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Formalizing Automated Reasoning in Proof Assistants

Theorem 
Proof assistants are mature enough to be used by researchers in AR. 

Proof 
We have formalized  

• Bachmair and Ganzinger’s resolution prover from Handbook of AR 

• its soundness theorem 

• its completeness theorem. 

Corollary 
We contribute to a growing library of formalized results in AR. 

(Which makes the theorem even more true.)
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IsaFoL: Isabelle Formalization of Logic

Framework and methodology 
    for reasoning about AR in Isabelle. 

Adoption by AR researchers 
    as a convenient way to develop metatheory. 

ITP benefits from ATP 
    … why not the other way round? 

Isabelle @ RTA, Coq @ POPL  
    … now Isabelle @ IJCAR. 

Eat our own dog food!
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bitbucket.org/isafol



Ordered Ground Resolution
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inductive 
  ord_resolve :: "'a clause list ⇒ 'a clause ⇒ 'a clause ⇒ bool"
  where
   "length (CAs :: 'a clause list) = n ⟹
    length (Cs  :: 'a clause list) = n ⟹
    length (AAs :: 'a multiset list) = n ⟹
    length (As  :: 'a list) = n ⟹
    n ≠ 0 ⟹
    ∀i < n. (CAs ! i) = (Cs ! i + (poss (AAs ! i))) ⟹
    ∀i < n. (∀A ∈# AAs ! i. A = As ! i) ⟹
    ∀i < n. AAs ! i ≠ {#} ⟹
    eligible As (D + negs (mset As)) ⟹
    ∀i < n. str_maximal_in (As ! i) (Cs ! i) ⟹
    ∀i < n. S (CAs ! i) = {#} ⟹
    ord_resolve CAs (negs (mset As) + D) ((⋃# (mset Cs)) + D)" 
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S in D⋁¬A1⋁…⋁¬An



Abstract Redundancy

Γ is the set of inferences that makes up an inference system.  

Abstract redundancy is defined: 

locale redundancy_criterion = inference_system +
  fixes
    Rf :: "'a clause set ⇒ 'a clause set" and 
    Ri :: "'a clause set ⇒ 'a inference set"
  assumes
    "Ri N ⊆ Γ" and 
    "N ⊆ N' ⟹ Rf N ⊆ Rf N'" and
    "N ⊆ N' ⟹ Ri N ⊆ Ri N'" and
    "N' ⊆ Rf N ⟹ Rf N ⊆ Rf (N - N')" and
    "N' ⊆ Rf N ⟹ Ri N ⊆ Ri (N - N')" and
    "satisfiable (N - Rf N) ⟹ satisfiable N"
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Standard Redundancy

definition Rf :: "'a clause set ⇒ 'a clause set" where
  "Rf N = 
     {C. ∃DD. set_mset DD ⊆ N 
           ∧ (∀I. I ⊨m DD ⟶ I ⊨ C) 
           ∧ (∀D. D ∈# DD ⟶ D < C)}"
 
 

definition Ri :: "'a clause set ⇒ 'a inference set" where
  "Ri N = 
     {γ ∈ Γ. ∃DD. set_mset DD ⊆ N 
                ∧ (∀I. I ⊨m DD + side_prems_of γ ⟶ I ⊨ concl_of γ)
                ∧ (∀D. D ∈# DD ⟶ D < main_prem_of γ)}"
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Theorem Proving Processes

definition "▹" :: "'a clause set ⇒ 'a clause set ⇒ bool" where

  "M ▹ N ⟷ N - M ⊆ concls_of (inferences_from M) ∧ M - N ⊆ Rf N"

 
Saturation up to redundancy:  

definition saturated :: "'a clause set ⇒ bool" where

  "saturated N ⟷ inferences_from (N - Rf N) ⊆ Ri N"
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The deduced clauses
{ {

The deleted clauses



Completeness of Ordered Ground Resolution

lemma saturated_complete_if:
  assumes
    "saturated N" and
    "¬ satisfiable N"
  shows "{#} ∈ N"
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Ordered First-Order Resolution
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inductive 
  ord_resolve:: "'a clause list ⇒ 'a clause ⇒ 's ⇒ 'a clause ⇒ bool" 
  where
   "length (CAs :: 'a clause list) = n ⟹
    length (Cs  :: 'a clause list) = n ⟹
    length (AAs :: 'a multiset list) = n ⟹
    length (As  :: 'a list) = n ⟹
    n ≠ 0 ⟹
    ∀i < n. (CAs ! i) = (Cs ! i + (poss (AAs ! i))) ⟹
    ∀i < n. AAs ! i ≠ {#} ⟹
    Some σ = mgu (set_mset ` (set (map2 add_mset As AAs))) ⟹ 
    eligible σ As (D + negs (mset As)) ⟹
    ∀i. i < n ⟶ str_maximal_in (As ! i ⋅a σ) ((Cs ! i) ⋅ σ) ⟹
    ∀i < n. S (CAs ! i) = {#} ⟹
    ord_resolve CAs (D + negs (mset As)) σ (((⋃# (mset Cs)) + D) ⋅ σ)"

}
}
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Ordered First-Order Resolution

}

Length of lists

Composition of clauses

Side conditions
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Ordered First-Order Resolution
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An1

selected in D ⋁ ¬A1 ⋁ … ⋁ ¬AnAijσ



Prover
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where 𝒩 = all conclusions of inferences where one premise is C and 

                  the others are in 𝒪



A state is a triple (𝒩,𝒫,𝒪) of sets of respectively 

𝒩ew, 𝒫rocessed, and 𝒪ld clauses. 

Let’s look at three of the rules: 

Prover
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where 𝒩 = all conclusions of inferences where one premise is C and 
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A Simple Proof?
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Consider the set containing and the selection function S(C)=∅ for all C. 

1) q(a,c,b) 

2) ¬q(x,y,z) ⋁ q(y,z,x) 

3) ¬q(b,a,c) 

with ordering q(c, b, a) > q(b, a, c) > q(a, c, b). 

However, the prover will not do this inference! 

¬q(x,y,z) ⋁ q(y,z,x) ¬q(x’,y’,z’) ⋁ q(y’,z’,x’)

¬q(x,y,z) ⋁ q(z,x,y)                        ¬q(b,a,c)

¬q(a,c,b)                              q(a,c,b) 

only possible inference  
from 1,2,3

⊥



Repairing the Incompleteness
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where 𝒩 = all conclusions of inferences where one premise is C 

                  and the others are in 𝒪 ⋃ {C}



Prover
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where 𝒩 = all conclusions of inferences where one premise is C and 

                   the others are in 𝒪 ⋃ {C}



Repaired Prover, Formalized

inductive resolution_prover :: "'a state ⇒ 'a state ⇒ bool"
  tautology_deletion: 
    "Neg A ∈# C ⟹ Pos A ∈# C ⟹ (N ∪ {C}, P, Q) ↝ (N, P, Q)"
| forward_subsumption: 
     "(∃D ∈ P ∪ Q. subsumes D C) ⟹ (N ∪ {C}, P, Q) ↝ (N, P, Q)"
| backward_subsumption_P: 
     "(∃D ∈ N. properly_subsumes D C) ⟹ (N, P ∪ {C}, Q) ↝ (N, P, Q)"
| backward_subsumption_Q: 
     "(∃D ∈ N. properly_subsumes D C) ⟹ (N, P, Q ∪ {C}) ↝ (N, P, Q)"
| forward_reduction: 
    "(∃D L'. D + {#L'#} ∈ P ∪ Q ∧ - L = L' ⋅l σ ∧ D ⋅ σ ≤# C) ⟹
       (N ∪ {C + {#L#}}, P, Q) ↝ (N ∪ {C}, P, Q)"
| backward_reduction_P: 
    "(∃D L'. D + {#L'#} ∈ N ∧ - L = L' ⋅l σ ∧ D ⋅ σ ≤# C) ⟹
      (N, P ∪ {C + {#L#}}, Q) ↝ (N, P ∪ {C}, Q)"
| backward_reduction_Q: 
    "(∃D L'. D + {#L'#} ∈ N ∧ - L = L' ⋅l σ ∧ D ⋅ σ ≤# C) ⟹
      (N, P, Q ∪ {C + {#L#}}) ↝ (N, P ∪ {C}, Q)"
| clause_processing: 
    "(N ∪ {C}, P, Q) ↝ (N, P ∪ {C}, Q)"
| inference_computation:
    "N = concls_of (inferences_between Q C) ⟹
     ({}, P ∪ {C}, Q) ↝ (N, P, Q ∪ {C})"
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Completeness

Bachmair and Ganzinger prove completeness under the assumption of fairness. 

A sequence of states is fair if 

• no clause eventually always stays in 𝒩, and 

• no clause eventually always stays in 𝒫. 

The big picture of the proof is roughly: 

1. Assume the initial set of clauses is unsatisfied. 

2. Project the sequence of states down to the ground level. 

3. By fairness, any non-redundant clause eventually gets old. 

4. Therefore the grounding of the old clauses is saturated. 

5. Using completeness of ground resolution we get the empty clause.

 20
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Any Nonredundant Ground Clause Eventually Gets Old?

A flawed proof of this lemma is provided by the authors. 

The big picture of their proof is: 

1. Consider a non-redundant ground clause C in the grounding of 𝒩 or 𝒫. 

2. It is the instance of some clause D in 𝒩 or 𝒫. 

3. By fairness D cannot stay forever in 𝒩 or 𝒫 and thus must have been removed by some rule. 

4. By inspection of the rules we can see that D must eventually be in 𝒪. 

5. Therefore C must be in the grounding of 𝒪. 

Counterexample to 4: 

({p(x)},  {p(f(y))},  {})  ⟹  ({p(x)},  {},  {})
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Any Nonredundant Ground Clause Eventually Gets Old?
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smallest w.r.t. subsumption
A flawed proof of this lemma is provided by the authors. 

The big picture of their proof is: 

1. Consider a non-redundant ground clause C in the grounding of 𝒩 or 𝒫. 

2. It is the instance of some clause D in 𝒩 or 𝒫. 

3. By fairness D cannot stay forever in 𝒩 or 𝒫 and thus must have been removed by some rule. 

4. By inspection of the rules we can see that D must eventually be in 𝒪. 

5. Therefore C must be in the grounding of 𝒪. 

({p(x)},  {p(f(y))},  {})  ⟹  ({p(x)},  {},  {})
We know D exists since strict subsumption is well founded.  



Completeness of FO Ordered Resolution Prover 

theorem completeness:
  assumes 
    renaming: "⋀ρ C. is_renaming ρ ⟹ Sel (C ⋅ ρ) = Sel C ⋅ ρ"
  assumes
    "derivation (op ↝) S" and
    "fair_state_seq S" and
    "¬ satisfiable (grounding_of_state S0)" and
  shows "{#} ∈ clss_of_state S∞"
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What Was Tricky?

Many lemmas and their proofs have flaws: 
Lemma 3.4 contains a wrong claim. 

Lemma 3.7 has a counter example, but the lemma is fortunately never used. 

Section 4.1 contains results that require soundness, but it is claimed that consistency-preservability is enough. 

Theorem 4.3’s proof does not cover all cases. 

Lemma 4.10 uses a selection function, but it is not clear which. 

Lemma 4.10 concerns the extension of a proof system, but it is not clear which. 

Lemma 4.10 is only proved for finite sequences, but later used for infinite ones. 

Lemma 4.12 has a 2 sentence proof. In Isabelle the proof is about 500 LOC. 

General issue:  Lemmas are stated, but not referenced later. 
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Procedure for dealing with these problems:  

1. Rewrite the chapter’s proofs to handwritten pseudo-Isabelle. 

2. Fill in the gaps and write where lemmas are used. 

3. Turn the pseudo-Isabelle into real Isabelle, but with sorry instead of proofs. 

4. Replace the sorrys with proofs. 

Backtrack when necessary.
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What Was Tricky?



Refinement Chain
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FO Resolution Calculus

Ground Resolution Calculus

Non-Deterministic FO Resolution Prover

Deterministic FO Resolution Prover

Executable FO Resolution Prover (ML)

refines

refines

refines

refines

{this talk

{draft



What Can We Learn from Formalization?
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I have a question about Chapter 2 of the Handbook of AR. 
On p. 45, they introduce a function S_M to select literals in 
ground instances of clauses in M.  The definition says  
“(ii) S_M(C) = S(C), if C is not in K.”
Do you know why they define the function for clauses 
not in K? Is it because they don’t want to leave S_M 
underspecified or does this serve a special purpose?
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I have a question about Chapter 2 of the Handbook of AR. 
On p. 45, they introduce a function S_M to select literals in 
ground instances of clauses in M.  The definition says  
“(ii) S_M(C) = S(C), if C is not in K.”
Do you know why they define the function for clauses 
not in K? Is it because they don’t want to leave S_M 
underspecified or does this serve a special purpose?

As far as I can see, S_M is only needed for ground 
instances, and then case (ii) is irrelevant. I guess they just 
wanted to define S_M as a total function over (possibly non-
ground) clauses.

I tried to change the definition in the formalization to return 
{} if C is not in K. With this definition the key properties also 
hold, and the proof goes through.



Suitability of Isabelle

Isabelle was entirely suitable for this development. 

 
We benefitted from 

• codatatypes 

• Isabelle/jEdit 

• Isar proofs 

• locales 

• Sledgehammer.
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Related Work

Calculus

Prover

Resolution Superposition

Schlichtkrull et al. 
IJCAR 2018, this talk

Schlichtkrull 
ITP 2016, JAR 2018

Peltier 
AFP 2016



Conclusion

We have formalized Bachmair and Ganzinger’s prover. 

 
The chapter withstood the test of formalization after 

• allowing the prover to do self-inferences 

• repairing some of the proofs. 

 
The formalization 

• clarifies the chapter’s content 

• contributes to the effort of making useful tools for developing 

AR metatheory.
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