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* Modern, award-winning saturation based, first-order
theorem prover

* Implements a resolution and superposition calculus

* Track record of modifiability
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* Project started roughly nine-month ago

 Vampire already being run as back-end to interactive
provers

 Why not develop translation module?
— In control of translation

— Aware of axioms
— Can easily modify inference rules
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More or less ‘standard’:
 Lambda functions translated using combinators
e Application translated using binary app function

* Higher-order logical constants and combinators
axiomatised

meT‘CL” — APhi:(i—)o)—)i—)o,W:i-(VP:Z'—M : Pht P W)

m forall = app(app(b_comb, app(b_comb, 11)), c_.comb)

)
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Drawbacks:

e Structure of original lost

 Head symbol deeply embedded

* Apps and combinators can clog up data structures
* Translation is incomplete. No way to prove:

dF VXY . FXY=¢gY X

Can we do better?
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e A nameless version of the lambda-calculus

AN(faA(320)1)

e Lambda is no longer a binder. Can be treated as a
unary function

* Indices can be treated as first-order constants
e Partial application:

— Use two place app

— Store all terms in eta-long form v



MANCHESTER
824

The Univerﬁitynflnﬂanchester D e B r u ij n Tra n S | a t i O n

* Higher-order variables remain

* Allow them to remain and update provers structures
and algorithms to deal with them

* Not obvious how to update superposition

— Developing simplification orders in the presence
of lambdas is a challenge

a= (Ar.a) f > a by sub-term
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* Block superposition from being carried out on terms
containing higher-order variables

* Rely on resolution

* To be complete, unification must be modulo beta
and eta-reduction

* Higher-order unification
— Semi-decidable
— Generates complete sets of unifiers, prolific
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e Unify a sub-class of terms

e Candidate unification algorithms:
— Pattern unification
— Prefix unification

* Perhaps implementing these unification algorithms is
sufficient to prove a large class of interesting
problems?

10
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* Unify higher-order variable with prefix term which

has same type
fint vieyisi @ b C v

Xisisibe
Jint—int—int—int d d d

* Prefix unification is decidable
* Most general unifiers exist

11
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* Vampire uses substitution tree for matching and
unification

e All children of a node bind one special variable

e Bound terms stored in order of head symbol
*0

*0 = fisisioi(a,*1,9(*2)) *0 = hi—ii(*1,9(*2))

*0 = Si—)o(d)

12
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e Store terms in ‘buckets’ based on type of head
symbol

e Each node stores a list of buckets
e Buckets for node x0

Bucket label =i — ¢ — ¢ — ¢ Bucket label =7 — o
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 Query term has variable head:

— Return all terms with same or larger type in
relevant bucket

Query term = X;_,; ,;(Y, g(2))

Bucket label =17 — 17 — 7 — 7 Bucket label =7 — o




MANCHESTER
1824

The University of Manchester S O I u t i O n

e Query term has rigid head:

— Return all flexible terms with same or smaller type
in relevant bucket

Query term = h; ; ;(Y, g(2))

Bucket label =7 — 1 — 1 — 7 Bucket label =7 — o
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What is the bigger picture?

Treat higher-order logic as a first-order theory
e Various axiomatisations possible (Dowek, 2008)
— With combinators
— With De Bruijn indices and explicit substitutions
* Axiomatisations can lead to non-goal directed search

16
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 Dowek et al. (2003) introduced deduction modulo
* Treat axioms of theory as rewrite rules
— Term rewrite rules:

app(app(K,terml), term2) — terml
— Propositional rewrite rules:

p — VX.g(X)

17
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Resolution now becomes resolution modulo

AV O BV (s
CivCy; | A= B

e Carry unification constraints
* Unification is modulo set of equations E
* Introduce new inference rule extended narrowing

UlC where L. — R is a rewrite rule
U'| CAUp, =g L and U’ = clausified(U[R],)

18




MANCHESTER

The Univerﬁitynfﬁfihester D e d u Ct i O n M O d u | O

e Resolution modulo is a complete proof method for
any theory that has cut-elimination property

e There has been further work on resolution modulo:
— Polarised resolution modulo
— Ordered polarised resolution modulo

 Some strong results for the latter
— The rewrite rules do not need to be compatible
with the ordering relationship >

19
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* Create polarity aware
rewrite rules
* No need for
clausification Active
« Add ordering
restrictions to
\+— One-way clause
deduction modulo representing rule:
* Still complete A=-G
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e At |least two practical attempts at implementation:
— iProver modulo
— Zenon modulo

 Both showed some promise

 Many questions, theoretical and practical remain

21
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* Can there be a superposition modulo complete for all
theories that enjoy cut-elimination?

* If yes, can the independence between the rewrite
rules and > be maintained?

e How to recognise unsatisfiable constraints?
* |Indexing data structures for unification modulo?

22
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 Normal completeness proof relies on saturation of
clause set with respect to >

* One-way clauses would have to be saturated as well

* This creates a dependency between the rewrite
system and the ordering

e |s this necessary?

23
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and Higher-Order Logic

* Both axiomatisation of higher-order logic enjoy cut-
elimination

e With combinators unification is modulo:

app(app( K, terml),term2) — terml
app(I,terml) — terml

24
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and Higher-Order Logic

* With De Bruijn indices and explicit substitutions
unification is modulo the rules of the \o-calculus

* Both unification algorithms have been studied
* Both are semi-decidable

An idea:

e Run unification algorithm to some depth

* |If small complete set of unifiers returned, apply
unifiers

e Otherwise leave as constraint on clause

25
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* |s Ao-calculus the best explicit substitution calculus
for the purpose?

e How to update Vampire’s highly optimised term
structure without harming performance?

e Can substitution trees be updated to handle
unification modulo the rewrite rules of either
translation?

26
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Questions
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