Formalizing Bachmair and Ganzinger's Ordered Resolution Prover

Anders Schlichtkrull

<u>Jasmin</u> Blanchette

Technical University of Denmark

Dmitriy Traytel Uwe Waldmann

Formalizing Automated Reasoning in Proof Assistants

Theorem

Proof assistants are mature enough to be used by researchers in AR.

Proof

We have formalized

- its soundness theorem
- its completeness theorem.

Corollary

We contribute to a growing library of formalized results in AR. (Which makes the theorem even more true.)

Bachmair and Ganzinger's resolution prover from Handbook of AR

IsaFoL: Isabelle Formalization of Logic

Framework and methodology for reasoning about AR in Isabelle. Adoption by AR researchers as a convenient way to develop metatheory. ITP benefits from ATP ... why not the other way round? Isabelle @ RTA, Coq @ POPL ... now Isabelle @ IJCAR.

Eat our own dog food!

bitbucket.org/isafol

Ordered resolution with selection

 $\frac{C_1 \vee A_1 \vee \cdots \vee A_1 \quad \dots \quad C_n \vee C_1}{C_1}$

where

is empty, n = 1, and A_1 is maximal with respect to D, (ii) each atom A_i is strictly maximal with respect to C_i , and (iii) no clause $C_i \lor A_i \lor \ldots \lor A_i$ contains a selected atom.

$$\frac{\lor A_n \lor \cdots \lor A_n \quad \neg A_1 \lor \cdots \lor \neg A_n \lor D}{\lor \cdots \lor C_n \lor D}$$

(i) either the subclause $\neg A_1 \lor \cdots \lor \neg A_n$ is selected by S in D, or else S(D)

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1 \quad \dots \quad C_n \lor}{C_1 \lor}$$

inductive

ord_resolve :: "'a clause list \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool"

where

 $\frac{\lor A_n \lor \cdots \lor A_n \quad \neg A_1 \lor \cdots \lor \neg A_n \lor D}{\lor \cdots \lor C_n \lor D}$

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1 \quad \dots \quad C_n \lor}{C_1 \lor}$$

inductive

ord_resolve :: "'a clause list \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool"

where

 $\frac{\lor A_n \lor \cdots \lor A_n \quad \neg A_1 \lor \cdots \lor \neg A_n \lor D}{\lor \cdots \lor C_n \lor D}$

$$\begin{array}{c|c} C_1 \lor A_1 \lor \cdots \lor A_1 & \dots & C_n \lor \\ & & C_1 \lor \end{array}$$

inductive

ord_resolve :: "'a clause list \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool"

where

 $\frac{\lor A_n \lor \cdots \lor A_n}{\lor \cdots \lor C_n \lor D} \neg A_1 \lor \cdots \lor \neg A_n \lor D$

$$\begin{array}{c|c} C_1 \lor A_1 \lor \cdots \lor A_1 & \dots & \hline C_n \lor \\ & & C_1 \lor \end{array}$$

inductive

ord_resolve :: "'a clause list \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool"

where

 $\frac{\lor A_n \lor \cdots \lor A_n \quad \neg A_1 \lor \cdots \lor \neg A_n \lor D}{\lor \cdots \lor C_n \lor D}$

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1}{C_1 \lor} \dots C_n \lor$$

inductive

ord_resolve :: "'a clause list \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool"

where

 $\frac{\forall A_n \lor \cdots \lor A_n}{\lor \cdots \lor C_n \lor D} = \neg A_1 \lor \cdots \lor \neg A_n \lor D$

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1 \quad \dots \quad C_n \lor}{C_1 \lor}$$

 $\frac{\vee A_n \vee \cdots \vee A_n}{\vee \cdots \vee C_n \vee D} \neg A_1 \vee \cdots \vee \neg A_n \vee D$

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1 \quad \dots \quad C_n \lor}{C_1 \lor}$$

inductive

ord_resolve :: "'a clause list \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool"

where

"length (CAs :: 'a clause list) = $n \implies$ length (Cs :: 'a clause list) = $n \implies$ length (AAs :: 'a multiset list) = $n \implies$ length (As :: 'a list) = $n \implies$ $n \neq 0 \Longrightarrow$ $\forall i < n. (CAs ! i) = (Cs ! i + (poss (AAs ! i))) \Longrightarrow$ $\forall i < n. (\forall A \in \# AAs ! i. A = As ! i) \Longrightarrow$ $\forall i < n. AAs ! i \neq \{\#\} \Longrightarrow$ eligible As (D + negs (mset As)) \Longrightarrow $\forall i < n. str_maximal_in (As ! i) (Cs ! i) \Longrightarrow$ $\forall i < n. \ S (CAs ! i) = \{\#\} \Longrightarrow$ ord_resolve CAs (negs (mset As) + D) ((∪# (mset Cs)) + D)"

 $\frac{\lor A_n \lor \cdots \lor A_n \quad \neg A_1 \lor \cdots \lor \neg A_n \lor D}{\lor \cdots \lor C_n \lor D}$

Length of lists Composition of clauses Side conditions

Ordered resolution with selection

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1}{C_1 \lor \cdots \lor C_n \lor C_n} \xrightarrow{\neg A_1 \lor \cdots \lor \neg A_n \lor D}$$

where

is empty, n = 1, and A_1 is maximal with respect to D, (ii) each atom A_i is strictly maximal with respect to C_i , and (iii) no clause $C_i \lor A_i \lor \ldots \lor A_i$ contains a selected atom.

Side Conditions

(i) either the subclause $\neg A_1 \lor \cdots \lor \neg A_n$ is selected by S in D, or else S(D)

Ordered resolution with selection

$$\frac{C_1 \lor A_1 \lor \cdots \lor A_1 \quad \dots \quad C_n}{C_1}$$

where

is empty, n = 1, and A_1 is maximal with respect to D, (ii) each atom A_i is strictly maximal with respect to C_i , and (iii) no clause $C_i \lor A_i \lor \ldots \lor A_i$ contains a selected atom.

Side Conditions

 $\frac{A_n \vee A_n \vee \cdots \vee A_n \quad \neg A_1 \vee \cdots \vee \neg A_n \vee D}{\vee \cdots \vee C_n \vee D}$

(i) either the subclause $\neg A_1 \lor \cdots \lor \neg A_n$ is selected by <u>S in D</u>, or else <u>S(D)</u>

 $S \text{ in } D \lor \neg A_1 \lor \ldots \lor \neg A_n$

Abstract Redundancy

F is the set of inferences that makes up an inference system. Abstract redundancy is defined:

locale redundancy_criterion = inference_system + **fixes** Rf :: "'a clause set \Rightarrow 'a clause set" **and** Ri :: "'a clause set \Rightarrow 'a inference set" **assumes** "Ri N \subseteq Γ " **and** "N \subseteq N' \Rightarrow Rf N \subseteq Rf N"' **and** "N \subseteq N' \Rightarrow Rf N \subseteq Rf N"' **and** "N \subseteq Rf N \Rightarrow Rf N \subseteq Rf (N - N')" **and** "N' \subseteq Rf N \Rightarrow Ri N \subseteq Ri (N - N')" **and** "N' \subseteq Rf N \Rightarrow Ri N \subseteq Ri (N - N')" **and** "satisfiable (N - Rf N) \Rightarrow satisfiable N"

Standard Redundancy

definition Rf :: "'a clause set \Rightarrow 'a clause set" where "Rf N ={C. \exists DD. set_mset DD \subseteq N $\land (\forall I. I \models m DD \longrightarrow I \models C)$ $\land (\forall \mathsf{D}. \mathsf{D} \in \# \mathsf{D}\mathsf{D} \longrightarrow \mathsf{D} < \mathsf{C}) \}"$

definition Ri :: "'a clause set \Rightarrow 'a inference set" where "Ri N = $\{\gamma \in \Gamma. \exists DD. set_mset DD \subseteq N\}$ ∧ (\forall I. I ⊨m DD + side_prems_of γ → I ⊨ concl_of γ) ∧ (∀D. D ∈ # DD \longrightarrow D < main_prem_of γ)}"

Theorem Proving Processes

definition " \triangleright " :: "'a clause set \Rightarrow 'a clause set \Rightarrow bool" where "M ▷ N \leftrightarrow N - M ⊆ concls_of (inferences_from M) ∧ M - N ⊆ Rf N" The deleted clauses The deduced clauses

Saturation up to redundancy:

definition saturated :: "'a clause set \Rightarrow bool" where "saturated N \leftrightarrow inferences_from (N - Rf N) ⊆ Ri N"

Completeness of Ordered Ground Resolution

lemma saturated_complete_if: assumes "saturated N" and "¬ satisfiable N"

shows "{#} ∈ N"

Ordered First-Order Resolution

Ordered resolution with selection $\frac{C_1 \vee A_{11} \vee \ldots \vee A_{1k_1} \quad \ldots \quad C_n \vee C_1 \sigma \vee C_$

where σ is a most general simultaneous solution of all unification problems $A_{i1} = \ldots = A_{ik_i} = A_i$, where $1 \leq i \leq n$, and (i) either A_1, \ldots, A_n are selected in D, or else nothing is selected in D, n = 1, and $A_1 \sigma$ is maximal in $D\sigma$, (ii) each atom $A_{ii}\sigma$ is strictly maximal with respect to $C_i\sigma$, and

(iii) no clause $C_i \vee A_{i1} \vee \ldots \vee A_{ik_i}$ contains a selected atom.

$$\bigvee A_{1n} \lor \ldots \lor A_{nk_n} \quad \neg A_1 \lor \ldots \lor \neg A_n \lor D$$
$$\bigwedge C_n \sigma \lor D \sigma$$

Ordered First-Order Resolution

$$\frac{C_1 \vee A_{11} \vee \ldots \vee A_{1k_1} \quad \ldots \quad C_n}{C_1 \sigma}$$

inductive

ord_resolve:: "'a clause list \Rightarrow 'a clause \Rightarrow 's \Rightarrow 'a clause \Rightarrow bool"

where

"length (CAs :: 'a clause list) = $n \implies$ length (Cs :: 'a clause list) = $n \implies$ length (AAs :: 'a multiset list) = $n \implies$ length (As :: 'a list) = $n \implies$ $n \neq 0 \Longrightarrow$ $\forall i < n. (CAs ! i) = (Cs ! i + (poss (AAs ! i))) \Longrightarrow$ $\forall i < n. AAs ! i \neq \{\#\} \Longrightarrow$ Some $\sigma = mgu$ (set_mset ` (set (map2 add_mset As AAs))) \implies eligible σ As (D + negs (mset As)) \Longrightarrow $\forall i. i < n \longrightarrow str_maximal_in (As ! i \cdot a \sigma) ((Cs ! i) \cdot \sigma) \Longrightarrow$ $\forall i < n. \ S (CAs ! i) = \{\#\} \Longrightarrow$ ord_resolve CAs (D + negs (mset As)) σ (((\cup # (mset Cs)) + D) $\cdot \sigma$)"

 $\neg A_{1n} \vee \ldots \vee A_{nk_n} \quad \neg A_1 \vee \ldots \vee \neg A_n \vee D$ $\neg \vee \ldots \vee C_n \sigma \vee D \sigma$

Length of lists Composition of clauses Side conditions

Ordered First-Order Resolution A_{n1} $\frac{A_{1n} \vee \ldots \vee A_{nk_n} \quad \neg A_1 \vee \ldots \vee \neg A_n \vee D}{\ldots \vee C_n \sigma \vee D\sigma}$

Ordered resolution with selection

$$\frac{C_1 \vee A_{11} \vee \ldots \vee A_{1k_1} \quad \ldots \quad C_n \vee C_1 \sigma \vee C_$$

 $A_{i1} = \ldots = A_{ik_i} = A_i$, where $1 \leq i \leq n$, and and $A_1\sigma$ is maximal in $D\sigma$, (ii) each atom $A_{ii}\sigma$ is strictly maximal with respect to $C_i\sigma$, and (iii) no clause $C_i \vee A_{i1} \vee \ldots \vee A_{ik_i}$ contains a selected atom.

where σ is a most general simultaneous solution of all unification problems (i) either A_1, \ldots, A_n are selected in D, or else nothing is selected in D, n = 1, selected in $D \vee \neg A_1 \vee \ldots \vee \neg A_n$

Tautology deletion $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$ Forward subsumption Backward subsumption $\mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$ $\mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C\} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$

Forward reduction $\mathcal{N} \cup \{C \lor L\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O}$ if there is a clause $D \vee L'$ in $\mathcal{P} \cup \mathcal{O}$ such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$

Backward reduction $\mathcal{N} \mid \mathcal{P} \cup \{C \lor L\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$ $\mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C \lor L\} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$ if there is a clause $D \vee L'$ in \mathcal{N} such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$.

Clause processing $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$

Inference computation

 $\emptyset \mid \mathcal{P} \cup \{C\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C\}$

the others are in \mathcal{O}

Prover

if C is a tautology

 $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$ if some clause in $\mathcal{P} \cup \mathcal{O}$ subsumes C

if some clause in \mathcal{N} properly subsumes C

where $\mathcal{N} =$ all conclusions of inferences where one premise is *C* and

A state is a triple $(\mathcal{N}, \mathcal{P}, \mathcal{O})$ of sets of respectively \mathcal{N} ew, \mathcal{P} rocessed, and \mathcal{O} Id clauses.

Let's look at three of the rules:

Forward reduction $\mathcal{N} \cup \{C \lor L\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O}$ Clause processing $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$ Inference computation $\emptyset \mid \mathcal{P} \cup \{C\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C\}$

the others are in \mathcal{O}

Prover

if there is a clause $D \lor L'$ in $\mathcal{P} \cup \mathcal{O}$ such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$

where $\mathcal{N} =$ all conclusions of inferences where one premise is *C* and

A Simple Proof?

Consider the set containing and the selection function $S(C)=\emptyset$ for all C. 1) q(a,c,b) 2) $\neg q(x,y,z) \lor q(y,z,x)$ 3) ¬q(b,a,c) with ordering q(c, b, a) > q(b, a, c) > q(a, c, b).

$$\neg q(x,y,z) \lor q(y,z,x) \qquad \neg q(x',y',z') \lor q(y,z,x)$$
$$\neg q(x,y,z) \lor q(z,x,y)$$
$$\neg q(a,c,b)$$

However, the prover will not do this inference!

Repairing the Incompleteness

Inference computation $\emptyset \mid \mathcal{P} \cup \{C\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C\}$

and the others are in $\mathcal{O} \cup \{C\}$

where $\mathcal{N} =$ all conclusions of inferences where one premise is *C*

Tautology deletion $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O}$	\Rightarrow	$\mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$
Forward subsumption $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O}$	\Rightarrow	$\mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$
Backward subsumption $\mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O} \ \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C\}$	$\stackrel{n}{\Rightarrow}$	$\begin{array}{c c} \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \\ \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \end{array}$

Forward reduction $\mathcal{N} \cup \{C \lor L\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O}$ if there is a clause $D \lor L'$ in $\mathcal{P} \cup \mathcal{O}$ such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$ Backward reduction $\mathcal{N} \mid \mathcal{P} \cup \{C \lor L\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$ $\mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C \lor L\} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$ if there is a clause $D \vee L'$ in \mathcal{N} such that $\overline{L} = L'\sigma$ and $D\sigma \subseteq C$

Clause processing $\mathcal{N} \cup \{C\} \mid \mathcal{P} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \cup \{C\} \mid \mathcal{O}$

Inference computation $\emptyset \mid \mathcal{P} \cup \{C\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O} \cup \{C\}$

the others are in $\mathcal{O} \cup \{C\}$

Prover

if C is a tautology

if some clause in $\mathcal{P} \cup \mathcal{O}$ subsumes C

if some clause in \mathcal{N} properly subsumes C

where $\mathcal{N} =$ all conclusions of inferences where one premise is *C* and

Repaired Prover, Formalized

inductive resolution_prover :: "'a state \Rightarrow 'a state \Rightarrow bool" tautology_deletion: $"Neg A \in \# C \Longrightarrow Pos A \in \# C \Longrightarrow (N \cup \{C\}, P, Q) \rightarrow (N, P, Q)"$ I forward_subsumption: "(∃D ∈ P ∪ Q. subsumes D C) \implies (N ∪ {C}, P, Q) \rightarrow (N, P, Q)" I backward_subsumption_P: "($\exists D \in N.$ properly_subsumes D C) \implies (N, P \cup {C}, Q) \rightarrow (N, P, Q)" I backward_subsumption_Q: "($\exists D \in N.$ properly_subsumes D C) \implies (N, P, Q \cup {C}) \rightarrow (N, P, Q)" I forward_reduction: "($\exists D L'. D + \{\#L'\#\} \in P \cup Q \land -L = L' \cdot \sigma \land D \cdot \sigma \leq \#C$) \Longrightarrow $(N \cup \{C + \{\#L\#\}\}, P, Q) \rightarrow (N \cup \{C\}, P, Q)"$ I backward_reduction_P: "(∃D L'. D + {#L'#} \in N \land - L = L' \cdot I σ \land D \cdot $\sigma \leq$ # C) \Longrightarrow $(N, P \cup \{C + \{\#L\#\}\}, Q) \rightarrow (N, P \cup \{C\}, Q)''$ I backward_reduction_Q: $"(\exists D L'. D + \{\#L'\#\} \in N \land - L = L' \cdot | \sigma \land D \cdot \sigma \leq \# C) \Longrightarrow$ $(N, P, Q \cup \{C + \{\#L\#\}\}) \rightarrow (N, P \cup \{C\}, Q)"$ I clause_processing: $"(\mathsf{N} \cup \{\mathsf{C}\}, \mathsf{P}, \mathsf{Q}) \rightarrow (\mathsf{N}, \mathsf{P} \cup \{\mathsf{C}\}, \mathsf{Q})"$ l inference_computation: "N = concls_of (inferences_between Q C) \implies $(\{\}, \mathsf{P} \cup \{\mathsf{C}\}, \mathsf{Q}) \rightarrow (\mathsf{N}, \mathsf{P}, \mathsf{Q} \cup \{\mathsf{C}\})"$

Completeness

Bachmair and Ganzinger prove completeness under the assumption of fairness.

- A sequence of states is fair if
- \bullet no clause eventually always stays in $\mathcal N$, and
- no clause eventually always stays in \mathcal{P} .

The big picture of the proof is roughly: 1. Assume the initial set of clauses is unsatisfied. 2. Project the sequence of states down to the ground level. 3. By fairness, any non-redundant clause eventually gets old. 4. Therefore the grounding of the old clauses is saturated.

- 5. Using completeness of ground resolution we get the empty clause.

Completeness

Bachmair and Ganzinger prove completeness under the assumption of fairness.

- A sequence of states is fair if
- no clause eventually always stays in \mathcal{N} , and
- no clause eventually always stays in \mathcal{P} .

The big picture of the proof is roughly:

- 1. Assume the initial set of clauses is unsatisfied.
- 2. Project the sequence of states down to the ground level.
- 3. By fairness, any non-redundant clause eventually gets old.
- 4. Therefore the grounding of the old clauses is saturated.
- 5. Using completeness of ground resolution we get the empty clause.

Any Nonredundant Ground Clause Eventually Gets Old?

A flawed proof of this lemma is provided by the authors. The big picture of their proof is:

- 1. Consider a non-redundant ground clause C in the grounding of \mathcal{N} or \mathcal{P} .
- 2. It is the instance of some clause D in \mathcal{N} or \mathcal{P} .
- 4. By inspection of the rules we can see that D must eventually be in \mathcal{O} .
- 5. Therefore C must be in the grounding of \mathcal{O} .

Counterexample to 4: $(\{p(x)\}, \{p(f(y))\}, \{\}) \implies (\{p(x)\}, \{\}, \{\})$

> Backward subsumption $\mathcal{N} \mid \mathcal{P} \cup \{D\} \mid \mathcal{O} \implies \mathcal{N} \mid \mathcal{P} \mid \mathcal{O}$

3. By fairness D cannot stay forever in \mathcal{N} or \mathcal{P} and thus must have been removed by some rule.

if some clause in \mathcal{N} properly subsumes D

Any Nonredundant Ground Clause Eventually Gets Old?

A flawed proof of this lemma is provided by the authors. The big picture of their proof is:

- 1. Consider a non-redundant ground clause C in the grounding of \mathcal{N} or \mathcal{P} .
- 2. It is the instance of some clause D in \mathcal{N} or \mathcal{P} .
- 4. By inspection of the rules we can see that D must eventually be in \mathcal{O} .
- 5. Therefore C must be in the grounding of \mathcal{O} .

We know D exists since strict subsumption is well founded.

smallest w.r.t. subsumption

3. By fairness D cannot stay forever in \mathcal{N} or \mathcal{P} and thus must have been removed by some rule.

Completeness of FO Ordered Resolution Prover

theorem completeness:

assumes

renaming: " $\land \rho$ C. is_renaming $\rho \implies Sel (C \cdot \rho) = Sel C \cdot \rho$ "

assumes

"derivation (op \rightarrow) S" and "fair_state_seq S" and "¬ satisfiable (grounding_of_state S₀)" and **shows** "{#} \in clss_of_state S_{∞} "

What Was Tricky?

- Many lemmas and their proofs have flaws: Lemma 3.4 contains a wrong claim.
 - Lemma 3.7 has a counter example, but the lemma is fortunately never used.
 - Section 4.1 contains results that require soundness, but it is claimed that consistency-preservability is enough.
 - Theorem 4.3's proof does not cover all cases.
 - Lemma 4.10 uses a selection function, but it is not clear which.
 - Lemma 4.10 concerns the extension of a proof system, but it is not clear which.
 - Lemma 4.10 is only proved for finite sequences, but later used for infinite ones.
 - Lemma 4.12 has a 2 sentence proof. In Isabelle the proof is about 500 LOC.

General issue: Lemmas are stated, but not referenced later.

What Was Tricky?

Procedure for dealing with these problems:

- 1. Rewrite the chapter's proofs to handwritten pseudo-Isabelle.
- 2. Fill in the gaps and write where lemmas are used.
- 3. Turn the pseudo-Isabelle into real Isabelle, but with **sorry** instead of proofs.
- 4. Replace the **sorry**s with proofs.

Backtrack when necessary.

Refinement Chain

What Can We Learn from Formalization?

I have a question about Chapter 2 of the Handbook of AR. On p. 45, they introduce a function S_M to select literals in ground instances of clauses in M. The definition says **Do you know why** they define the function for clauses

underspecified or does this serve a special purpose?

What Can We Learn from Formalization?

I have a question about Chapter 2 of the Handbook of AR. On p. 45, they introduce a function S_M to select literals in ground instances of clauses in M. The definition says "(ii) $S_M(C) = S(C)$, if C is not in K." **Do you know why** they define the function for clauses not in K? Is it because they don't want to leave S_M underspecified or does this serve a special purpose?

As far as I can see, S_M is only needed for ground instances, and then case (ii) is irrelevant. I guess they just wanted to define S_M as a total function over (possibly non-ground) clauses.

What Can We Learn from Formalization?

I have a question about Chapter 2 of the Handbook of AR. On p. 45, they introduce a function S_M to select literals in ground instances of clauses in M. The definition says "(ii) $S_M(C) = S(C)$, if C is not in K." **Do you know why** they define the function for clauses not in K? Is it because they don't want to leave S_M underspecified or does this serve a special purpose?

As far as I can see, S_M is only needed for ground instances, and then case (ii) is irrelevant. I guess they just wanted to define S_M as a total function over (possibly non-ground) clauses.

I tried to change the definition in the formalization to return {} if C is not in K.With this definition the key properties also hold, and **the proof goes through**.

Suitability of Isabelle

Isabelle was entirely suitable for this development.

We benefitted from

- codatatypes
- Isabelle/jEdit
- Isar proofs
- locales
- Sledgehammer.

Calculus

Schlichtkrull ITP 2016, JAR 2018

Prover

Schlichtkrull et al. IJCAR 2018, this talk

Resolution

Related Work

Peltier AFP 2016

Superposition

We have formalized Bachmair and Ganzinger's prover.

The chapter withstood the test of formalization after allowing the prover to do self-inferences

- repairing some of the proofs.

The formalization

- clarifies the chapter's content
- AR metatheory.

Conclusion

• contributes to the effort of making useful tools for developing

