
Pragmatic Higher-Order Theorem
Proving via Embedding a Lambda

Calculus in First-Order Logic Utilising De
Bruijn Indices

Ahmed Bhayat & Giles Reger

1

Outline Of
Presentation

1. ‘Standard’ translation from higher-order to first-
order logic (implemented)

2. Eta-long form translation (ongoing)

3. Deduction Modulo (future work, tying together (1)
and (2))

2

The Vampire Prover

• Modern, award-winning saturation based, first-order

theorem prover

• Implements a resolution and superposition calculus

• Track record of modifiability

3

Vampire Higher-Order

• Project started roughly nine-month ago

• Vampire already being run as back-end to interactive
provers

• Why not develop translation module?

– In control of translation

– Aware of axioms

– Can easily modify inference rules

4

Applicative Translation

More or less ‘standard’:

• Lambda functions translated using combinators

• Application translated using binary app function

• Higher-order logical constants and combinators
axiomatised

5

Applicative Translation

Drawbacks:

• Structure of original lost

• Head symbol deeply embedded

• Apps and combinators can clog up data structures

• Translation is incomplete. No way to prove:

• Can we do better?

6

De Bruijn Indices

• A nameless version of the lambda-calculus

• Lambda is no longer a binder. Can be treated as a
unary function

• Indices can be treated as first-order constants

• Partial application:

– Use two place app

– Store all terms in eta-long form ✓

7

De Bruijn Translation

• Higher-order variables remain

• Allow them to remain and update provers structures
and algorithms to deal with them

• Not obvious how to update superposition

– Developing simplification orders in the presence
of lambdas is a challenge

8

Pragmatism

• Block superposition from being carried out on terms
containing higher-order variables

• Rely on resolution

• To be complete, unification must be modulo beta
and eta-reduction

• Higher-order unification

– Semi-decidable

– Generates complete sets of unifiers, prolific

9

Pragmatism (2)

• Unify a sub-class of terms

• Candidate unification algorithms:

– Pattern unification

– Prefix unification

• Perhaps implementing these unification algorithms is
sufficient to prove a large class of interesting
problems?

10

Prefix Unification

• Unify higher-order variable with prefix term which
has same type

• Prefix unification is decidable

• Most general unifiers exist

✓



11

Prefix Unification

• Vampire uses substitution tree for matching and
unification

• All children of a node bind one special variable

• Bound terms stored in order of head symbol

12

Solution

• Store terms in ‘buckets’ based on type of head
symbol

• Each node stores a list of buckets

• Buckets for node

13

Solution

• Query term has variable head:

– Return all terms with same or larger type in
relevant bucket

14

Solution

• Query term has rigid head:

– Return all flexible terms with same or smaller type
in relevant bucket

15

Future Work

• What is the bigger picture?

• Treat higher-order logic as a first-order theory

• Various axiomatisations possible (Dowek, 2008)

– With combinators

– With De Bruijn indices and explicit substitutions

• Axiomatisations can lead to non-goal directed search

16

Deduction Modulo

• Dowek et al. (2003) introduced deduction modulo

• Treat axioms of theory as rewrite rules

– Term rewrite rules:

– Propositional rewrite rules:

17

Deduction Modulo

• Resolution now becomes resolution modulo

• Carry unification constraints

• Unification is modulo set of equations

• Introduce new inference rule extended narrowing

18

Deduction Modulo

• Resolution modulo is a complete proof method for
any theory that has cut-elimination property

• There has been further work on resolution modulo:

– Polarised resolution modulo

– Ordered polarised resolution modulo

• Some strong results for the latter

– The rewrite rules do not need to be compatible
with the ordering relationship

19

Ordered Polarised
Resolution Modulo

One-way clause

representing rule:

• Create polarity aware
rewrite rules

• No need for
clausification

• Add ordering
restrictions to
deduction modulo

• Still complete

20

In Practice

• At least two practical attempts at implementation:

– iProver modulo

– Zenon modulo

• Both showed some promise

• Many questions, theoretical and practical remain

21

Open Questions

• Can there be a superposition modulo complete for all
theories that enjoy cut-elimination?

• If yes, can the independence between the rewrite
rules and be maintained?

• How to recognise unsatisfiable constraints?

• Indexing data structures for unification modulo?

22

Superposition Modulo?

• Normal completeness proof relies on saturation of
clause set with respect to

• One-way clauses would have to be saturated as well

• This creates a dependency between the rewrite
system and the ordering

• Is this necessary?

23

Deduction Modulo
and Higher-Order Logic

• Both axiomatisation of higher-order logic enjoy cut-
elimination

• With combinators unification is modulo:

24

Deduction Modulo
and Higher-Order Logic

• With De Bruijn indices and explicit substitutions
unification is modulo the rules of the

• Both unification algorithms have been studied

• Both are semi-decidable

An idea:

• Run unification algorithm to some depth

• If small complete set of unifiers returned, apply
unifiers

• Otherwise leave as constraint on clause

25

Further Thoughts

• Is the best explicit substitution calculus
for the purpose?

• How to update Vampire’s highly optimised term
structure without harming performance?

• Can substitution trees be updated to handle
unification modulo the rewrite rules of either
translation?

26

Questions

?
27

