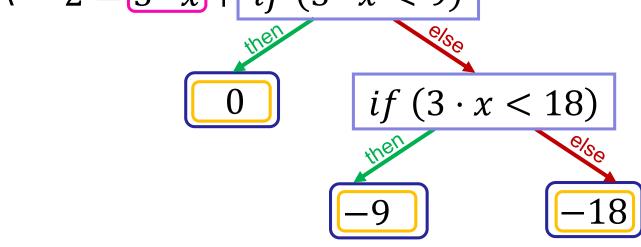
$$\underbrace{3 \cdot x - 9}_{3 \cdot x - 18}$$

All share the monomial $3 \cdot x$!

$$2 \equiv_9 3 \cdot x$$
 for $x \in \mathbb{Z}$

$$2 \equiv_{9} 3 \cdot x \qquad \text{for } x \in \mathbb{Z}$$

$$0 \le x < 9 \qquad \land \qquad 2 = 3 \cdot x + \text{if } (3 \cdot x < 9)$$



All divisible by -9!

$$2 \equiv_9 3 \cdot x \qquad for \ x \in \mathbb{Z}$$

$$0 \le x < 9$$
 \land $2 = 3 \cdot x - 9 \cdot if (3 \cdot x < 9)$

$$0 \quad if (3 \cdot x < 18)$$

If-Then-Else: Bounding

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$\wedge \quad 2 = 3 \cdot x - 9 \cdot z$$

$$\begin{array}{c}
\text{if } (3 \cdot x < 9) \\
z = 0 \quad \text{if } (3 \cdot x < 18) \\
z = 1 \quad z = 2
\end{array}$$

If-Then-Else: Bounding

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$0 \le x < 9$$

$$0 \le x < 9$$
 \wedge $2 = 3 \cdot x - 9 \cdot z$ \wedge $0 \le z \le 2$

$$0 \le z \le 2$$

$$if (3 \cdot x < 9)$$

$$z = 0 \quad if (3 \cdot x < 18)$$

$$z = 1 \quad z = 2$$

$$2 \equiv_9 3 \cdot x$$
 for $x, z \in \mathbb{Z}$

$$0 \le x < 9$$
 \land $2 = 3 \cdot x - 9 \cdot z$ \land $0 \le z \le 2$

$$\wedge \ (\neg (3 \cdot x < 9) \ \lor \boxed{z = 0})$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor [z = 1]$$

$$\land \ (\neg(3 \cdot x < 18) \ \lor [z = 2])$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$0 \le x < 9$$

$$0 \le x < 9 \qquad \land \qquad 2 = 3 \cdot x - 9 \cdot z \qquad \land \qquad 0 \le z \le 2$$

$$0 \le z \le 2$$

$$\land (\neg(3 \cdot x < 9) \lor z = 0)$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$$

$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$0 \le x < 9$$

$$0 \le x < 9 \qquad \land \qquad 2 \le 3 \cdot x - 9 \cdot z \qquad \land \qquad 0 \le z \le 2$$

$$\wedge \quad 2 \ge 3 \cdot x - 9 \cdot z$$

$$\land (\neg(3 \cdot x < 9) \lor z = 0)$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$$

$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$0 \le x < 9$$

$$0 \le x < 9 \qquad \left(\begin{array}{c} \Lambda & \frac{2}{3} \le 1 \cdot x - 3 \cdot z \\ \Lambda & \frac{2}{3} \ge 1 \cdot x - 3 \cdot z \end{array} \right) \Lambda \qquad 0 \le z \le 2$$

$$\wedge \quad \frac{2}{3} \ge 1 \cdot x - 3 \cdot z$$

$$\land (\neg(3 \cdot x < 9) \lor z = 0)$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$$

$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$0 \le x < 9$$

$$0 \le x < 9 \qquad \left[\begin{array}{c} \Lambda & \left[\frac{2}{3} \right] \le 1 \cdot x - 3 \cdot z \\ \\ \Lambda & \left[\frac{2}{3} \right] \ge 1 \cdot x - 3 \cdot z \end{array} \right] \Lambda \qquad 0 \le z \le 2$$

$$\land \quad 0 \le z \le 2$$

$$\land (\neg(3 \cdot x < 9) \lor z = 0)$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$$

$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$\land \quad 0 \le z \le 2$$

$$\wedge \quad 0 \ge 1 \cdot x - 3 \cdot z$$

$$\land (\neg(3 \cdot x < 9) \lor z = 0)$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$$

$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

$$2 \equiv_9 3 \cdot x$$

for
$$x, z \in \mathbb{Z}$$

$$0 \le x < 9 \qquad \land \qquad 1 \le 1 \cdot x - 3 \cdot z \qquad \land \qquad 0 \le z \le 2$$

$$\land \qquad 0 \ge 1 \cdot x - 3 \cdot z \qquad \Rightarrow 1 \le 0$$

$$\wedge \quad 0 \ge 1 \cdot x - 3 \cdot z$$

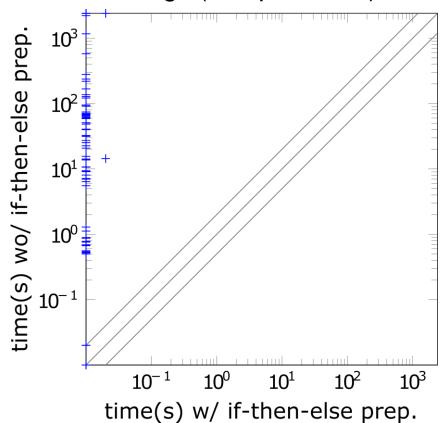
$$\land \quad 0 \le z \le 2$$

$$\land (\neg(3 \cdot x < 9) \lor z = 0)$$

$$\land ((3 \cdot x < 9) \lor \neg (3 \cdot x < 18) \lor z = 1)$$

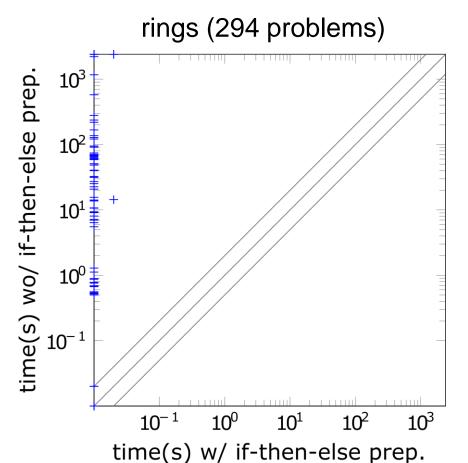
$$\land (\neg (3 \cdot x < 18) \lor z = 2)$$

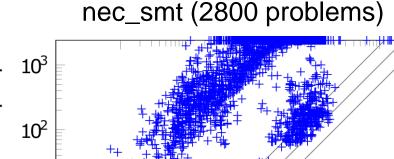
rings (294 problems)

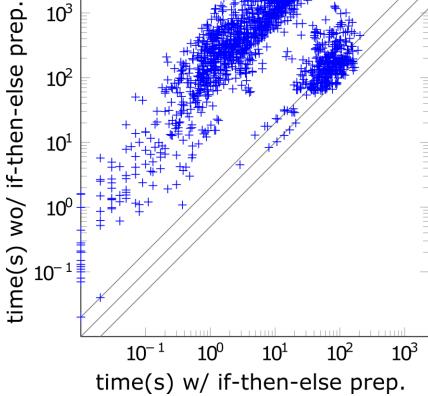


additional instances:157

Techniques: shared monomial lifting, ite bounding, (ite reconstruction)





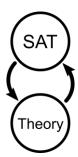


additional instances:157

Techniques: shared monomial lifting, ite bounding, (ite reconstruction)

additional instances: 1422

Techniques: constant-ite simplification, conjunctive-ite compression

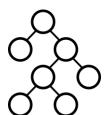


SAT and theory interaction:

- weakened early pruning [Sebastiani07]
- unate propagations and bound refinements [Dutertre06]
- decision recommendations [Yices]

Theory solver extensions:

- unit cube test [Bromberger16]
- bounding transformation [Bromberger18]
- simple rounding and bound propagation [Schrijver86]



Data-structure improvements:

- priority queue for pivot selection [pretty much everyone]
- integer coefficients instead of rational coefficients [veriT]
- backup instead of recalculation [pretty much everyone]

Preprocessing:

- if-then-else (reconstruction, lifting, simplification, bounding) [CVC4]
- pseudo-Boolean inequalities [CVC4]
- small CNF transformation [Weidenbach01]

