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SUPERPOSITION FOR
LAMBDA-FREE RIGHER-ORDER LOGIC



Motivation: Sledgehammer




DESIGN PRINCIPLE: BE GRACEFUL

HO superposition on first-order problems should

coincide with FO superposition
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Our way to higher-order superposition

— .l v
LR
- A L =
o B ari Y. o
el BT (A -
. \ 4 . o
' . ™ - 1 »
artt p L
.;" (i e
i gL
.
Vs
4'1— .
b

s
=i ’ i 22 -
’.V"

“*" boolean formulas
nested in terms

7 \-expressions /
comprehension
axioms

partial application |
& applied variables

|
M



Translation to FOL: applicative encoding

f(Hf) app(f, app(H, 1))

is translated to
A-free HOL FOL

NOT GRACEFUL!



Term orders for A-free HOL

Compatibility with arguments?
t>s =tu>su

KBO without argument
coefficients

KBO with argument

LPO * \ coefficients

Yes: No:
Petar’s talk This talk



The superposition rule

D\/t=t’ CV(_')S[U]=S,

(D v C v (0)s[t']=5s")o o = mgu(t,u)

+ order conditions



Superposition only at argument subterms

Argument subterms: f a (h b g)

Prefix subterms: f d ( b C)



Argument congruence rule

W Cvt=s
| —  ARGCONG
I C vtX=sX
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Example:
g ="t
gX=1X ga#b
fazb

ARGCONG
SuP



Argument congruence rule
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~ Cvt=s
| T ARGCONG
I C vtX=sX

BUT ISN'T THIS RULE ALWAYS REDUNDANT?



Floor encoding
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Encode ground A-free HOL terms into FOL:

Ll =1
| fal ="f(ap)

Redundancy is defined with respect to this encoding.



Floor encoding
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Example:

ARGCONG




What changes in the proof?
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Refutational completeness:
Let N be saturated up to redundancy, 1L ¢N.

Then N has a model.

Proof sketch for FOL:
model of N

» model of G(N)

model construction



What changes in the proof?
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Refutational completeness:
Let N be saturated up to redundancy, 1L ¢N.

Then N has a model.

Proof sketch for A-free HOL:
model of N

model of G(N)

» model f LG(N)J

model construction



Issue: superposition at variables

Example: C=..X..Xa...

Given g > 1, itis unclear whether X := g or X:=1
will yield the smaller clause

Solution #1: Solution #2:
purifying calculus nonpurifying calculus
XU XV Perform superpositions at variables
is purified to if the order situation is unclear

XU YV...vXz2Y
VERY



Evaluation of our prototype
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using the Zipperposition theorem prover

Judgment Day
A-free HOL benchmarks
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In summary
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» We developed refutationally complete calculi
for A-free HOL

» They reduce the gap between HO proof assistants
and superposition provers

» They are promising as a stepping stone towards a
HO superposition calculus



