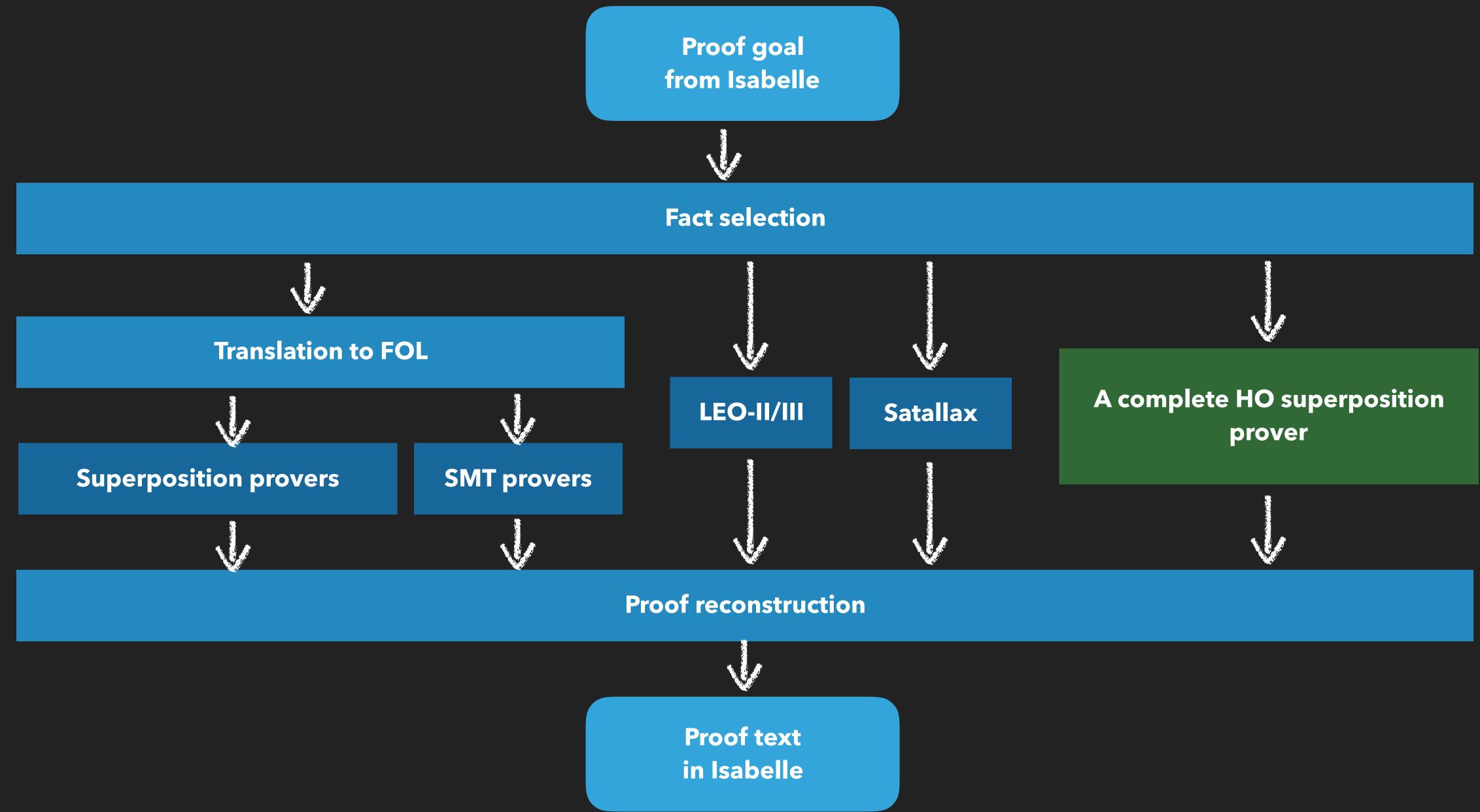
SUPERPOSITION FOR LAMBDA-FREE HIGHER-ORDER LOGIC

ALEXANDER BENTKAMP JASMIN BLANCHETTE SIMON CRUANES UWE WALDMANN

Motivation: Sledgehammer



DESIGN PRINCIPLE: BE GRACEFUL

HO superposition on first-order problems should coincide with FO superposition

Our way to higher-order superposition

predicate-free HOL

λ -free HOL/ applicative FOL

FOL

partial application & applied variables HOL

boolean formulas nested in terms

 λ -expressions / comprehension axioms

Translation to FOL: applicative encoding

$\begin{array}{l} f(H \, f) \\ \text{is translated to} \\ \lambda \text{-free HOL} \end{array}$

NOT GRACEFUL!

app(f, app(H, f)) FOL

Term orders for λ -free HOL

Petar's talk

Compatibility with arguments? $t > s \Rightarrow t u > s u$

LPO

KBO with argument coefficients

No: This talk

The superposition rule

$D \lor t = t'$

$C \vee (\neg) s[u] = s'$ $\frac{1}{(D \vee C \vee (\neg) s[t'] = s')\sigma} \sigma = mgu(t,u)$

+ order conditions

Superposition only at argument subterms

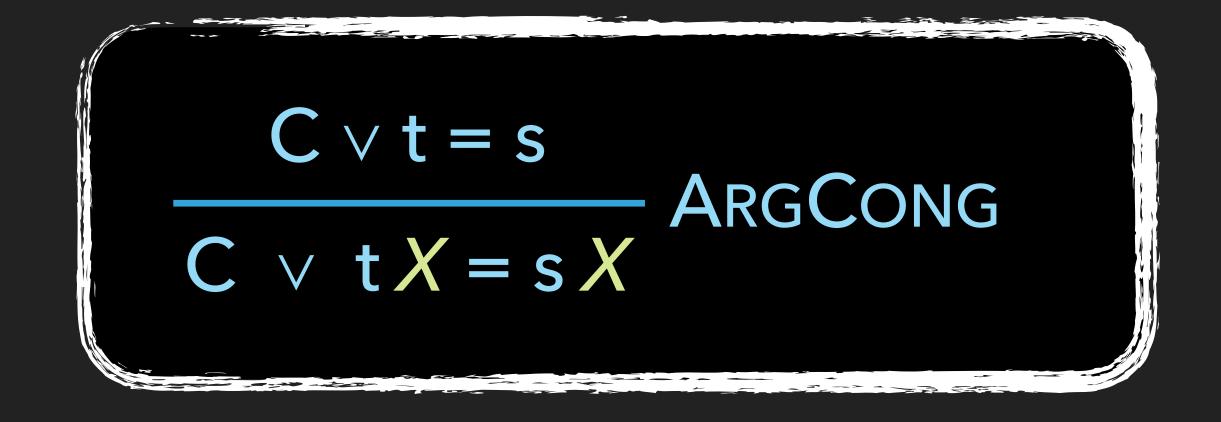
Argument subterms:

Prefix subterms:

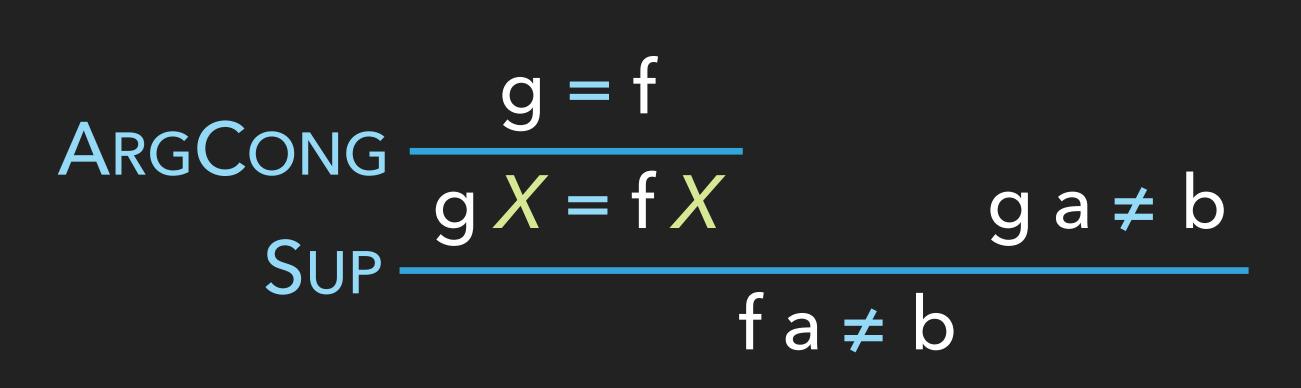
fa

fa(hbc)

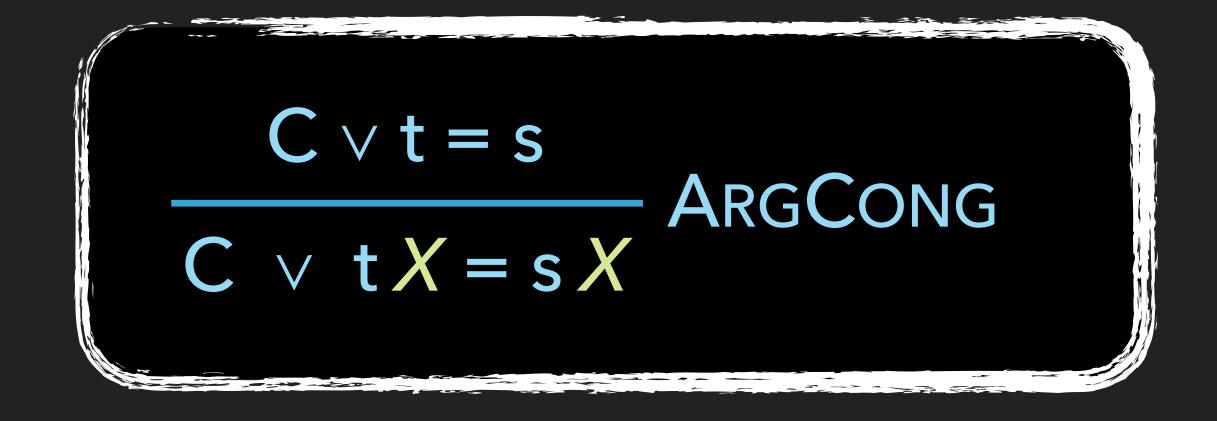
Argument congruence rule



Example:



Argument congruence rule



BUT ISN'T THIS RULE ALWAYS REDUNDANT?

Floor encoding

Encode ground λ-free HOL terms into FOL:

 $f = f_0$ $[fa] = f_1(a_0)$

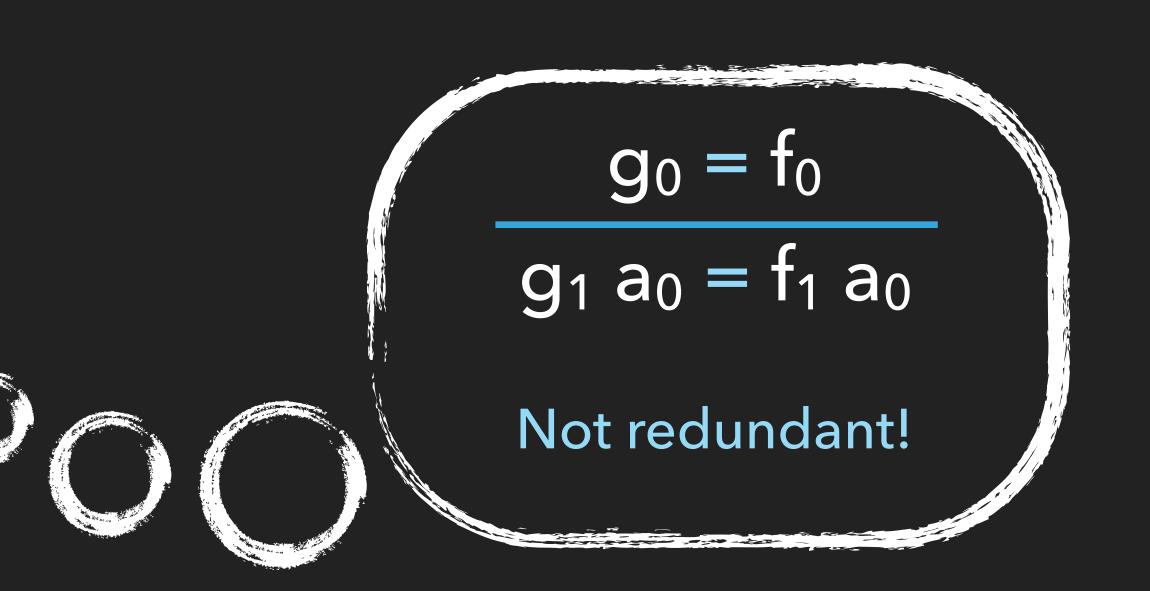
Redundancy is defined with respect to this encoding.

11

Floor encoding

Example:

$\frac{g = f}{g X = f X}$



What changes in the proof?

Refutational completeness: Let N be saturated up to redundancy, $\perp \notin N$. Then N has a model.

Proof sketch for FOL:

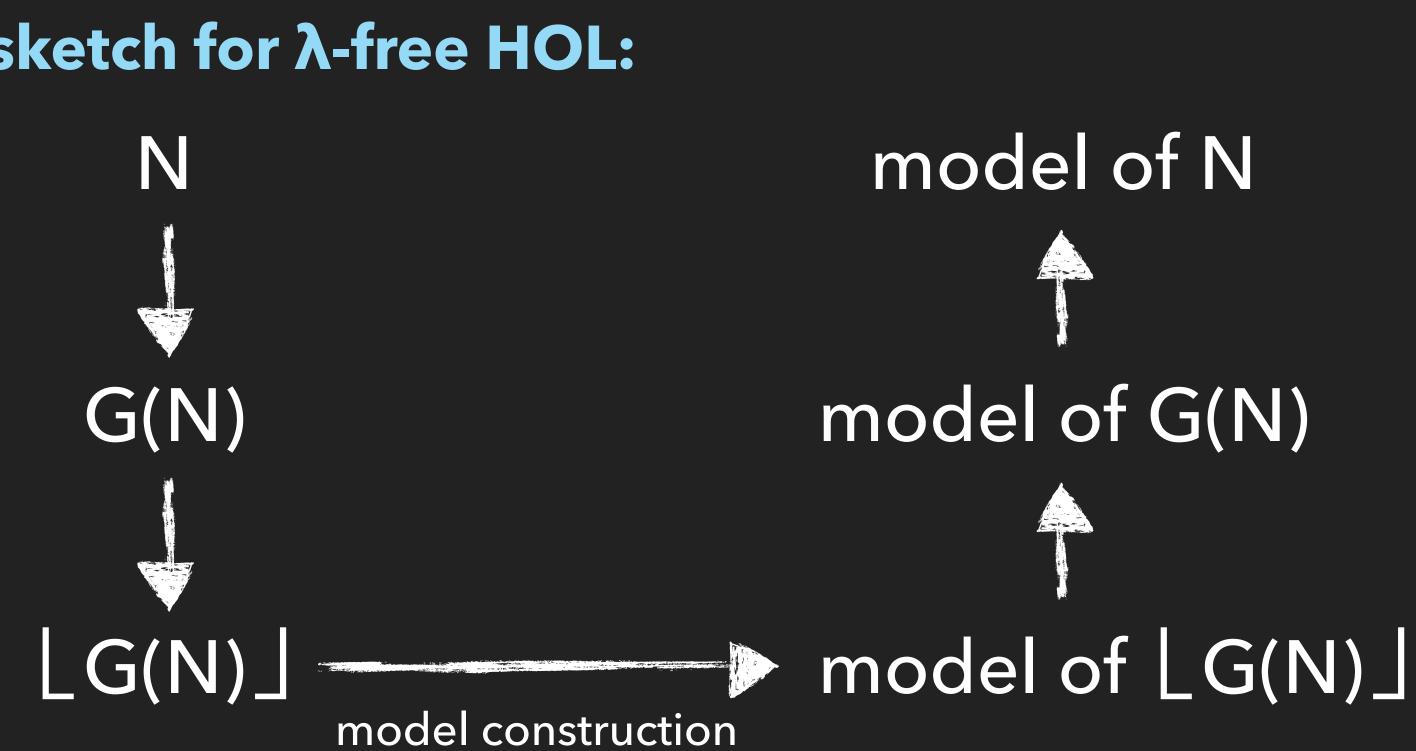
Ν G(N model construction

model of N model of G(N)

What changes in the proof?

Refutational completeness: Let N be saturated up to redundancy, $\perp \notin N$. Then N has a model.

Proof sketch for λ-free HOL:



Issue: superposition at variables

Example: $C = \dots X \dots X a \dots$ Given g > f, it is unclear whether X := g or X := fwill yield the smaller clause

Solution #1: purifying calculus

$\dots X \overline{u} \dots X \overline{v} \dots$

is purified to

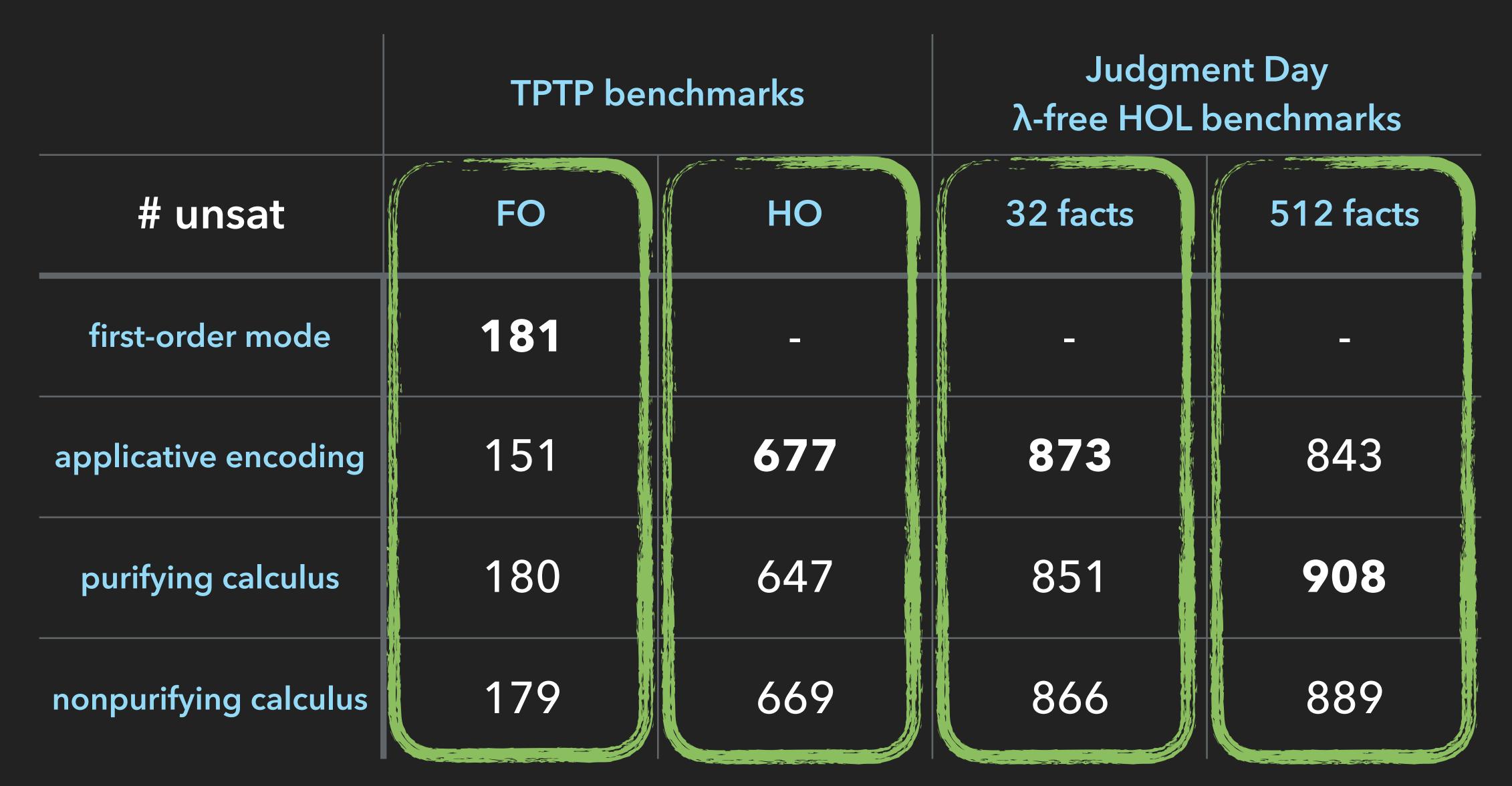
 $\dots X \overline{u} \dots Y \overline{v} \dots \vee X \neq Y$ if $\overline{\mathbf{u}} \neq \overline{\mathbf{v}}$

Solution #2: nonpurifying calculus

Perform superpositions at variables if the order situation is unclear

Evaluation of our prototype

using the Zipperposition theorem prover



We developed refutationally complete calculi for λ-free HOL

and superposition provers

They are promising as a stepping stone towards a HO superposition calculus

They reduce the gap between HO proof assistants

