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Abstract. A crucial operation of saturation theorem provers is (back-
ward and forward) deletion of subsumed formulas. In presentations of
proof calculi, however, this is usually discussed only informally, and in
the rare cases where there is a formal exposition, it is typically clumsy.
This is because the equivalence of dynamic and static refutational com-
pleteness holds only for derivations where all deleted formulas are redun-
dant, but using a standard notion of redundancy, a clause C does not
make an instance Cσ redundant.

We present a framework for formal refutational completeness proofs
of abstract provers that implement saturation calculi, such as ordered
resolution or superposition. The framework relies on modular extensions
of lifted redundancy criteria. It allows us to extend redundancy criteria
so that they cover subsumption, and also to model entire prover architec-
tures in such a way that the static refutational completeness of a calculus
immediately implies the dynamic refutational completeness of a prover
implementing the calculus, for instance within an Otter or DISCOUNT
loop. Our framework is mechanized in Isabelle/HOL.

1 Introduction

In their Handbook of Automated Reasoning chapter [6, Sect. 4], Bachmair and
Ganzinger remark that “unfortunately, comparatively little effort has been de-
voted to a formal analysis of redundancy and other fundamental concepts of
theorem proving strategies, while more emphasis has been placed on investigat-
ing the refutational completeness of a variety of modifications of inference rules,
such as resolution.” As a remedy, they present an abstract framework for sat-
uration up to redundancy. Briefly, theorem proving derivations take the form
N0 � N1 � · · · , where N0 is the initial clause set and each step either adds in-
ferred clauses or deletes redundant clauses. Given a suitable notion of fairness,



the limit N∞ of a fair derivation is saturated up to redundancy. If the calculus
is refutationally complete and N∞ does not contain the false clause ⊥, then N0

has a model.
Bachmair and Ganzinger also define a concrete prover, RP, based on a first-

order ordered resolution calculus and the given clause procedure. However, like
all realistic resolution provers, RP implements subsumption deletion. This opera-
tion is not covered by the standard definition of redundancy, according to which
a clause C is redundant w.r.t. a clause set N if all its ground instances Cθ are en-
tailed by strictly smaller ground instances of clauses belonging to N . As a result,
RP-derivations are not �-derivations, and the framework is not applicable.

There are two ways to address this problem. In the Handbook, Bachmair and
Ganzinger start from scratch and prove the dynamic refutational completeness of
RP by relating nonground derivations to ground derivations. This proof, though,
turns out to be rather nonmodular—it refers simultaneously to properties of
the calculus, to properties of the prover, and to the fairness of the derivations.
Extending it to other calculi or prover architectures would be costly. As a result,
most authors stop after proving static refutational completeness of their calculi.

An alternative approach is to extend the redundancy criterion so that sub-
sumed clauses become redundant. As demonstrated by Bachmair and Ganzinger
in 1990 [3], this is possible by redefining redundancy in terms of closures (C, θ)
instead of ground instances Cθ. We show that this approach can be generalized
and modularized: First, any redundancy criterion that is obtained by lifting a
ground criterion can be extended to a redundancy criterion that supports sub-
sumption without affecting static refutational completeness (Sect. 3). Second, by
applying this property to labeled formulas, it becomes possible to give generic
completeness proofs for prover architectures in a straightforward way.

Most saturation provers implement a variant of the given clause procedure.
We present an abstract version of the procedure (Sect. 4) that can be refined to
obtain an Otter [21] or DISCOUNT [1] loop and prove it refutationally complete.
We also present a generalization that decouples scheduling and computation of
inferences, to support orphan deletion [18,31] and dovetailing [11].

When these prover architectures are instantiated with a concrete saturation
calculus, the dynamic refutational completeness of the combination follows in a
modular way from the properties of the prover architecture and the static refuta-
tional completeness proof for the calculus. Thus, the framework is applicable to
a wide range of calculi, including ordered resolution [6], unfailing completion [2],
standard superposition [5], constraint superposition [22], theory superposition
[34], hierarchic superposition [8], clausal λ-free and λ-superposition [11,12], and
combinatory superposition [13].

When Schlichtkrull, Blanchette, Traytel, and Waldmann [30] mechanized
Bachmair and Ganzinger’s chapter using the Isabelle/HOL proof assistant [25],
they found quite a few mistakes, including one that compromised RP’s dynamic
refutational completeness. This motivated us to mechanize our framework as
well (Sect. 5). Identifiers are given in the margin for reference.

A short version of this report [35] has been accepted at IJCAR 2020.
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2 Preliminaries

Our framework is parameterized by abstract notions of formulas, inferences, and
redundancy criteria, defined below. We also introduce various auxiliary con-
cepts, notably static and dynamic refutational completeness, and study varia-
tions found in the literature.

2.1 Inferences and Redundancy

Let A be a set. An A-sequence is a finite sequence (ai)
k
i=0 = a0, a1, . . . , ak or

an infinite sequence (ai)
∞
i=0 = a0, a1, . . . with ai ∈ A for all indices i. We use

the notation (ai)i≥0 or (ai)i for both finite and infinite sequences. A nonempty
sequence (ai)i can be decomposed into a head a0 and a tail (ai)i≥1. Given � ⊆
A × A, a �-derivation is a nonempty A-sequence such that ai � ai+1 for all
0 ≤ i < k − 1 (for finite sequences) or for all 0 ≤ i (for infinite sequences). A
�-derivation is full if it is infinite or it has length k and ak 6� a for all a ∈ A.

A set F of formulas is a nonempty set with a nonempty subset F⊥ ⊆ F.
Elements of F⊥ represent false. Typically, F⊥ is a singleton—i.e., F⊥ = {⊥}.
The possibility to distinguish between several false elements will be useful when
we model concrete prover architectures, where different elements of F⊥ represent
different situations in which a contradiction has been derived.

A consequence relation |= over F is a relation |= ⊆ P(F) × P(F) with the
following properties for all N1, N2, N3 ⊆ F:

(C1) {⊥} |= N1 for every ⊥ ∈ F⊥;
(C2) N2 ⊆ N1 implies N1 |= N2;
(C3) if N1 |= {C} for every C ∈ N2, then N1 |= N2;
(C4) if N1 |= N2 and N2 |= N3, then N1 |= N3.

It is easy to show that (C2)–(C4) imply that N1 |= N2 if and only if N1 |= {C}
for every C ∈ N2, and that N |=

⋃
i∈I Ni if and only if N |= Ni for every i ∈ I.

Moreover, all elements of F⊥ are logically equivalent—i.e., if N |= {⊥} for some
⊥ ∈ F⊥, then N |= {⊥′} for every ⊥′ ∈ F⊥.

Consequence relations are used (1) when one discusses the soundness of a
calculus (and hence, when we justify the addition of formulas) and (2) when one
discusses the refutational completeness of a calculus (and hence, when we justify
the deletion of redundant formulas). Somewhat surprisingly, the consequence
relations used for these purposes may be different ones. A typical example is
theory superposition, where one may use entailment w.r.t. all theory axioms for
(1), but only entailment w.r.t. a subset of the (instances of the) theory axioms
for (2). Another example is constraint superposition, where one uses entailment
w.r.t. the set of all ground instances for (1), but entailment w.r.t. a subset of
those instances for (2). Usually, the consequence relation |≈ that is used for (1) is
the intended one, and some additional calculus-dependent argument is necessary
to show that refutational completeness w.r.t. the consequence relation |= that is
used for (2) implies refutational completeness w.r.t. |≈.
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An F-inference ι is a tuple (Cn, . . . , C0) ∈ Fn+1, n ≥ 0. The formulas Cn,
. . . , C1 are called premises of ι; C0 is called the conclusion of ι, denoted by
concl(ι). An F-inference system Inf is a set of F-inferences. If N ⊆ F, we write
Inf (N) for the set of all inferences in Inf whose premises are contained in N ,
and Inf (N,M) := Inf (N ∪M) \ Inf (N \M) for the set of all inferences in Inf
such that one premise is in M and the other premises are contained in N ∪M .

A redundancy criterion for an inference system Inf and a consequence rela-
tion |= is a pair Red = (Red I,RedF), where Red I : P(F) → P(Inf ) and RedF :
P(F)→ P(F) are mappings from sets of formulas to sets of inferences and from
sets of formulas to sets of formulas that satisfy the following conditions for all
sets of formulas N and N ′:

(R1) if N |= {⊥} for some ⊥ ∈ F⊥, then N \ RedF(N) |= {⊥};
(R2) if N ⊆ N ′, then RedF(N) ⊆ RedF(N ′) and Red I(N) ⊆ Red I(N

′);
(R3) if N ′ ⊆ RedF(N), then RedF(N) ⊆ RedF(N \ N ′) and Red I(N) ⊆

Red I(N \N ′);
(R4) if ι ∈ Inf and concl(ι) ∈ N , then ι ∈ Red I(N).

Inferences in Red I(N) and formulas in RedF(N) are called redundant w.r.t. N .1
Intuitively, (R1) states that deleting redundant formulas preserves inconsistency.
(R2) and (R3) state that formulas or inferences that are redundant w.r.t. a set N
remain redundant if arbitrary formulas are added toN or redundant formulas are
deleted from N . (R4) ensures that computing an inference makes it redundant.
Redundant inferences and redundant clauses are connected in the following way:

Lemma 1. If ι ∈ Inf and concl(ι) ∈ RedF(N), then ι ∈ Red I(N).red_concl_to_red_inf

Proof. Let ι ∈ Inf and concl(ι) ∈ RedF(N). Then ι ∈ Red I(RedF(N)) ⊆
Red I(N ∪ RedF(N)). Since RedF(N) \ N ⊆ RedF(N) ⊆ RedF(N ∪ RedF(N)),
we obtain ι ∈ Red I(N ∪ RedF(N)) ⊆ Red I((N ∪ RedF(N)) \ (RedF(N) \N)) =
Red I(N). ut

We define the relation �Red ⊆ P(F)×P(F) such that N �Red N
′ if and only

if N \N ′ ⊆ RedF(N ′).

2.2 Refutational Completeness

Let |= be a consequence relation, let Inf be an inference system, and let Red be
a redundancy criterion for |= and Inf .

A set N ⊆ F is called saturated w.r.t. Inf and Red if Inf (N) ⊆ Red I(N).
The pair (Inf ,Red) is called statically refutationally complete w.r.t. |= if for
every saturated set N ⊆ F such that N |= {⊥} for some ⊥ ∈ F⊥, there exists a
⊥′ ∈ F⊥ such that ⊥′ ∈ N .
1 One can find several slightly differing definitions for redundancy criteria, fairness,
and saturation in the literature [6,8,34]. We discuss the differences in Sect. 2.3. Here
we mostly follow Waldmann [34].
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Let (Ni)i be a P(F)-sequence. Its limit is the setN∞ :=
⋃
i

⋂
j≥iNj . Its union

is the set N∪ :=
⋃
iNi. A sequence is called fair if Inf (N∞) ⊆

⋃
iRed I(Ni). The

pair (Inf ,Red) is called dynamically refutationally complete w.r.t. |= if for every
fair �Red -derivation (Ni)i such that N0 |= {⊥} for some ⊥ ∈ F⊥, we have
⊥′ ∈ Ni for some i and some ⊥′ ∈ F⊥.

Using properties (R1)–(R3), it is possible to show that static and dynamic
refutational completeness agree [6]:

Lemma 2. If (Ni)i is a �Red -derivation, then N∪ \N∞ ⊆ RedF(N∪).Red_in_Sup

Proof. If C ∈ N∪ \N∞, then there must exist some i such that C ∈ Ni \Ni+1.
Consequently, C ∈ RedF(Ni+1). By property (R2), C ∈ RedF(N∪). ut

Lemma 3. If (Ni)i is a �Red -derivation, then Red I(Ni) ⊆ Red I(N∞) andRed_Inf_subset_Liminf
/ Red_F_subset_Liminf RedF(Ni) ⊆ RedF(N∞) for every i.

Proof. By property (R2), Red I(Ni) ⊆ Red I(N∪); by property (R3), Red I(N∪) ⊆
Red I(N∪ \ (N∪ \ N∞)) = Red I(N∞). Analogously, RedF(Ni) ⊆ RedF(N∪) ⊆
RedF(N∪ \ (N∪ \N∞)) = RedF(N∞). ut

Lemma 4. If (Ni)i is a �Red -derivation, then Ni ⊆ N∞ ∪RedF(N∞) for everyi_in_Liminf_or_Red_F

i.

Proof. Let C ∈ Ni. If C /∈ N∞, then there exists some j ≥ i such that C ∈
Nj \Nj+1. Consequently, C ∈ RedF(Nj+1) and therefore C ∈ RedF(N∞). ut

Lemma 5. If (Ni)i is a fair �Red -derivation, then the limit N∞ is saturatedfair_implies_Liminf_
saturated w.r.t. Inf and Red .

Proof. By fairness, every ι ∈ Inf (N∞) is contained in
⋃
iRed I(Ni), so there exists

some i such that ι ∈ Red I(Ni), and by the previous lemma, ι ∈ Red I(N∞). ut

Lemma 6. If (Inf ,Red) is statically refutationally complete w.r.t. |=, then it issublocale
static_refutational_
complete_calculus ⊆

dynamic_refutational_
complete_calculus

dynamically refutationally complete w.r.t. |=.

Proof. Assume (Inf ,Red) is statically refutationally complete w.r.t. |=, and let
(Ni)i be a�Red -derivation. Assume thatN0 |= {⊥} for some⊥ ∈ F⊥. SinceN0 ⊆
N∪, we getN∪ |= N0 |= {⊥}, and by property (R1), this impliesN∪\RedF(N∪) |=
{⊥}. By Lemma 2, we know that N∪ \N∞ ⊆ RedF(N∪), or equivalently, N∪ \
RedF(N∪) ⊆ N∞; hence N∞ |= N∪ \ RedF(N∪) |= {⊥}.

If the sequence is fair, then N∞ is saturated, so by static refutational com-
pleteness, ⊥′ ∈ N∞ for some ⊥′ ∈ F⊥. Consequently, ⊥′ ∈ Ni for some i,
implying dynamic refutational completeness. ut

In fact, the converse holds as well:

Lemma 7. If (Inf ,Red) is dynamically refutationally complete w.r.t. |=, thensublocale
dynamic_refutational_

complete_calculus ⊆
static_refutational_

complete_calculus

it is statically refutationally complete w.r.t. |=.
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Proof. Assume (Inf ,Red) is dynamically refutationally complete w.r.t. |=, and
let N0 ⊆ F be saturated w.r.t. Inf and Red . Assume that N0 |= ⊥ for some
⊥ ∈ F⊥. Now consider the one-element sequence (Ni)

0
i=0. SinceN∞ = N0 andN0

is saturated, we know that Inf (N∞) = Inf (N0) ⊆ Red I(N0) =
⋃
iRed I(Ni), so

the sequence is fair. By dynamic refutational completeness, this implies ⊥′ ∈ N0

for some ⊥′ ∈ F⊥. Therefore (Inf ,Red) is statically refutationally complete. ut

2.3 Variations on a Theme

For some of the notions in Sects. 2.1 and 2.2 one can find alternative definitions
in the literature.

Redundancy Criteria. As in Bachmair and Ganzinger’s chapter [6, Sect. 4.1],
we have specified in condition (R1) of redundancy criteria that the deletion of
redundant formulas must preserve inconsistency. Alternatively, one can require
that redundant formulas must be entailed by the nonredundant ones—i.e., N \
RedF(N) |= RedF(N)—leading to some obvious changes in Lemmas 6 and 32.

Bachmair and Ganzinger’s definition of a redundancy criterion differs from
ours in that they require only conditions (R1)–(R3). They call a redundancy
criterion effective if an inference ι ∈ Inf is in Red I(N) whenever concl(ι) ∈
N ∪RedF(N). As demonstrated by Lemma 1, that condition is equivalent to our
condition (R4).

Inferences from Redundant Premises. In the literature, inferences from
redundant premises are sometimes excluded in the definitions of saturation, fair-
ness, and refutational completeness [6], and sometimes not [5, 10, 23, 34].2 Simi-
larly, redundancy of inferences is sometimes defined in such a way that inferences
from redundant premises are necessarily redundant themselves [5,10], and some-
times not [6, 23, 34]. There are good arguments for each of these choices. On
the one hand, one can argue that the saturation of a set of formulas should not
depend on the presence or absence of redundant formulas, and that inferences
from redundant formulas should be redundant as well. On the other hand, in any
reasonable proof system, formulas are deleted from the set of formulas as soon as
they are shown to be redundant, so why should we care whether the set is satu-
rated even if we do not delete formulas that have been proved to be redundant?

We define “reduced” variants of the definitions in Sects. 2.1 and 2.2. A set
N ⊆ F is called reducedly saturated w.r.t. Inf and Red if Inf (N \ RedF(N)) ⊆
Red I(N). The pair (Inf ,Red) is reducedly statically refutationally complete w.r.t.
|= if for every reducedly saturated set N ⊆ F with N |= {⊥} for some ⊥ ∈ F⊥,
there exists a ⊥′ ∈ F⊥ such that ⊥′ ∈ N . A sequence is called reducedly fair if
Inf (N∞ \

⋃
iRedF(Ni)) ⊆

⋃
iRed I(Ni). The pair (Inf ,Red) is reducedly dynami-

cally refutationally complete w.r.t. |= if for every reducedly fair �Red -derivation

2 Note that Bachmair and Ganzinger’s JLC article [5] uses a terminology that differs
from most later publications in this area: Their “composite” corresponds to “redun-
dant,” and their “complete” corresponds to “saturated.”
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(Ni)i such thatN0 |= {⊥} for some⊥ ∈ F⊥, we have⊥′ ∈ Ni for some i and some
⊥′ ∈ F⊥. A reduced redundancy criterion for |= and Inf is a redundancy criterion
Red = (Red I,RedF) that additionally satisfies Inf (F,RedF(N)) ⊆ Red I(N) for
every N ⊆ F. Recall that Inf (N,M) denotes the set of Inf -inferences with at
least one premise in M and the others in N ∪M .

For reduced redundancy criteria, saturation and reduced saturation agree:

Lemma 8. If Red is a reduced redundancy criterion, then N is saturated w.r.t.sat_eq_reduc_sat

Inf and Red if and only if N is reducedly saturated w.r.t. Inf and Red .

Proof. If N is saturated w.r.t. Inf and Red , then Inf (N) ⊆ Red I(N), so Inf (N \
RedF(N)) ⊆ Inf (N) ⊆ Red I(N), which implies that N is reducedly saturated
w.r.t. Inf and Red .

Conversely, assume that N is reducedly saturated w.r.t. Inf and Red—
i.e., Inf (N \ RedF(N)) ⊆ Red I(N). Let ι ∈ Inf (N). If no premise of ι is
contained in RedF(N), then ι ∈ Inf (N \ RedF(N)) ⊆ Red I(N). Otherwise
ι ∈ Inf (F,RedF(N)), and since Red is reduced, we get again ι ∈ Red I(N). ut

Corollary 9. If Red is a reduced redundancy criterion, then (Inf ,Red) is stati-sublocale reduc_static_
refutational_complete_

reduc_calculus ⊆
static_refutational_
complete_calculus /

stat_ref_comp_imp_
red_stat_ref_comp

cally refutationally complete if and only if it is reducedly statically refutationally
complete.

An arbitrary redundancy criterion Red = (Red I,RedF) can always be ex-
tended to a reduced redundancy criterion Red ′ = (Red ′I,RedF), where Red ′I is
defined by Red ′I(N) := Red I(N) ∪ Inf (F,RedF(N)) for all N .

Lemma 10. Red ′ is a reduced redundancy criterion.reduc_calc

Proof. Since RedF is left unchanged, (R1) and the first parts of (R2) and (R3)
are obvious. (R4) holds because ι ∈ Red I(N) ⊆ Red ′I(N) for every inference ι
with concl(ι) ∈ N . Moreover, Red ′ is clearly reduced. It remains to prove the
second parts of (R2) and (R3).

For (R2), assume N ⊆ N ′. Then Red I(N) ⊆ Red I(N
′) and RedF(N) ⊆

RedF(N ′). Moreover, Inf is clearly monotonic, so Inf (F,RedF(N)) ⊆
Inf (F,RedF(N ′)), and therefore Red ′I(N) ⊆ Red ′I(N

′).
For (R3), assume N ′ ⊆ RedF(N). Then RedF(N) ⊆ RedF(N \ N ′) and

Red I(N) ⊆ Red I(N \N ′). By monotonicity of Inf , we have Inf (F,RedF(N)) ⊆
Inf (F, N \N ′), so Red ′I(N) ⊆ Red ′I(N \N ′). ut

Lemma 11. If N ⊆ F is saturated w.r.t. Inf and Red , then N is saturatedsat_imp_red_calc_sat

w.r.t. Inf and Red ′.

Proof. Since Red I(N) ⊆ Red ′I(N), Inf (N) ⊆ Red I(N) implies obviously Inf (N)
⊆ Red ′I(N). ut

The converse does not hold:
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Example 12. Consider a signature consisting of the four propositional variables
(or nullary predicate symbols) P, Q, R, S. Let Inf be the set of inferences of the
ordered resolution calculus with selection over clauses over the signature. Define
RedF such that a clause C is contained in RedF(N) if it is entailed by clauses
in N that are smaller than C. Define Red I such that an inference is contained
in Red I(N) if its conclusion is entailed by clauses in N that are smaller than its
largest premise. Then Red := (Red I,RedF) is a redundancy criterion.

Let N be the set of clauses (1) ¬Q ∨ P, (2) ¬S ∨ R ∨ Q, (3) ¬S ∨ Q, where
the atom ordering is P > Q > R > S and the first literals of (1) and (3) are
selected. Due to the selection, Inf (N) contains only a single inference, namely
the ordered resolution inference ι between (2) and (1). The largest premise of ι is
(1). The premise (2) is entailed by the smaller clause (3) and therefore contained
in RedF(N). Consequently, ι ∈ Red ′I(N), which means that N is saturated w.r.t.
Red ′. On the other hand, the conclusion ¬S ∨ R ∨ P is not entailed by the clauses
in N that are smaller than (1)—i.e., (2) and (3)—so ι /∈ Red I(N). Therefore, N
is not saturated w.r.t. Red .

Lemma 13. The following properties are equivalent for every N ⊆ F:red_sat_eq_red_calc_
sat /

red_sat_eq_sat
(i) N is reducedly saturated w.r.t. Inf and Red ;
(ii) N is saturated w.r.t. Inf and Red ′;
(iii) N \ RedF(N) is saturated w.r.t. Inf and Red .

Proof. To show that (i) implies (ii), assume that N is reducedly saturated w.r.t.
Inf and Red—i.e., Inf (N \RedF(N)) ⊆ Red I(N). We must show that Inf (N) ⊆
Red ′I(N). Let ι ∈ Inf (N). If no premise of ι is contained in RedF(N), then
ι ∈ Inf (N \ RedF(N)) ⊆ Red I(N). Otherwise, ι ∈ Inf (F,RedF(N)). In both
cases, we conclude ι ∈ Red ′I(N).

To show that (ii) implies (i), assume that N is saturated w.r.t. Inf and Red ′—
i.e., Inf (N) ⊆ Red ′I(N). We must show that Inf (N \ RedF(N)) ⊆ Red I(N). Let
ι ∈ Inf (N \ RedF(N)). Observe first that ι ∈ Inf (N \ RedF(N)) ⊆ Inf (N) ⊆
Red ′I(N) = Red I(N)∪Inf (F,RedF(N)). Moreover, ι ∈ Inf (N \RedF(N)) implies
ι /∈ Inf (F,RedF(N)). Combining both, we get ι ∈ Red I(N).

The equivalence of (i)—i.e., Inf (N \ RedF(N)) ⊆ Red I(N)—and (iii)—i.e.,
Inf (N \RedF(N)) ⊆ Red I(N \RedF(N))—follows from the fact that Red I(N) ⊆
Red I(N \ RedF(N)) by (R3) and Red I(N \ RedF(N)) ⊆ Red I(N) by (R2). ut

Even though Red and Red ′ are not equivalent as far as saturation is con-
cerned, they are equivalent w.r.t. refutational completeness:

Theorem 14. The following properties are equivalent:stat_is_stat_red /
red_stat_red_is_stat_

red /
red_stat_is_stat_red (i) (Inf ,Red) is statically refutationally complete w.r.t. |=;

(ii) (Inf ,Red) is reducedly statically refutationally complete w.r.t. |=;
(iii) (Inf ,Red ′) is statically refutationally complete w.r.t. |=;
(iv) (Inf ,Red ′) is reducedly statically refutationally complete w.r.t. |=.
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Proof. To show that (iii) implies (i), assume that (Inf ,Red ′) is statically refu-
tationally complete. That is, the property

N |= {⊥} for some ⊥ ∈ F⊥ implies ⊥′ ∈ N for some ⊥′ ∈ F⊥ (∗)

holds for every set N ⊆ F that is saturated w.r.t. Inf and Red ′. By Lemma 11,
every set N ⊆ F that is saturated w.r.t. Inf and Red is also saturated w.r.t.
Inf and Red ′, so property (∗) holds in particular for every set N ⊆ F that is
saturated w.r.t. Inf and Red .

To show that (i) implies (iii), assume that (Inf ,Red) is statically refutation-
ally complete. Assume N is saturated w.r.t. Inf and Red ′ and suppose that
N |= {⊥} for some ⊥ ∈ F⊥. By Lemma 13, N \RedF(N) is saturated w.r.t. Inf
and Red . Furthermore, by (R1), N \RedF(N) |= {⊥}. So the static refutational
completeness of (Inf ,Red) implies that ⊥′ ∈ N \ RedF(N) for some ⊥′ ∈ F⊥;
hence ⊥′ ∈ N . Thus, (Inf ,Red ′) is statically refutationally complete.

The equivalence of (iii) and (iv) follows immediately from Lemma 10 and
Corollary 9.

It remains to show the equivalence of (ii) and (iii). Observe that (ii) means
that (∗) holds for every set N ⊆ F that is reducedly saturated w.r.t. Inf and
Red , and that (iii) means that (∗) holds for every set N ⊆ F that is saturated
w.r.t. Inf and Red ′. By Lemma 13, these two properties are equivalent. ut

The limit of a reducedly fair �Red -derivation is a reducedly saturated set.3
This is proved analogously to Lemma 5:

Lemma 15. If (Ni)i is a reducedly fair �Red -derivation, then the limit N∞ isreduc_fair_imp_
Liminf_reduc_sat reducedly saturated w.r.t. Inf and Red .

Proof. Since RedF(Ni) ⊆ RedF(N∞) for every i, we have Inf (N∞\RedF(N∞)) ⊆
Inf (N∞ \

⋃
iRedF(Ni)). By reduced fairness, every inference ι ∈ Inf (N∞ \

RedF(N∞)) is contained in
⋃
iRed I(Ni). Therefore there exists some i with

ι ∈ Red I(Ni), which implies ι ∈ Red I(N∞). ut

Lemmas 6 and 7 can then be reproved for reduced static and reduced dynamic
refutational completeness. Together with Theorem 14, we obtain this result:

Theorem 16. The properties (i)–(iv) of Theorem 14 and the following fourdyn_ref_eq_dyn_ref_
red /

red_dyn_ref_red_eq_
dyn_ref_red /

red_dyn_ref_eq_dyn_
ref_red

properties are equivalent:

(v) (Inf ,Red) is dynamically refutationally complete w.r.t. |=;
(vi) (Inf ,Red) is reducedly dynamically refutationally complete w.r.t. |=;
(vii) (Inf ,Red ′) is dynamically refutationally complete w.r.t. |=;
(viii) (Inf ,Red ′) is reducedly dynamically refutationally complete w.r.t. |=.
3 The limit need not be saturated, though. For instance, in Example 12, the one-
element sequence (Ni)

0
i=0 with N0 = N is reducedly fair w.r.t. Red , and its limit

N∞ = N is reducedly saturated w.r.t. Red , but not saturated w.r.t. Red .
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Summarizing, we see that there are some differences between the “reduced”
and the “nonreduced” approach, but that these differences are restricted to the in-
termediate notions, notably saturation. As far as (static or dynamic) refutational
completeness is concerned, both approaches agree. Furthermore, Theorem 16
demonstrates that we can mix and match definitions from both worlds. Conse-
quently, when we want to build on an existing refutational completeness proof for
some saturation calculus, it does not matter which approach has been used there.

Given that the “nonreduced” definitions in Sects. 2.1 and 2.2 are simpler that
than the “reduced” ones in the current section, there is usually little reason to
prefer the “reduced” ones. For our purposes, a major advantage of the “non-
reduced” definitions is that RedF and Red I are separated as much as possible.
In particular, our definitions of saturation and static refutational completeness
do not depend on redundant formulas, but only on redundant inferences. This
property will be crucial for the proof of Theorem 40 in Sect. 3.

Fairness in the Limit. Bachmair and Ganzinger define (Ni)i to be fair if
concl(Inf (N ′) \ Red I(N

′)) ⊆ N∪ ∪ RedF(N∪), where N ′ = N∞ \ RedF(N∞) [6,
Sect. 4.1]. This is a quite peculiar property. First of all, it is overly complicated:
If the conclusion of an inference ι ∈ Inf (N ′) \ Red I(N

′) is contained in N∪ ∪
RedF(N∪), then ι ∈ Red I(N∪), and by Lemma 2, ι ∈ Red I(N∪) ⊆ Red I(N∪\(N∪\
N∞)) = Red I(N∞) ⊆ Red I(N∞ \ RedF(N∞)) = Red I(N

′). But this contradicts
the assumption that ι ∈ Inf (N ′)\Red I(N

′). So the condition can be simplified to
Inf (N ′) ⊆ Red I(N

′), and since Red I(N
′) = Red I(N∞\RedF(N∞)) = Red I(N∞),

this is equivalent to Inf (N∞ \ RedF(N∞)) ⊆ Red I(N∞).
Since Inf (N∞ \ RedF(N∞)) ⊆ Inf (N∞ \

⋃
iRedF(Ni)) and

⋃
iRed I(Ni) ⊆

Red I(N∞), the (simplified) condition is entailed by reduced fairness. There is a
crucial difference, though: While reduced fairness requires that every inference
from N∞ is redundant or has a redundant premise at some finite step of the
derivation, the Bachmair–Ganzinger definition also admits derivations where
redundancy is achieved only in the limit.

Example 17. Consider a signature consisting of two unary predicate symbols
P, Q, a unary function symbol f, and a constant b. Let Inf be the set of inferences
of the ordered resolution calculus with selection over clauses over the signature.

Let N be the set of clauses (1) P(b), (2) ¬P(x) ∨ P(f(x)), (3) Q(b), (4)
¬Q(b) ∨ P(f(x)), where the atom ordering is a lexicographic path ordering with
precedence P > Q > f > b and the first literals of (2) and (4) are selected. From
(1) and (2), we obtain in the first derivation step P(f(b)), in the second step
P(f(f(b))), and so on. The limit N∞ consists of the four initial clauses (1)–(4)
and all clauses of the form P(fi(b)) with i ≥ 1. The resolution inference between
(3) and (4), yielding P(f(x)), is therefore redundant w.r.t. N∞, since for each
of its ground instances the conclusion P(fi(b)) is contained in N∞. However,
it is not redundant w.r.t. any set Nj . Similarly, the premise (4) is redundant
w.r.t. N∞ but not w.r.t. any set Nj . Therefore, the sequence of clause sets is fair
according to the definition in Bachmair and Ganzinger [6, Sect. 4.1], but neither
fair nor reducedly fair according to our definitions.
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Of course, a redundancy property that holds only for the limit of an infinite
sequence can generally not be checked effectively. In other words, Bachmair and
Ganzinger’s definition is more permissive than our alternative definition, but the
additional degree of freedom can hardly be exploited in a theorem prover.

Semi-redundancy. Bachmair, Ganzinger, and Waldmann [8] use a definition
of redundancy criteria that requires (R2) only for formulas and (R3) only for in-
ferences. With their definition of fairness, this is sufficient to show that the limit
of a fair �Red -derivation is saturated, and thus, to show that static refutational
completeness implies dynamic refutational completeness. Their definition of fair-
ness, however, requires essentially that inferences from formulas in the limit N∞
are redundant w.r.t. the limit, and since they do not enforce that an inference
that is redundant at some step of the derivation is redundant w.r.t. the limit,
this cannot be checked effectively in a theorem prover.

Nonstrict Redundancy. Nieuwenhuis and Rubio [22,23] and Peltier [26] define
a ground clause C to be nonstrictly redundant w.r.t. a set N of ground clauses if
C follows from smaller or equal clauses in N . This definition does not satisfy our
condition (R3). Consequently, it can be used for proving the static completeness
of a calculus, but it is insufficient to establish the connection between static and
dynamic completeness (unless the notion of fairness is strengthened).

2.4 Intersections of Redundancy Criteria

In the sequel, it will be useful to define consequence relations and redundancy cri-
teria as intersections of previously defined consequence relations or redundancy
criteria.

Let Q be an arbitrary nonempty set, and let (|=q)q∈Q be a Q-indexed family
of consequence relations over F. Define |=∩ :=

⋂
q∈Q |=q.

Lemma 18. |=∩ is a consequence relation.intersect_cons_rel_
family

Proof. Obvious. ut

Let Inf be an inference system, and let (Redq)q∈Q be a Q-indexed family of
redundancy criteria, where each Redq = (RedqI ,Red

q
F) is a redundancy criterion

for Inf and |=q. Let Red∩I (N) :=
⋂
q∈QRedqI (N) and Red∩F(N) :=

⋂
q∈QRedqF(N)

for all N . Define Red∩ := (Red∩I ,Red
∩
F).

Lemma 19. Red∩ is a redundancy criterion for |=∩ and Inf .inter_red_crit

Proof. (R1) Assume that N |=∩G {⊥} for some ⊥ ∈ F⊥—i.e., N |=q {⊥} for
every q ∈ Q. As Red∩F(N) ⊆ RedqF(N), we have N \ Red∩F(N) ⊇ N \ RedqF(N),
and by (C2) N \Red∩F(N) |=q N \RedqF(N). Furthermore, N \RedqF(N) |=q {⊥}
by (R1) for Redq. So N \Red∩F(N) |=q {⊥} by (C4) for every q ∈ Q and therefore
N \ RedF(N) |=∩G {⊥}.
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(R2) Let N ⊆ N ′. Since RedqF(N) ⊆ RedqF(N ′) for every q, we have Red∩F(N) =⋂
q∈QRedqF(N) ⊆

⋂
q∈QRedqF(N ′) = Red∩F(N ′) and analogously for Red∩I .

(R3) Let N ′ ⊆ RedF(N). Since RedqF(N) ⊆ RedqF(N \N ′) for every q, we have
Red∩F(N) =

⋂
q∈QRedqF(N) ⊆

⋂
q∈QRedqF(N \N ′) = Red∩F(N \N ′) and analo-

gously for Red∩I .

(R4) If ι ∈ Inf and concl(ι) ∈ N , then ι ∈ RedqI (N) for every q ∈ Q; hence
ι ∈
⋂
q∈QRedqI (N) = Red∩I (N). ut

Lemma 20. A set N ⊆ F is saturated w.r.t. Inf and Red∩ if and only if it issat_int_to_sat_q

saturated w.r.t. Inf and Redq for every q ∈ Q.

Proof. If N is saturated w.r.t. Inf and Red∩, then Inf (N) ⊆ Red∩I (N) =⋂
q∈QRedqI (N); hence Inf (N) ⊆ RedqI (N) for every q ∈ Q, implying that N

is saturated w.r.t. Inf and Redq.
Conversely, if N is saturated w.r.t. Inf and Redq for every q ∈ Q, then

Inf (N) ⊆ RedqI (N) for every q ∈ Q; hence Inf (N) ⊆ Red∩I (N) =
⋂
q∈QRedqI (N),

which implies that N is saturated w.r.t. Inf and Red∩. ut
In many cases where a redundancy criterion Red∩ is defined as the intersec-

tion of other criteria, the consequence relations |=q agree for all q ∈ Q. For cal-
culi where they disagree, such as constraint superposition [22], one can typically
demonstrate the static refutational completeness of (Inf ,Red∩) in the following
form:

Lemma 21. If for every set N ⊆ F that is saturated w.r.t. Inf and Red∩ andstat_ref_comp_from_
bot_in_sat does not contain any ⊥′ ∈ F⊥ there exists some q ∈ Q such that N 6|=q {⊥} for

some ⊥ ∈ F⊥, then (Inf ,Red∩) is statically refutationally complete w.r.t. |=∩.
Proof. Suppose that N ⊆ F is saturated w.r.t. Inf and Red∩ and N |=∩ {⊥′′}
for some ⊥′′ ∈ F⊥. Consequently, N |=q {⊥′′} for every q ∈ Q. By (C1), N |=q

{⊥′′} |=q {⊥} for every ⊥ ∈ F⊥. If the condition of the lemma holds, then N
must contain some ⊥′ ∈ F⊥. Therefore, (Inf ,Red∩) is statically refutationally
complete w.r.t. |=∩. ut

3 Lifting

A standard approach for establishing the refutational completeness of a calculus
is to first concentrate on the ground case and then lift the results to the non-
ground case. In this section, we show how to perform this lifting abstractly, given
a suitable grounding function G. The function maps every formula C ∈ F to a
set G(C) of formulas from a set of formulas G. Depending on the logic and the
calculus, G(C) may be, for example, the set of all ground instances of C, a subset
of the set of ground instances of C, or even a set of formulas from another logic.
Similarly, FInf -inferences are mapped to sets of GInf -inferences, and saturation
w.r.t. FInf -inferences is related to saturation w.r.t. GInf -inferences.

There are calculi where some FInf -inferences ι do not have a counterpart in
GInf , such as the PosExt inferences of λ-free superposition [12]. In these cases,
we set G(ι) = undef .
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3.1 Standard Lifting

Given two sets of formulas F and G, an F-inference system FInf , a G-inference
system GInf , and a redundancy criterion Red for GInf , let G be a function that
maps every formula in F to a subset of G and every F-inference in FInf to undef
or to a subset of GInf . The function G is called a grounding function if

(G1) for every ⊥ ∈ F⊥, ∅ 6= G(⊥) ⊆ G⊥;
(G2) for every C ∈ F, if ⊥ ∈ G(C) and ⊥ ∈ G⊥ then C ∈ F⊥;
(G3) for every ι ∈ FInf , if G(ι) 6= undef , then G(ι) ⊆ Red I(G(concl(ι))).

The function G is extended to sets N ⊆ F by defining G(N) :=
⋃
C∈N G(C) for

all N . Analogously, for a set I ⊆ FInf , G(I) :=
⋃
ι∈I,G(ι)6=undef G(ι).

Remark 22. Conditions (G1) and (G2) express that false formulas may onlystrong_standard_lifting

be mapped to sets of false formulas, and that only false formulas may be mapped
to sets of false formulas. For most applications, it would be possible to replace
condition (G3) by

(G3′) for every ι ∈ FInf , if G(ι) 6= undef then concl(G(ι)) ⊆ G(concl(ι)),

which implies (G3) by property (R4). There are some calculi, however, for which
condition (G3′) is too strong. Typical examples are calculi where the F-inferences
include some normalization or abstraction step that does not have a counterpart
in the G-inferences. So an F-inference ι may have a conclusion C ∨ t 6≈ t′, where
the literal t 6≈ t′ results from the normalization step, but the conclusions of the
instances of ι have the form Cθ for a substitution θ that unifies t and t′. In this
case, (G3) is still satisfied, but (G3′) is not.

Example 23. In standard superposition, F is the set of all universally quanti-
fied first-order clauses over some signature Σ,G is the set of all ground first-order
clauses over Σ, and G maps every clause C to the set of its ground instances Cθ
and every superposition inference ι to the set of its ground instances ιθ.

Let G be a grounding function from F and FInf to G and GInf , and let
|= ⊆ P(G) × P(G) be a consequence relation over G. We define the relation
|=G ⊆ P(F) × P(F) such that N1 |=G N2 if and only if G(N1) |= G(N2). We
call |=G the G-lifting of |=. It corresponds to Herbrand entailment. If Tarski
entailment (i.e., N1 |=T N2 if and only if any model of N1 is also a model of
N2) is desired, the mismatch can be repaired by showing that the two notions
of entailment are equivalent as far as refutations are concerned.

Lemma 24. |=G is a consequence relation over F.lifted_consequence_
relation

Proof. (C1) Let⊥ ∈ F⊥. Then by property (G1) of grounding functions, G({⊥})
contains some ⊥′ ∈ G⊥. So G({⊥}) |= {⊥′} |= G(N1) for every N1, and hence
{⊥} |=G N1 as required.

(C2) Let N2 ⊆ N1, then G(N2) ⊆ G(N1), so G(N1) |= G(N2), and thus N1 |=G
N2.
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(C3) Suppose that N1 |=G {C} for every C ∈ N2. Then G(N1) |= G({C}) for
every C ∈ N2 and therefore G(N1) |=

⋃
C∈N2

G({C}) = G(N2); hence N1 |=G N2.

(C4) Suppose that N1 |=G N2 and N2 |=G N3. Then G(N1) |= G(N2) and
G(N2) |= G(N3); therefore G(N1) |= G(N3), and therefore N1 |=G N3. ut

Let Red = (Red I,RedF) be a redundancy criterion for |= and GInf . We define
functions RedGI : P(F)→ P(FInf ) and RedGF : P(F)→ P(F) by

ι ∈ RedGI (N) if and only if
G(ι) 6= undef and G(ι) ⊆ Red I(G(N))
or G(ι) = undef and G(concl(ι)) ⊆ G(N) ∪ RedF(G(N));

C ∈ RedGF(N) if and only if
G(C) ⊆ RedF(G(N)).

We call RedG := (RedGI ,Red
G
F) the G-lifting of Red .

Theorem 25. RedG is a redundancy criterion for |=G and FInf .sublocale lifting_with_
wf_ordering_family ⊆

calculus_with_red_crit
We omit the proof at this point since we will prove a more general result

(Theorem 37) in Sect. 3.2.
We get the following folklore lemma.

Lemma 26. If N ⊆ F is saturated w.r.t. FInf and RedG and GInf (G(N)) ⊆sat_imp_ground_sat

G(FInf (N)) ∪ Red I(G(N)), then G(N) is saturated w.r.t. GInf and Red .

Proof. Suppose that N is saturated w.r.t. FInf and RedG—i.e., FInf (N) ⊆
RedGI (N). We must show that G(N) is saturated w.r.t. GInf and Red—i.e.,
GInf (G(N)) ⊆ Red I(G(N)).

Let ι ∈ GInf (G(N)). By assumption, ι is contained in G(FInf (N)) or in
Red I(G(N)). In the second case, we are done immediately. In the first case,
ι ∈ G(ι′) for some ι′ ∈ FInf (N) ⊆ RedGI (N) with G(ι) 6= undef , so by definition
of RedGI we have again ι ∈ Red I(G(N)). ut

An inference in GInf (G(N)) is called liftable if it is contained in G(FInf (N)).
Using this terminology, we can rephrase the lemma as follows: If N is saturated
and every unliftable inference from G(N) is redundant w.r.t. G(N), then G(N)
is saturated.

Theorem 27. If (GInf ,Red) is statically refutationally complete w.r.t. |=, andstat_ref_comp_to_
non_ground if we have GInf (G(N)) ⊆ G(FInf (N)) ∪ Red I(G(N)) for every N ⊆ F that is

saturated w.r.t. FInf and RedG , then (FInf ,RedG) is statically refutationally
complete w.r.t. |=G .

Proof. Assume (GInf ,Red) is statically refutationally complete w.r.t. |=. Assume
N ⊆ F is saturated w.r.t. FInf and RedG and assume that N |=G ⊥ for some
⊥ ∈ F⊥. We must show that ⊥′ ∈ N for some ⊥′ ∈ F⊥.
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By definition of |=G , we know that G(N) |= G(⊥). By property (G1) of
grounding functions, G(⊥) is a nonempty subset of G⊥. Let ⊥G ∈ G(⊥), then
G(N) |= G(⊥) |= {⊥G}.

By the previous lemma, we know that G(N) is saturated w.r.t. GInf and Red ,
so there exists some ⊥′G ∈ G⊥ such that ⊥′G ∈ G(N). Hence ⊥′G ∈ G(C) for
some C ∈ N , which implies C ∈ F⊥ by property (G2) of grounding functions.
Now define ⊥′ := C. ut

Example 28. In ordered binary resolution without selection [6, 27], all infer-
ences are liftable, as demonstrated below. Let Σ be a first-order signature con-
taining at least one constant, let F be the set of all Σ-clauses without equality,
and let G be the set of all ground Σ-clauses without equality. Let FInf and GInf
be the sets of all resolution or factoring inferences from clauses in respectively F
and G that satisfy the given ordering restrictions, and let G be the function that
maps every clause C ∈ F to the set of all its ground instances Cθ and that maps
every inference (Cn, . . . , C0) ∈ FInf to the set of all (Cnθ, . . . , C0θ) ∈ GInf .
Then every resolution inference in GInf from ground instances of clauses in N
has the form

D′θ ∨Bθ C ′θ ∨ ¬Aθ
D′θ ∨ C ′θ

with Aθ = Bθ and is contained in G(ι) for some inference ι ∈ FInf (N) of the
form

D′ ∨B C ′ ∨ ¬A
(D′ ∨ C ′)σ

with σ = mgu(A,B), and analogously for factoring inferences.
Thus, the static refutational completeness of GInf implies the static refuta-

tional completeness of FInf .
The liftability result above holds also for ordered binary resolution with se-

lection, provided that the selection function fsel on F and the selection function
gsel on G have the property that every clause D ∈ G(N) inherits the selec-
tion of at least one clause C ∈ N such that D ∈ G(C). One can show that for
every N ⊆ G and fsel , such a gsel exists. However, this gsel depends on N ,
and therefore Theorem 27 is not applicable. We will discuss this issue further in
Sect. 3.3.

Example 29. In the superposition calculus without selection [5], all inferences
are liftable, except superpositions at or below a variable position. Let Σ be a
first-order signature containing at least one constant and no predicate symbols
except ≈, let F be the set of all Σ-clauses with equality, and let G be the
set of all ground Σ-clauses with equality. Let FInf and GInf be the sets of all
superposition, equality resolution, and equality factoring inferences from clauses
in respectively F and G that satisfy the given ordering restrictions, and let
G be the function that maps every clause C ∈ F to the set of all its ground
instances Cθ and that maps every inference (Cn, . . . , C0) ∈ FInf to the set of
all (Cnθ, . . . , C0θ) ∈ GInf . Then every equality resolution or equality factoring
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inference from ground instances of clauses in N is contained in G(ι) for some
inference ι ∈ FInf (N). The same applies to superposition inferences

D′θ ∨ tθ ≈ t′θ C ′θ ∨ [¬] sθ ≈ s′θ
D′θ ∨ C ′θ ∨ [¬] sθ[t′θ]p ≈ s′θ

with sθ|p = tθ, provided that p is a position of s and s|p is not a variable.
Otherwise, p = p1p2 for some variable x occurring in s at the position p1, so
xθ|p2 = tθ. In this case, define θ′ by xθ′ = xθ[t′θ]p2 and yθ′ = yθ for y 6= x.
By congruence, the conclusion of the inference is entailed by the first premise
(which is necessarily smaller than the second) and C ′θ′ ∨ [¬]sθ′ ≈ s′θ′. The
ordering restrictions of the calculus require that tθ � t′θ; hence the latter clause
is also smaller than the second premise. By the usual redundancy criterion for
superposition, this renders the inference redundant w.r.t. N .

As for ordered resolution, the static refutational completeness of GInf implies
the static refutational completeness of FInf .

3.2 Adding Tiebreaker Orderings

We now strengthen the G-lifting of redundancy criteria introduced in the previous
subsection to also support subsumption deletion. Let = = (=D)D∈G be a G-
indexed family of well-founded strict partial orderings on F that are well founded
(i.e., for every D, =D there exists no infinite descending chain C0 =D C1 =D
· · · ). We define RedG,=F : P(F)→ P(F) as follows:

C ∈ RedG,=F (N) if and only if
for every D ∈ G(C),
D ∈ RedF(G(N)) or there exists C ′ ∈N such that C =D C ′ and D ∈ G(C ′).

Notice how =D is used to break ties between C and C ′, possibly making C
redundant. We call RedG,= := (RedGI ,Red

G,=
F ) the (G,=)-lifting of Red .

For nearly all applications, the orderings =D agree for all D ∈ G. In these
cases, we may take = as a single well-founded strict partial ordering, rather
than as a G-indexed family of such orderings. We get the previously defined
RedG = (RedGI ,Red

G
F) as a special case of RedG,= = (RedGI ,Red

G,=
F ) by setting

=D := ∅—i.e., the empty strict partial ordering on F—for every D ∈ G.
As demonstrated by the following lemma, we may assume without loss of

generality that the formula C ′ in the definition of RedG,=F is contained in N \
RedG,=F (N):

Lemma 30. C ∈ RedG,=F (N) if and only if for every D ∈ G(C) we have D ∈Red_F_G_equiv_def

RedF(G(N)) or there exists C ′ ∈ N \ RedG,=F (N) such that C =D C ′ and D ∈
G(C ′).

Proof. The “if” direction is trivial. For the “only if” direction, assume that C ∈
RedG,=F (N) and D ∈ G(C). By definition, D ∈ RedF(G(N)) or there exists
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C ′ ∈ N such that C =D C ′ and D ∈ G(C ′). If D ∈ RedF(G(N)), we are done.
LetD /∈ RedF(G(N)). By well-foundedness of =D, there exists a minimal formula
C ′ ∈ N w.r.t. =D such that C =D C ′ and D ∈ G(C ′). Assume that C ′ were
contained in RedG,=F (N). Since D /∈ RedF(G(N)), there exists C ′′ ∈ N such that
C ′ =D C ′′ and D ∈ G(C ′′). But then C =D C ′′, contradicting the minimality of
C ′. So C ′ ∈ N \ RedG,=F (N). ut

Next, we show that (RedGI ,Red
G,=
F ) is a redundancy criterion. We start with

a technical lemma:

Lemma 31. G(N) \ RedF(G(N)) ⊆ G(N \ RedG,=F (N)).not_red_map_in_map_
not_red

Proof. Let D ∈ G(N) \ RedF(G(N)). Since D ∈ G(N), there exists C ∈ N with
D ∈ G(C). Let C be a minimal formula with this property w.r.t. =D.

Assume that C ∈ RedG,=F (N). Then, by definition, D ∈ RedF(G(N)) or there
exists C ′ ∈ N such that C =D C ′ and D ∈ G(C ′). The first property contradicts
our initial assumption, whereas the second property contradicts the minimality
of C. So C /∈ RedG,=F (N) and thus D ∈ G(N \ RedG,=F (N)). ut

We can now show that (RedGI ,Red
G,=
F ) satisfies the properties (R1)–(R4) of

redundancy criteria:

Lemma 32. If N |=G {⊥} for some ⊥ ∈ F⊥, then N \ RedG,=F (N) |=G {⊥}.Red_F_Bot_F

Proof. Let ⊥ ∈ F⊥ and suppose that N |=G {⊥}—i.e., G(N) |= G({⊥}). Since by
property (G1) of grounding functions, G({⊥}) contains some ⊥′ ∈ G⊥, G(N) |=
G({⊥}) |= {⊥′}. By property (R1) of redundancy criteria, this implies G(N) \
RedF(G(N)) |= {⊥′}. Furthermore, by Lemma 31, G(N) \RedF(G(N)) ⊆ G(N \
RedG,=F (N)), and therefore G(N \RedG,=F (N)) |= G(N)\RedF(G(N)). Combining
both relations, we obtain G(N \RedG,=F (N)) |= {⊥′} |= G({⊥}). By definition of
|=G and property (G1) of grounding functions, this means N \ RedG,=F (N) |=G
{⊥}, as required. ut

Lemma 33. If N ⊆ N ′, then RedG,=F (N) ⊆ RedG,=F (N ′) and RedGI (N) ⊆Red_F_of_subset_F ·
Red_Inf_of_subset_F

RedGI (N ′)

Proof. Obvious. ut

Lemma 34. If N ′ ⊆ RedG,=F (N), then RedG,=F (N) ⊆ RedG,=F (N \N ′).Red_F_of_Red_F_
subset_F

Proof. Let N ′ ⊆ RedG,=F (N), let C ∈ RedG,=F (N). Then for every D ∈ G(C) we
have D ∈ RedF(G(N)) or there exists C ′ ∈ N \ RedG,=F (N) such that C =D C ′

and D ∈ G(C ′).

Case 1: D ∈ RedF(G(N)). By property (R3), D ∈ RedF(G(N) \ RedF(G(N))).
Since G(N) \ RedF(G(N)) ⊆ G(N \ RedG,=F (N)) ⊆ G(N \N ′), this implies D ∈
RedF(G(N \N ′)).
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Case 2: D /∈ RedF(G(N)) and there exists C ′ ∈ N \ RedG,=F (N) such that
C =D C ′ and D ∈ G(C ′). Since N \ RedG,=F (N) ⊆ N \N ′, we get C ′ ∈ N \N ′.

Since every D ∈ G(C) is either contained in RedF(G(N \ N ′)) or in G(C ′) for
some C ′ ∈ N \N ′ with C =D C ′, we conclude that C ∈ RedG,=F (N \N ′). ut

Lemma 35. If N ′ ⊆ RedG,=F (N), then RedGI (N) ⊆ RedGI (N \N ′).Red_Inf_of_Red_F_
subset_F

Proof. Let N ′ ⊆ RedG,=F (N), let ι ∈ RedGI (N).
If G(ι) 6= undef , then every ι′ ∈ G(ι) is contained in Red I(G(N)), and by

property (R3) also in Red I(G(N) \ RedF(G(N))). Furthermore, since G(N) \
RedF(G(N)) ⊆ G(N \RedG,=F (N)) ⊆ G(N \N ′), this implies ι′ ∈ Red I(G(N \N ′)).

Since every ι′ ∈ G(ι) is contained in Red I(G(N \ N ′)), we conclude that
ι ∈ RedGI (N \N ′).

Otherwise G(ι) = undef . Then G(concl(ι)) ⊆ G(N)∪RedF(G(N)) = (G(N) \
RedF(G(N))) ∪ RedF(G(N)). Let D ∈ G(concl(ι)). We consider two cases: If
D ∈ G(N)\RedF(G(N)), then by Lemma 31,D ∈ G(N\RedG,=F (N)) ⊆ G(N\N ′).
Otherwise D ∈ RedF(G(N)), then by (R3) D ∈ RedF(G(N) \ RedF(G(N))).
Since G(N) \ RedF(G(N)) ⊆ G(N \ RedG,=F (N)) ⊆ G(N \N ′), this implies D ∈
RedF(G(N \N ′)). Combining both cases, we obtain G(concl(ι)) ∈ G(N \N ′) ∪
RedF(G(N \N ′)), hence ι ∈ RedGI (N \N ′). ut

Lemma 36. If ι ∈ FInf and concl(ι) ∈ N , then ι ∈ RedGI (N).Red_Inf_of_Inf_to_N_
F

Proof. Let ι ∈ FInf such that concl(ι) ∈ N . If G(ι) 6= undef , then by property
(G3) of grounding functions, G(ι) is a subset of Red I(G(concl(ι))), which in turn
is a subset of Red I(G(N)). So ι ∈ RedGI (N).

Otherwise, G(ι) = undef . Then concl(ι) ∈ N implies G(concl(ι)) ⊆ G(N), so
again ι ∈ RedGI (N). ut

By combining Lemmas 32–36, we obtain our first main result, generalizing
Theorem 25:

Theorem 37. Let Red be a redundancy criterion for |= and GInf , let G be asublocale lifting_with_
wf_ordering_family ⊆

calculus_with_red_crit grounding function from F and FInf to G and GInf , and let = = (=D)D∈G
be a G-indexed family of well-founded strict partial orderings on F. Then the
(G,=)-lifting RedG,= of Red is a redundancy criterion for |=G and FInf .

Observe that = appears only in the second component of RedG,= = (RedGI ,

RedG,=F ) and that the definitions of a saturated set and of static refutational
completeness do not depend on the second component of a redundancy criterion.
The following lemmas are immediate consequences of these observations:

Lemma 38. A set N ⊆ F is saturated w.r.t. FInf and RedG,= if and only if itsaturated_empty_
order_equiv_saturated is saturated w.r.t. FInf and RedG,∅.

Lemma 39. (FInf ,RedG,=) is statically refutationally complete w.r.t. |=G if andstatic_empty_order_
equiv_static only if (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G .
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Combining Lemmas 6 and 39, we obtain our second main result:

Theorem 40. Let Red be a redundancy criterion for |= and GInf , let G be astatic_to_dynamic

grounding function from F and FInf to G and GInf , and let = = (=D)D∈G be a
G-indexed family of well-founded strict partial orderings on F. If (FInf ,RedG,∅)
is statically refutationally complete w.r.t. |=G , then (FInf ,RedG,=) is dynami-
cally refutationally complete w.r.t. |=G .

Example 41. For resolution or superposition in standard first-order logic, we
can define the whole-clause subsumption quasi-ordering ·≥ on clauses by C ·≥ C ′
if and only if C = C ′σ for some substitution σ. The whole-clause subsumption
ordering ·> := ·≥ \ ·≤ is well founded. By choosing = := ·>, we obtain a crite-
rion RedG,= that includes standard redundancy and also supports subsumption
deletion.

Similarly, for proof calculi modulo commutativity (C) or associativity and
commutativity (AC), we can let C ·≥ C ′ be true if there exists a substitution
σ such that C equals C ′σ up to the equational theory (C or AC). The relation
·> = ·≥ \ ·≤ is then again well founded.

It is common to define subsumption so that C is subsumed by C ′ if C =
C ′σ ∨D for some substitution σ and some possibly empty clause D, but since
the case where D is nonempty is already supported by the standard redundancy
criterion, whole-clause subsumption is sufficient.

Example 42. Constraint superposition with ordering constraints [22] is an ex-
ample of a calculus where the subsumption ordering ·> is not well founded: A
ground instance of a constrained clause C [[K]] is a ground clause Cθ for which
Kθ evaluates to true. Define ·≥ by stating that C [[K]] ·≥ C ′ [[K ′]] if and only
if every ground instance of C [[K]] is a ground instance of C ′ [[K ′]], and define
·> := ·≥ \ ·≤. Then

P(x) [[x ≺ b ]] ·> P(x) [[x ≺ f(b) ]] ·> P(x) [[x ≺ f(f(b)) ]] ·> · · ·
is an infinite chain if � is a simplification ordering.

Example 43. For higher-order calculi such as higher-order resolution [19] and
clausal λ-superposition [11], subsumption is also not well founded, as witnessed
by the chain

p x x ·> p (x a) (x b1) ·> p (x a a) (x b1 b2) ·> · · · .
Even if the subsumption ordering for some logic is not well founded, as in

the two examples above, we can always define = as the intersection of the sub-
sumption quasi-ordering and an appropriate ordering based on formula sizes or
weights, such as

C = C ′ if and only if
C ·≥ C ′
and

(
size(C) > size(C ′)
or
(
size(C) = size(C ′)
and C contains fewer distinct variables than C ′

))
.
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Conversely, the = relation can be more general than subsumption. In Sect. 4,
we will use it to justify the movement of formulas between sets in the given
clause procedure.

Example 44. There are a few applications, notably for superposition-based
decision procedures [7], where one would like to define RedG,=F using the reverse
subsumption ordering ·<. This ordering is not well founded on the set of all first-
order clauses: P(x) ·< P(f(x)) ·< P(f(f(x)) ·< · · · . However, it is well founded if
we restrict it to the set of generalizations gen(D) := {C | D = Cθ for some θ}
of a fixed ground clause D, so that we may in fact define = := (=D)D where
=D := ·< ∩ (gen(D)× gen(D)).

3.3 Intersections of Liftings

The results of the previous subsection can be extended in a straightforward way
to intersections of lifted redundancy criteria. As before, let F and G be two
sets of formulas, and let FInf be an F-inference system. In addition, let Q be
a nonempty set. For every q ∈ Q, let |=q be a consequence relation over G, let
GInf q be a G-inference system, let Redq be a redundancy criterion for |=q and
GInf q, and let Gq be a grounding function from F and FInf to G and GInf q. Let
= := (=D)D∈G be a G-indexed family of well-founded strict partial orderings
on F.4

For each q ∈ Q, we know by Theorem 37 that the (Gq, ∅)-lifting Redq,G
q,∅ =

(Redq,G
q

I ,Redq,G
q,∅

F ) and the (Gq,=)-lifting Redq,G
q,= = (Redq,G

q

I ,Redq,G
q,=

F ) of
Redq are redundancy criteria for |=q

Gq and FInf . Consequently, by Lemma 19 the
intersections

Red∩G := (Red∩GI ,Red∩GF ) :=
(⋂
q∈Q

Redq,G
q

I ,
⋂
q∈Q

Redq,G
q,∅

F

)
and

Red∩G,= := (Red∩G,=I ,Red∩G,=F ) :=
(⋂
q∈Q

Redq,G
q

I ,
⋂
q∈Q

Redq,G
q,=

F

)
are redundancy criteria for |=∩G :=

⋂
q∈Q |=

q
Gq and FInf .

We get the following analogue of Theorem 27.

Theorem 45. If (GInf q,Redq) is statically refutationally complete w.r.t. |=qstat_ref_comp_to_
non_ground_fam_inter for every q ∈ Q, and if for every N ⊆ F that is saturated w.r.t. FInf and Red∩G

there exists a q such that GInf q(Gq(N)) ⊆ Gq(FInf (N)) ∪ RedqI (Gq(N)), then
(FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G .

Proof. Assume that (GInf q,Redq) is statically refutationally complete w.r.t. |=q

for every q ∈ Q and that for every N ⊆ F that is saturated w.r.t. FInf and
Red∩G there exists a q such that GInf q(Gq(N)) ⊆ Gq(FInf (N)) ∪ RedqI (Gq(N)).
4 We could also use a Q-indexed family of sets (Gq)q∈Q instead of a single set G, and
a (Q,Gq)-indexed family of well-founded strict partial orderings on F instead of a
G-indexed family, but we are not aware of applications where this is necessary.
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Let N ⊆ F be saturated w.r.t. FInf and Red∩G and assume that N |=∩G {⊥}
for some ⊥ ∈ F⊥. We must show that ⊥′ ∈ N for some ⊥′ ∈ F⊥. First, we know
that there exists a q such that GInf q(Gq(N)) ⊆ Gq(FInf (N)) ∪ RedqI (Gq(N)).
Since Red∩G =

⋂
q∈QRedq,G

q,∅, we know by Lemma 20 that N is saturated w.r.t.
FInf and the (Gq, ∅)-lifting Redq,G

q,∅ of Redq. Therefore, by Lemma 26, Gq(N)
is saturated w.r.t. GInf and Redq.

Furthermore, N |=∩G {⊥} implies N |=q
Gq {⊥}, and since |=q

Gq is the Gq-lifting
of |=q, this is equivalent to Gq(N) |=q Gq(⊥). By property (G1) of grounding
functions, Gq(⊥) is a nonempty subset of G⊥. Let ⊥G ∈ Gq(⊥), then Gq(N) |=
Gq(⊥) |= {⊥G}.

Since Gq(N) is saturated w.r.t. GInf and Redq, there must exist some ⊥′G ∈
G⊥ such that ⊥′G ∈ Gq(N). Hence ⊥′G ∈ Gq(C) for some C ∈ N , which implies
C ∈ F⊥ by property (G2) of grounding functions. Now define ⊥′ := C. ut

Since the first components of Red∩G and Red∩G,= agree, we obtain the ana-
logues of Lemmas 38 and 39 and Theorem 40:

Lemma 46. A set N ⊆ F is saturated w.r.t. FInf and Red∩G,= if and only if itsat_eq_sat_empty_
order is saturated w.r.t. FInf and Red∩G .

Lemma 47. (FInf ,Red∩G,=) is statically refutationally complete w.r.t. |=∩G ifstatic_empty_ord_
inter_equiv_static_inter and only if (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G .

Theorem 48. If (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G ,stat_eq_dyn_ref_
comp_fam_inter then (FInf ,Red∩G,=) is dynamically refutationally complete w.r.t. |=∩G .

Example 49. Intersections of liftings are needed to support selection functions
in ordered resolution [6] and superposition [5]. The calculus FInf is parameter-
ized by a function fsel on the set F of first-order clauses that selects a subset
of the negative literals in each C ∈ F. There are several ways to extend fsel
to a selection function gsel on the set G of ground clauses such that for every
D ∈ G there exists some C ∈ F such that D = Cθ and D and C have cor-
responding selected literals. For every such gsel , |=gsel is first-order entailment,
GInf gsel is the set of ground inferences satisfying gsel , and Redgsel is the re-
dundancy criterion for GInf gsel . The grounding function Ggsel maps C ∈ F to
{Cθ ∈ G | θ is a substitution} and ι ∈ FInf to the set of ground instances of ι in
GInf gsel with corresponding literals selected in the premises. In the static refu-
tational completeness proof, only one gsel is needed, but this gsel is not known
during a derivation, so fairness must be guaranteed w.r.t. Redgsel,Ggsel

I for every
possible extension gsel of fsel . Thus, checking Red∩GI amounts to a worst-case
analysis, where we must assume that every ground instance Cθ ∈ G of a premise
C ∈ F inherits the selection of C.

Example 50. Intersections of liftings are also necessary for constraint super-
position calculi [22]. Here the calculus FInf operates on the set F of first-order
clauses with (ordering and equality) constraints. For a convergent rewrite system
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R, |=R is first-order entailment up to R on the set G of unconstrained ground
clauses, GInfR is the set of ground superposition inferences, and RedR is re-
dundancy up to R. The grounding function GR maps C [[K]] ∈ F to {D ∈ G |
D = Cθ, Kθ = true, xθ is R-irreducible for all x}5 and ι ∈ FInf to the set of
ground instances of ι where the premises and conclusion of GR(ι) are the GR-
ground instances of the premises and conclusion of ι. In the static refutational
completeness proof, only one particular R is needed, but this R is not known
during a derivation, so fairness must be guaranteed w.r.t. RedR,G

R

I for every
convergent rewrite system R.

Almost every redundancy criterion for a nonground inference system FInf
that can be found in the literature can be written as RedG,∅ for some ground-
ing function G from F and FInf to G and GInf , and some redundancy crite-
rion Red for GInf , or as an intersection Red∩G of such criteria. As Theorem 48
demonstrates, every static refutational completeness result for FInf and Red∩G—
which does not generally support the deletion of subsumed formulas during a
run—yields immediately a dynamic refutational completeness result for FInf
and Red∩G,=—which permits the deletion of subsumed formulas during a run,
provided that they are larger according to =.

3.4 Adding Labels

In practice, the orderings =D used in (G,=)-lifting often depend on meta-
information about a formula, such as its age or the way in which it has been
processed so far during a derivation. To capture this meta-information, we ex-
tend formulas and inference systems in a rather trivial way with labels.

As before, let F and G be two sets of formulas, let FInf be an F-inference
system, letGInf be aG-inference system, let |= ⊆ P(G)×P(G) be a consequence
relation over G, let Red be a redundancy criterion for |= and GInf , and let G be
a grounding function from F and FInf to G and GInf .

Let L be a nonempty set of labels. Define FL := F×L and FL⊥ := F⊥×L.
Notice that there are at least as many false values in FL as there are labels
in L. We use M,N to denote labeled formula sets. Given a set N ⊆ FL, let
bNc := {C | (C, l) ∈ N } denote the set of formulas without their labels.

We call an FL-inference system FLInf a labeled version of FInf if it has the
following properties:

(L1) for every inference (Cn, . . . , C0) ∈ FInf and every tuple (l1, . . . , ln) ∈ Ln,
there exists an l0 ∈ L and an inference ((Cn, ln), . . . , (C0, l0)) ∈ FLInf ;

(L2) if ι = ((Cn, ln), . . . , (C0, l0)) is an inference in FLInf , then (Cn, . . . , C0)
is an inference in FInf , denoted by bιc.

In other words, whenever there is an FInf -inference from some premises, there
is a corresponding FLInf -inference from the labeled premises (regardless of the
5 For a variable x that occurs only in positive literals x ≈ t, the condition is slightly
more complicated.
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labeling), and whenever there is an FLInf -inference from labeled premises, there
is a corresponding FInf -inference from the unlabeled premises.

Let FLInf be a labeled version of FInf . Define GL by GL((C, l)) := G(C) for
every (C, l) ∈ FL and by GL(ι) := G(bιc) for every ι ∈ FLInf . The following
lemmas are then obvious:

Lemma 51. GL is a grounding function from FL and FLInf to G and GInf .labeled_standard_lifting

Let |=GL be the GL-lifting of |=. Let RedGL,∅ be the (GL, ∅)-lifting of Red .

Lemma 52. N |=GL N ′ if and only if bNc |=G bN ′c.labeled_entailment_
lifting

Lemma 53. If a set N ⊆ FL is saturated w.r.t. FLInf and RedGL,∅, thenlabeled_saturation_
lifting bNc ⊆ F is saturated w.r.t. FInf and RedG,∅.

Lemma 54. If (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G ,stat_ref_comp_to_
labeled_sta_ref_comp then (FLInf ,RedGL,∅) is statically refutationally complete w.r.t. |=GL .

The extension to intersections of redundancy criteria is also straightforward.
Let F and G be two sets of formulas, and let FInf be an F-inference system.
Let Q be a nonempty set. For every q ∈ Q, let |=q be a consequence relation
over G, let GInf q be a G-inference system, let Redq be a redundancy criterion
for |=q and GInf q, and let Gq be a grounding function from F and FInf to G and
GInf q. Then for every q ∈ Q, the (Gq, ∅)-lifting Redq,G

q,∅ of Redq is a redundancy
criterion for the Gq-lifting |=q

Gq of |=q and FInf , and so Red∩G is a redundancy
criterion for |=∩G and FInf .

Now let L be a nonempty set of labels, and define FL, FL⊥, and FLInf as
above. For every q ∈ Q, define the function GqL by GqL((C, l)) := Gq(C) for every
(C, l) ∈ FL and by GqL(ι) := Gq(bιc) for every ι ∈ FLInf . By Lemma 51, every
GqL is a grounding function from FL and FLInf to G and GInf q. Then for every
q ∈ Q, the (GqL, ∅)-lifting Redq,G

q
L = (Red

q,Gq
L

I ,Red
q,Gq

L,∅
F ) of Redq is a redundancy

criterion for the GqL-lifting |=
q
Gq
L
of |=q and FLInf , and so

Red∩GL := (Red∩GLI ,Red∩GLF ) :=
(⋂
q∈Q

Red
q,Gq

L

I ,
⋂
q∈Q

Red
q,Gq

L,∅
F

)
is a redundancy criterion for |=∩GL :=

⋂
q∈Q |=

q
Gq
L
and FLInf .

Analogously to Lemmas 52–54, we obtain the following results:

Lemma 55. N |=∩GL N
′ if and only if bNc |=∩G bN ′c.labeled_entailment_

lifting

Lemma 56. If a set N ⊆ FL is saturated w.r.t. FLInf and Red∩GL , then bNc ⊆labeled_family_
saturation_lifting F is saturated w.r.t. FInf and Red∩G .

Theorem 57. If (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G ,labeled_static_ref

then (FLInf ,Red∩GL) is statically refutationally complete w.r.t. |=∩GL .

23



4 Prover Architectures

We now use the above results to prove the refutational completeness of a popular
prover architecture: the given clause procedure [21]. The architecture is param-
eterized by an inference system and a redundancy criterion. A generalization of
the architecture decouples scheduling and computation of inferences, which has
several benefits.

4.1 Given Clause Procedure

For this section, we fix the following. Let F and G be two sets of formulas, and
let FInf be an F-inference system without premise-free inferences. Let Q be a
nonempty set. For every q ∈ Q, let |=q be a consequence relation over G, let
GInf q be a G-inference system, let Redq be a redundancy criterion for |=q and
GInf q, and let Gq be a grounding function from F and FInf to G and GInf q.
Assume (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G .

Let L be a nonempty set of labels, let FL := F×L, and let the FL-inference
system FLInf be a labeled version of FInf . By Theorem 57, (FLInf ,Red∩GL) is
statically refutationally complete w.r.t. |=∩GL .

Let ·= be an equivalence relation on F, let ·� be a well-founded strict partial
ordering on F such that ·� is compatible with ·= (i.e., C ·� D, C ·= C ′, D ·= D′

implies C ′ ·� D′), such that C ·= D implies Gq(C) = Gq(D) for all q ∈ Q, and
such that C ·� D implies Gq(C) ⊆ Gq(D) for all q ∈ Q. We define ·� := ·� ∪ ·=.
In practice, ·= is typically α-renaming, ·� is either the whole-clause subsump-
tion ordering ·> (Example 41), provided it is well founded, or some well-founded
ordering included in ·>, and for every q ∈ Q, Gq maps every formula C ∈ F to
the set of ground instances of C, possibly modulo some theory.

Let == be a well-founded strict partial ordering on L. We define the ordering
= on FL by (C, l) = (C ′, l′) if either C ·� C ′ or else C ·= C ′ and l == l′.
By Lemma 47, the static refutational completeness of (FLInf ,Red∩GL) w.r.t.
|=∩GL implies the static refutational completeness of (FLInf ,Red∩GL,=), which by
Lemma 6 implies the dynamic refutational completeness of (FLInf ,Red∩GL,=).

This result may look intimidating, so let us unroll it. The FL-inference system
FLInf is a labeled version of FInf , which means that we get an FLInf -inference
by first omitting the labels of the premises (Cn, ln), . . . , (C1, l1), then performing
an FInf -inference (Cn, . . . , C0), and finally attaching an arbitrary label l0 to
the conclusion C0. Since the labeled grounding functions GqL differ from the
corresponding unlabeled grounding functions Gq only by the omission of the
labels and the first components of Red∩GL,= and Red∩GL agree, we get this
result:

Lemma 58. An FLInf -inference ι is redundant w.r.t. Red∩GL,= and N if andlabeled_red_inf_eq_
red_inf only if the underlying FInf -inference bιc is redundant w.r.t. Red∩G and bNc.

For Red∩GL,=F , we can show that a labeled formula (C, l) is redundant if (i) C
itself is redundant w.r.t. Red∩GF , or if (ii) C is ·�-subsumed, or if (iii) C is a
variant of another formula that occurs with a ==-smaller label. More formally:
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Lemma 59. Let N ⊆ FL, and let (C, l) be a labeled formula. Then (C, l) ∈red_labeled_clauses

Red∩GL,=F (N ) if one of the following conditions hold:

(i) C ∈ Red∩GF (bNc);
(ii) C ·� C ′ for some C ′ ∈ bNc;
(iii) C ·� C ′ for some (C ′, l′) ∈ N with l == l′.

Proof. (i) Let C ∈ Red∩GF (bNc). Then C ∈ Redq,G
q,∅

F (bNc) for every q ∈
Q, which means that Gq(C) ⊆ RedqF(Gq(bNc)). Now GqL((C, l)) = Gq(C) and
Gq(bNc) = GqL(N ); hence GqL((C, l)) ⊆ RedqF(GqL(N )), which implies (C, l) ∈
Red

q,Gq
L,=

F (N ) for every q ∈ Q and thus (C, l) ∈ Red∩GL,=F (N ).

(ii) Assume that C ·� C ′ for some C ′ ∈ bNc. Then there exists a label l′ such
that (C ′, l′) ∈ N . By the definition of =, we have (C, l) = (C ′, l′). Furthermore,
Gq(C) ⊆ Gq(C ′) for all q ∈ Q. Therefore GqL((C, l)) = Gq(C) ⊆ Gq(C ′) =

GqL((C ′, l′)), which implies (C, l) ∈ Red
q,Gq

L,=
F (N ) for every q ∈ Q and thus

(C, l) ∈ Red∩GL,=F (N ).

(iii) If C ·� C ′, the result follows from (ii). Otherwise C ·= C ′ for some (C ′, l′) ∈
N with l == l′. Then (C, l) = (C ′, l′) and Gq(C) = Gq(C ′), so GqL((C, l)) =

Gq(C) = Gq(C ′) = GqL((C ′, l′)). This implies (C, l) ∈ Red
q,Gq

L,=
F (N ) for every

q ∈ Q; therefore, (C, l) ∈ Red∩GL,=F (N ). ut

The given clause procedure that lies at the heart of saturation provers can be
presented and studied abstractly.6 We assume that the set of labels L contains
at least two values, one of which is a distinguished ==-smallest value denoted by
active, and that the labeled version FLInf of FInf never assigns the label active
to a conclusion.

The state of a prover is a set of labeled formulas. The label identifies to which
formula set each formula belongs. The active label identifies the active formula
set from the familiar given clause procedure. The other, unspecified formula sets
are considered passive. Given a set N and a label l, we define the projection N↓l
as consisting only of the formulas labeled by l.

The given clause prover GC is defined as the following transition system:

Process N ∪M =⇒GC N ∪M′
whereM⊆ Red∩GL,=F (N ∪M′) andM′↓active = ∅

Infer N ∪ {(C, l)} =⇒GC N ∪ {(C, active)} ∪M
where l 6= active,M↓active = ∅, and
FInf (bN↓activec, {C}) ⊆ Red∩GI (bNc ∪ {C} ∪ bMc)

The initial state consists of the input formulas, paired with arbitrary labels
different from active. A key invariant of the given clause procedure is that all
inferences from active formulas are redundant w.r.t. the current set of formulas.

The Process rule covers most operations performed in a theorem prover.
By Lemma 59, this includes
6 We keep the traditional term “given clause procedure” even though our framework
is not restricted to clauses.
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• deleting Red∩GF -redundant formulas with arbitrary labels and adding for-
mulas that make other formulas Red∩GF -redundant (i.e., simplifying w.r.t.
Red∩GF ), by (i);

• deleting formulas that are ·�-subsumed by other formulas with arbitrary
labels, by (ii);

• deleting formulas that are ·�-subsumed by other formulas with smaller la-
bels, by (iii);

• replacing the label of a formula by a smaller label different from active, also
by (iii).

Infer is the only rule that puts a formula in the active set. It relabels a
passive formula C to active and ensures that all inferences between C and the
active formulas, including C itself, become redundant. Recall that by Lemma 58,
FLInf (N↓active, {(C, active)}) ⊆ Red∩GLI (N ∪ {(C, active)} ∪ M) if and only if
FInf (bN↓activec, {C}) ⊆ Red∩GI (bNc ∪ {C} ∪ bMc). By property (R4) of redun-
dancy criteria, every inference is redundant if its conclusion is contained in the set
of formulas, and typically, inferences are in fact made redundant by adding their
conclusions to any of the passive sets. Then, bMc equals concl(FInf (bN↓activec,
{C})). There are some techniques commonly implemented in theorem provers,
however, for which we need Infer’s side condition in full generality.

Lemma 60. Every =⇒GC-derivation is a �Red∩GL,= -derivation.gc_to_red

Proof. We must show that every labeled formula that is deleted in a =⇒GC-
step is Red∩GL,=-redundant w.r.t. the remaining labeled formulas. For Process,
this is trivial. For Infer, the only deleted formula is (C, l), which is Red∩GL,=-
redundant w.r.t. (C, active) by part (iii) of Lemma 59, since l == active. ut

Since (FLInf ,Red∩GL,=) is dynamically refutationally complete, it now suf-
fices to show fairness to prove the refutational completeness of GC.

Lemma 61. Let (Ni)i be a =⇒GC-derivation. If N0↓active = ∅ and N∞↓l = ∅ forgc_fair

all l 6= active, then (Ni)i is a fair �Red∩GL,= -derivation.

Proof. We must show that FLInf (N∞) ⊆
⋃
iRed

∩GL
I (Ni). First observe that

N∞ =
⋃
l∈LN∞↓l, so if N∞↓l = ∅ for all l 6= active, then N∞ = N∞↓active.

Let ι′ be an arbitrary inference in FLInf (N∞↓active), and let (Cj , active) for
1 ≤ j ≤ m be the finitely many premises of ι′. Since each premise is contained in
N∞↓active and N0↓active = ∅, we know that for each j there exists some nj such
that (Cj , active) ∈ Nk↓active for all k ≥ nj and (Cj , active) /∈ Nnj−1↓active. Let
n = max{nj | 1 ≤ j ≤ m} and assume that n = nk. Since in every =⇒GC-step
at most one formula can have its label changed to active, we know that the step
Nn−1 =⇒GC Nn must be an Infer step

Nn−1 = N ∪ {(C, l)} =⇒GC N ∪ {(C, active)} ∪M = Nn,

where C = Ck and all other premises of ι′ are contained inN↓active∪{(C, active)}.
By Infer’s side condition, ι = bι′c ∈ FInf (bN↓activec, {C}) ⊆ Red∩GI (bNnc),
hence ι′ ∈ Red∩GLI (Nn) ⊆

⋃
iRed

∩GL
I (Ni), as required. ut
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Theorem 62. Let (Ni)i be a =⇒GC-derivation, whereN0↓active = ∅ andN∞↓l =gc_complete

∅ for all l 6= active. If bN0c |=∩G {⊥} for some ⊥ ∈ F⊥, then some Ni contains
(⊥′, l) for some ⊥′ ∈ F⊥ and l ∈ L.

Proof. By Lemma 55, bN0c |=∩G {⊥} is equivalent to N0 |=∩GL {(⊥, active)}. By
Lemma 61, we know that (Ni)i is a fair �Red∩GL,= -derivation. Since (FLInf ,
Red∩GL,=) is dynamically refutationally complete, we can conclude that some
Ni contains (⊥′, l) for some ⊥′ ∈ F⊥ and l ∈ L. ut

Example 63. The following Otter loop [21, Sect. 2.3.1] prover OL is an instance
of the given clause prover GC. This loop design is inspired byWeidenbach’s prover
without splitting from his Handbook chapter [36, Tables 4–6]. The prover’s state
is a five-tuple N | X | P | Y | A of formula sets. The N , P , and A sets
store the new, passive, and active formulas, respectively. The X and Y sets are
subsingletons (i.e., sets of at most one element) that can store a chosen new or
passive formula, respectively. Initial states are of the form N | ∅ | ∅ | ∅ | ∅.

ChooseN N ] {C} | ∅ | P | ∅ | A =⇒OL N | {C} | P | ∅ | A
DeleteFwd N | {C} | P | ∅ | A =⇒OL N | ∅ | P | ∅ | A

if C ∈ Red∩GF (P ∪A) or C ·� C ′ for some C ′ ∈ P ∪A
SimplifyFwd N | {C} | P | ∅ | A =⇒OL N | {C ′} | P | ∅ | A

if C ∈ Red∩GF (P ∪A ∪ {C ′})
DeleteBwdP N | {C} | P ] {C ′} | ∅ | A =⇒OL N | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C}) or C ′ ·� C
SimplifyBwdP N | {C} | P ] {C ′} | ∅ | A =⇒OL N ∪ {C ′′} | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C,C ′′})
DeleteBwdA N | {C} | P | ∅ | A ] {C ′} =⇒OL N | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C}) or C ′ ·� C
SimplifyBwdA N | {C} | P | ∅ | A ] {C ′} =⇒OL N ∪ {C ′′} | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C,C ′′})
Transfer N | {C} | P | ∅ | A =⇒OL N | ∅ | P ∪ {C} | ∅ | A
ChooseP ∅ | ∅ | P ] {C} | ∅ | A =⇒OL ∅ | ∅ | P | {C} | A
Infer ∅ | ∅ | P | {C} | A =⇒OL M | ∅ | P | ∅ | A ∪ {C}

if FInf (A, {C}) ⊆ Red∩GI (A ∪ {C} ∪M)

Weidenbach identifies the X and Y components of OL’s five-tuples; this is
possible since the former is used only in his inner loop, whereas the latter is used
only in his outer loop.

A reasonable strategy for applying the OL rules is presented below. It relies
on a well-founded ordering � on formulas to ensure that the simplification rules
actually “simplify” their target, preventing nontermination of the inner loop. It
also assumes that FInf (N, {C}) is finite if N is finite.

1. Repeat while N ∪ P 6= ∅ and ⊥ /∈ N ∪ P ∪A:
1.1. Repeat while N 6= ∅:
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1.1.1. Apply ChooseN to retrieve the next formula C from the state’s
N component, which is organized as a queue.

1.1.2. Apply SimplifyFwd as long as the simplified formula C ′ is �-
smaller than the original formula C.

1.1.3. If DeleteFwd is applicable, apply it.
1.1.4. Otherwise:

1.1.4.1. Apply DeleteBwdP and DeleteBwdA exhaustively.
1.1.4.2. Apply SimplifyBwdP and SimplifyBwdA as long as

the simplified formula C ′′ is �-smaller than the original
formula C ′.

1.1.4.3. Apply Transfer.
1.2. If P 6= ∅:

1.2.1. Apply ChooseP. Make sure that the choice of C is fair.
1.2.2. Apply Infer with M = concl(FInf (A, {C})).

Let (Ni | Xi | Pi | Yi | Ai)i be a =⇒OL-derivation that follows the strategy,
where N0 is finite and X0 = P0 = Y0 = A0 = ∅. If the outer loop terminates
because ⊥ ∈ N ∪ P ∪ A, the condition of dynamic refutational completeness is
trivially satisfied. Otherwise, the argument is as follows. With each application
of a rule other than Infer, the state, viewed as a multiset of labeled formulas,
decreases w.r.t. the multiset extension of a relation that compares formulas using
� and breaks ties using == on the labels. This ensures no formula is left in N or
X forever. The fair choice of C ensures that that no formula is left in P forever,
and the application of Infer following ChooseP ensures the same about Y . As
a result, we have N∞ = X∞ = P∞ = Y∞ = ∅. Therefore, by Theorem 62, OL is
dynamically refutationally complete.

In most saturation calculi, Red is defined in terms of some total and well-
founded ordering �G on G. We can then define � so that C � C ′ if the smallest
element of Gq(C) is greater than the smallest element of Gq(C ′) w.r.t. �G, for
some arbitrary fixed q ∈ Q. This allows a wide range of simplifications typically
implemented in resolution or superposition provers.

To ensure fairness when applying ChooseP, one approach is to use an N-
valued weight function that is strictly antimonotone in the age of the formula [28,
Sect. 4]. Another option is to alternate between heuristically choosing n formulas
and taking the oldest formula [21, Sect. 2.3.1].

To guarantee soundness, we can require that the formulas added by sim-
plification and Infer are |≈-entailed by the formulas in the state before the
transition. This can be relaxed to consistency-preservation, e.g., for calculi that
perform skolemization.

Example 64. Bachmair and Ganzinger’s resolution prover RP [6, Sect. 4.3] is
another instance of GC. It embodies both a concrete prover architecture and
a concrete inference system: ordered resolution with selection (O�S ). States are
triples N | P | O of finite clause sets consisting of new, processed (passive),
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and old (active) clauses, respectively. The instantiation relies on three labels
l3 == l2 == l1 = active. Subsumption can be supported as described in Example 41.

Tauto N ∪ {C} | P | O =⇒RP N | P | O
if C is a tautology

DeleteFwd N ∪ {C} | P | O =⇒RP N | P | O
if some clause in P ∪O subsumes C

ReduceFwd N ∪ {C ∨ L} | P | O =⇒RP N ∪ {C} | P | O
if there is a clause D ∨ L′ in P ∪O such that L̄ = L′σ and Dσ ⊆ C

DeleteBwdP N | P ∪ {C} | O =⇒RP N | P | O
if some clause in N properly subsumes C

ReduceBwdP N | P ∪ {C ∨ L} | O =⇒RP N | P ∪ {C} | O
if there is a clause D ∨ L′ in N such that L̄ = L′σ and Dσ ⊆ C

DeleteBwdO N | P | O ∪ {C} =⇒RP N | P | O
if some clause in N properly subsumes C

ReduceBwdO N | P | O ∪ {C ∨ L} =⇒RP N | P ∪ {C} | O
if there is a clause D ∨ L′ in N such that L̄ = L′σ and Dσ ⊆ C

Choose N ∪ {C} | P | O =⇒RP N | P ∪ {C} | O
Infer ∅ | P ∪ {C} | O =⇒RP N | P | O ∪ {C}

if N = concl(O�S (O,C))

Let (Ni | Pi | Oi)i be a full =⇒RP-derivation, where P0 = O0 = ∅. Since the
rule system excluding Infer terminates [28, Sect. 4] and we can always apply
Choose to empty N , we have N∞ = ∅. The only restriction that is needed to en-
sure fairness is that the choice of C in Infer must be fair. This ensures P∞ = ∅.
As a result, by Theorem 62, RP is dynamically refutationally complete. Inciden-
tally, our version of RP repairs a small mistake in Bachmair and Ganzinger’s
definition of the notation Inf (N, {C}), used in the Infer rule [30, Sect. 7].

4.2 Delayed Inferences

An orphan is a passive formula that was generated by an inference for which at
least one premise is no longer active. The given clause prover GC presented in
the previous subsection is sufficient to describe a prover based on an Otter loop
as well as a basic DISCOUNT loop prover, but to describe a DISCOUNT loop
prover with orphan deletion, we need to decouple the scheduling of inferences
and their computation. The same scheme can be used to model provers based
on inference systems that contain premise-free inferences or that may generate
infinitely many conclusions from finitely many premises. Yet another use of the
scheme is to save memory: A delayed inference can be stored more compactly
than a new formula, as a tuple of premises together with instructions on how to
compute the conclusion.

The lazy given clause prover LGC generalizes GC. It is defined as the follow-
ing transition system on pairs (T,N ), where T (“to do”) is a set of scheduled
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inferences and N is a set of labeled formulas. We use the same assumptions as
for GC except that we now permit premise-free inferences in FInf .

Process (T,N ∪M) =⇒LGC (T,N ∪M′)
whereM⊆ Red∩GL,=F (N ∪M′) andM′↓active = ∅

ScheduleInfer (T,N ∪ {(C, l)}) =⇒LGC (T ∪ T ′,N ∪ {(C, active)})
where l 6= active and T ′ = FInf (bN↓activec, {C})

ComputeInfer (T ∪ {ι},N ) =⇒LGC (T,N ∪M)
whereM↓active = ∅ and ι ∈ Red∩GI (bN ∪Mc)

DeleteOrphans (T ∪ T ′,N ) =⇒LGC (T,N )
where T ′ ∩ FInf (bN↓activec) = ∅

Initial states are states (T,N ) such that T consists of all premise-free infer-
ences of FInf and N contains the input formulas paired with arbitrary labels
different from active. A key invariant of LGC is that all inferences from active
formulas are either scheduled in T or redundant w.r.t. N .

Process has the same behavior as the corresponding GC rule, except for the
additional T component, which it ignores.

The Infer rule of GC is split into two parts in LGC: ScheduleInfer relabels
a passive formula C to active and puts all inferences between C and the active
formulas, including C itself, into the set T . ComputeInfer removes an inference
from T and ensures that it becomes redundant by adding appropriate labeled
formulas to N (typically the conclusion of the inference).

DeleteOrphans can delete scheduled inferences from T if some of their
premises have been deleted from N↓active in the meantime by an application of
Process. Note that the rule cannot delete premise-free inferences, since the side
condition is then vacuously false.

Abstractly, the T component of the state is a set of inferences (Cn, . . . , C0).
In an actual implementation, it can be represented in different ways: as a set of
compactly encoded recipes for computing the conclusion C0 from the premises
(Cn, . . . , C1) as in Waldmeister [18], or as a set of explicit formulas C0 with
information about their parents (Cn, . . . , C1) as in E [31]. In the latter case,
some presimplifications may be performed on C0; this could be modeled more
faithfully by defining T as a set of pairs (ι, simp(C0)).

Lemma 65. If (Ti,Ni)i is a =⇒LGC-derivation, then (Ni)i is a �Red∩GL,= -lgc_to_red

derivation.

Proof. We must show that every labeled formula that is deleted in a =⇒LGC-
step from the N component is Red∩GL,=-redundant w.r.t. the remaining labeled
formulas. For Process this is trivial. For ScheduleInfer, the only deleted
formula is (C, l), which is Red∩GL,=-redundant w.r.t. (C, active) by part (iii) of
Lemma 59, since l == active. Finally, the rules ComputeInfer and DeleteOr-
phans do not delete any formulas. ut

Lemma 66. Let (Ti,Ni)i be a =⇒LGC-derivation. If N0↓active = ∅, N∞↓l = ∅lgc_fair

for all l 6= active, T0 is the set of all premise-free inferences of FInf , and T∞ = ∅,
then (Ni)i is a fair �Red∩GL,= -derivation.
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Proof. We must show that FLInf (N∞) ⊆
⋃
iRed

∩GL
I (Ni). Since N∞↓l = ∅ for

all l 6= active, we have N∞ = N∞↓active. Let ι′ be an arbitrary inference in
FLInf (N∞↓active). We first prove that there exists some index n such that ι =
bι′c ∈ Tn. We distinguish two cases: If ι′ has no premises, then ι has no premises
either. So let n = 0, then ι ∈ Tn follows by assumption. Otherwise, let (Cj , active)
for 1 ≤ j ≤ m be the finitely many premises of ι′. Since each premise is contained
in N∞↓active and N0↓active = ∅, we know that for each j there exists some nj such
that (Cj , active) ∈ Nk↓active for all k ≥ nj and (Cj , active) /∈ Nnj−1↓active. Let
n = max{nj | 1 ≤ j ≤ m} and assume that n = nk. Since in every =⇒LGC-step
at most one formula can have its label changed to active, we know that the step
Nn−1 =⇒LGC Nn must be a ScheduleInfer step

(Tn−1,Nn−1) = (T,N∪{(C, l)}) =⇒LGC (T∪T ′,N∪{(C, active)}) = (Tn,Nn),

where C = Ck and all other premises of ι′ are contained inN↓active∪{(C, active)}.
By ScheduleInfer’s side condition, ι = bι′c ∈ FInf (bN↓activec, {C}) = T ′ ⊆
Tn.

In both cases, since T∞ = ∅, there must exist some p > n such that ι ∈ Tp−1
and ι /∈ Tp. There are two rules that can be used to remove inferences from
the first component—namely, ComputeInfer and DeleteOrphans—but the
step (Tp−1,Np−1) =⇒LGC (Tp.Np) cannot be a DeleteOrphans step, since all
premises of ι are contained in bNp−1↓activec. So ι is deleted by a ComputeInfer
step

(Tp−1,Np−1) = (T ∪ {ι},N ) =⇒LGC (T,N ∪M) = (Tp,Np),

and by ComputeInfer’s side condition, bι′c = ι ∈ Red∩GI (bNpc), hence ι′ ∈
Red∩GLI (Np) ⊆

⋃
iRed

∩GL
I (Ni), as required. ut

Theorem 67. Let (Ti,Ni)i be a =⇒LGC-derivation, whereN0↓active = ∅,N∞↓l =lgc_complete

∅ for all l 6= active, T0 is the set of all premise-free inferences of FInf , and
T∞ = ∅. If bN0c |=∩G {⊥} for some ⊥ ∈ F⊥, then some Ni contains (⊥′, l) for
some ⊥′ ∈ F⊥ and l ∈ L.

Proof. By Lemma 55, bN0c |=∩G {⊥} is equivalent to N0 |=∩GL {(⊥, active)}. By
Lemma 66, we know that (Ni)i is a fair �Red∩GL,= -derivation. Since (FLInf ,
Red∩GL,=) is dynamically refutationally complete, we can conclude that some
Ni contains (⊥′, l) for some ⊥′ ∈ F⊥ and l ∈ L. ut

Example 68. The following DISCOUNT loop [1] prover DL is an instance of
the lazy given clause prover LGC. This loop design is inspired by Schulz’s de-
scription of E [31] but omits E’s presimplification of concl(ι). The prover’s state
is a four-tuple T | P | Y | A, where T is a set of inferences and P , Y , A are
sets of formulas. The T , P , and A sets correspond to the scheduled inferences,
the passive formulas, and the active formulas, respectively. The Y set is a sub-
singleton that can store a chosen passive formula. Initial states have the form
T | P | ∅ | ∅, where T is the set of all premise-free inferences of FInf .

ComputeInfer T ] {ι} | P | ∅ | A =⇒DL T | P | {C} | A
if ι ∈ Red∩GI (A ∪ {C})
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ChooseP T | P ] {C} | ∅ | A =⇒DL T | P | {C} | A
DeleteFwd T | P | {C} | A =⇒DL T | P | ∅ | A

if C ∈ Red∩GF (A) or C ·� C ′ for some C ′ ∈ A
SimplifyFwd T | P | {C} | A =⇒DL T | P | {C ′} | A

if C ∈ Red∩GF (A ∪ {C ′})
DeleteBwd T | P | {C} | A ] {C ′} =⇒DL T | P | {C} | A

if C ′ ∈ Red∩GF ({C}) or C ′ ·� C
SimplifyBwd T | P | {C} | A ] {C ′} =⇒DL T | P ∪ {C ′′} | {C} | A

if C ′ ∈ Red∩GF ({C,C ′′})
ScheduleInfer T | P | {C} | A =⇒DL T ∪ T ′ | P | ∅ | A ∪ {C}

if T ′ = FInf (A, {C})
DeleteOrphans T ] T ′ | P | Y | A =⇒DL T | P | Y | A

if T ′ ∩ FInf (A) = ∅

A reasonable strategy for applying the DL rules is presented below. It relies
on a well-founded ordering � on formulas to make sure that the simplification
rules actually simplify their target in some sense, preventing infinite looping. It
assumes that FInf (N, {C}) is finite whenever N is finite.

1. Repeat while T ∪ P 6= ∅ and ⊥ /∈ Y ∪A:
1.1. Apply ComputeInfer or ChooseP to retrieve the next conclusion of

an inference from T or the next formula from P , where T and P are
organized as a single queue.

1.2. Apply SimplifyFwd as long as the simplified formula C ′ is �-smaller
than the original formula C.

1.3. If DeleteFwd is applicable, apply it.
1.4. Otherwise:

1.4.1. Apply DeleteBwd exhaustively.
1.4.2. Apply SimplifyBwd as long as the simplified formula C ′′ is �-

smaller than the original formula C ′.
1.4.3. Apply DeleteOrphans.
1.4.4. Apply ScheduleInfer.

The instantiation of LGC relies on three labels l3 == l2 == l1 = active correspond-
ing to the sets P, Y,A, respectively.

Example 69. Higher-order unification can give rise to infinitely many incom-
parable unifiers. As a result, in clausal λ-superposition [11], performing all infer-
ences between two clauses can lead to infinitely many conclusions, which need
to be enumerated fairly. The Zipperposition prover [11], which implements the
calculus, performs this enumeration in an extended DISCOUNT loop.

Another instance of infinitary inferences arises in conjunction with the theory
of datatypes and codatatypes. Superposition with (co)datatypes [16] includes n-
ary Acycl and Uniq rules, which had to be restricted and complemented with
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axioms so that they could be implemented in Vampire [20]. In Zipperposition, it
would have been possible to support the rules in full generality, eliminating the
need for the axioms.

Abstractly, a Zipperposition loop prover ZL operates on states T | P | Y | A,
where T is organized as a finite set of possibly infinite sequences (ιi)i of inferences
and the other components are as in DL (Example 68). The ChooseP, Delete-
Fwd, SimplifyFwd, DeleteBwd, and SimplifyBwd rules are as in DL. The
other rules follow:

ComputeInfer T ] {(ιi)i} | P | ∅ | A =⇒ZL T ∪ {(ιi)i≥1} | P ∪ {C} | ∅ | A
if ι0 ∈ Red∩GI (A ∪ {C})

ScheduleInfer T | P | {C} | A =⇒ZL T ∪ T ′ | P | ∅ | A ∪ {C}
if T ′ is a finite set of sequences (ιji )i of inferences such that the set of all ιji
equals FInf (A, {C})

DeleteOrphan T ] {(ιi)i} | P | Y | A =⇒ZL T | P | Y | A
if ιi /∈ FInf (A) for all i

ComputeInfer works on the first element of sequences. ScheduleInfer
adds new sequences to T . Typically, these sequences store FInf (A, {C}), which
may be countably infinite, in such a way that all inferences in one sequence have
identical premises and can be removed together by DeleteOrphan. The same
rule can also be used to remove empty sequences from T , since the side condition
is then vacuously true, thereby providing a form of garbage collection.

A subtle difference with DL is that ComputeInfer puts the formula C in P
instead of Y . This gives more flexibility for scheduling; for example, a prover can
pick several formulas from the same sequence and then choose the most suitable
one—not necessarily the first one—to move to the active set.

To produce fair derivations, a prover needs to choose the sequence in Comp-
uteInfer fairly and to choose the formula in ChooseP fairly. In combination,
this achieves a form of dovetailing. The prover could use a simple algorithm, such
as round-robin, for ComputeInfer and employ more sophisticated heuristics
for ChooseP.

The implementation in Zipperposition uses a slightly more complicated rep-
resentation for T , with sequences of subsingletons of inferences. Thus, each se-
quence element is either a single inference ι or the empty set, which signifies that
no new unifier was found up to a certain depth.

4.3 Making Saturation Calculi Fit

The prover architectures described above can be instantiated with saturation
calculi that use a redundancy criterion obtained as an intersection of lifted re-
dundancy criteria. Some saturation calculi are defined in such a way that this
requirement is trivially satisfied. For other, some reformulation of the redun-
dancy criterion may be necessary.
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Example 70. As explained in Examples 49 and 50, redundancy criteria for
calculi with selection functions [5, 6] or constraints [22, 23] can be defined as
intersections Red∩G of lifted redundancy criteria.

Example 71. In Bachmair and Ganzinger’s associative–commutative super-
position calculus [4], the redundancy of general clauses and inferences is defined
using a grounding function G that maps every clause C to the set of its ground
instances Cθ and every inference ι to the set of its ground instances ιθ. In prin-
ciple, one could now apply (G,=)-lifting, where we choose = as the subsumption
ordering modulo AC. This would be pointless, though, since in the definition of
RedG,=F the ordering = is used only if D is a common instance of C and C ′. Note
that, for example, C ′ = f((x + x) + y) ≈ b subsumes C = f(c + (c + z)) ≈ b
modulo AC, but since C and C ′ have no common ground instances, this fact is
never exploited in RedG,=F . We can repair this by redefining G so that it maps
every ι to the set of its ground instances ιθ, as before, but C to the set of all D
that are AC-equal to some ground instance Cθ. This qualifies as a grounding
function as well, and since Bachmair and Ganzinger’s definition of redundancy
for ground clauses is invariant under AC, the new definition of redundancy for
general clauses is equivalent to the old one.

Example 72. Waldmann [34] considers a superposition calculus modulo Ψ-
torsion-free cancellative abelian monoids. Redundant clauses and inferences are
defined in the standard way by lifting, except for the Abstraction inference
rule: According to Waldmann’s definition, a ground instance of an Abstrac-
tion inference ι = (C2, C1, C0) is an Abstraction inference (C2θ, C1θ, C0θ)
where C2θ and C1θ are ground. But the conclusion of an Abstraction infer-
ence is never ground, and this applies also to C0θ. When defining redundancy
for such inferences, it is therefore necessary to further instantiate the abstrac-
tion variable y in C0θ using a substitution ρ that maps y to a sufficiently small
ground term. To obtain a grounding function G as defined in Sect. 3.1, we need
to redefine G(ι) as the set of all inferences (C2θ, C1θ, C0θρ), rather than the set
of all (C2θ, C1θ, C0θ).

Example 73. The definition of redundancy for Bachmair, Ganzinger, and
Waldmann’s hierarchic superposition calculus [8] is mostly standard, using a
grounding function that maps every clause C to a subset G(C) of the set of its
ground instances and every hierarchic superposition inference ι to a set G(ι) of
ground standard superposition inferences. There is one exception, namely, Close
inferences, which derive ⊥ from a list of premises that is inconsistent w.r.t. some
base (background) theory. For these inferences, we have G(ι) = undef .

Baumgartner and Waldmann’s variant of hierarchic superposition [10] re-
lies on a slightly different definition of redundancy: A clause C is redundant
if G(C) ⊆ RedF(G(N) ∪ Th) ∪ Th; a non-Close inference ι is redundant if
G(ι) ⊆ Red I(G(N ∪ Th)), where Th is a fixed set of ground base clauses and
Red is the usual redundancy criterion for ground standard superposition. To
convert this into the format required in Sect. 3.1, we can define RedTh

F (M) :=
RedF(M ∪ Th) ∪ Th, and RedTh

I (M) := Red I(M ∪ Th). It is easy to check that
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RedTh := (RedTh
I ,RedTh

F ) is also a redundancy criterion and that the properties
above are equivalent to G(C) ⊆ RedTh

F (G(N)) and G(ι) ⊆ RedTh
I (G(N)). For

Close inferences, we have again G(ι) = undef .

Example 74. For saturation calculi whose refutational completeness proof is
based on some kind of lifting of ground instances, the requirement to use a
redundancy criterion obtained as an intersection of lifted redundancy criteria is
rather natural. The outlier is unfailing completion [2].

Unfailing completion predates the introduction of Bachmair–Ganzinger-style
redundancy, but it can be incorporated into that framework by defining that
formulas (i.e., rewrite rules and equations) and inferences (i.e., orientation and
critical pair computation7) are redundant if for every rewrite proof using that
rewrite rule, equation, or critical peak, there exists a smaller rewrite proof. The
requirement that the redundancy criterion must be obtained by lifting (which
is necessary to introduce the labeling) can then be trivially fulfilled by “self-
lifting”—i.e., by defining G := F and ·� := ∅ and by taking G as the function
that maps every formula or inference to the set of its α-renamings.

Note that this definition of redundancy differs from the usual definition
of redundancy for superposition. For example, with a term ordering satisfying
f(b) � f(c) � f(d) � b � c � d, the equations b ≈ c and b ≈ d make f(c) ≈ f(d)
redundant in the superposition calculus (since they are smaller in the induced
clause ordering), but they do not make f(c) ≈ f(d) redundant in unfailing com-
pletion (since the rewrite proof f(c) ↔ f(b) ↔ f(d) using b ≈ c and b ≈ d is
larger than the rewrite proof f(c)↔ f(d) using f(c) ≈ f(d)).

5 Isabelle Development

The framework described in the previous sections has been formalized in Isa-
belle/HOL [24,25], including all the theorems and lemmas and the prover archi-
tectures GC and LGC but excluding the examples. The Isabelle theory files are
available in the Archive of Formal Proofs [32]. The development is also part of
the IsaFoL (Isabelle Formalization of Logic) [14] effort, which aims at developing
a reusable computer-checked library of results about automated reasoning.

The development relies heavily on Isabelle’s locales [9]. These are contexts
that fix variables and make assumptions about these. Definitions and lemmas
occurring inside the locale may then refer to them. With locales, the definitions
and lemmas look similar to or even simpler than how they are stated on paper,
but the proofs often become more complicated: Layers of locales may hide def-
initions, and often these need to be manually unfolded in several steps before
the desired lemma can be proved. A pathological example is Lemma 58, which
obviously holds by construction from a human perspective but whose Isabelle
proof required more than a hundred lines of code.
7 The other inferences of the unfailing completion calculus, such as simplifications of
equations or rules, must be considered as simplifications in our framework, rather
than as inferences.
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We chose to represent basic nonempty sets such as F and L by types. This
lightened the development in two ways. First, it relieved us from having to thread
through nonemptiness conditions. Second, objects are automatically typed ap-
propriately based on the context, meaning that lemmas could be stated with-
out explicit hypotheses that given objects are formulas, labels, or indices. On
the other hand, for sets such as F⊥ and FInf that are subsets of other sets,
it was natural to use simply typed sets. Derivations, which are introduced in
Calculi.thy to describe the dynamic behavior of a calculus, are represented by
the same lazy list codatatype [15] and auxiliary definitions that were used in the
mechanization of the ordered resolution prover RP (Example 64) by Schlichtkrull
et al. [29, 30].

The framework’s design and its mechanization were carried out largely in
parallel. This resulted in more work on the mechanization side because changes
had to be propagated, but it also helped detect missing conditions and shape the
theory itself. For example, an earlier version of the framework considered only
single lifted redundancy criteria instead of intersections of lifted redundancy cri-
teria (Sect. 3.3). An attempt at verifying RP in Isabelle using the framework
made it clear that the theory was not quite general enough yet to support selec-
tion functions (Example 49). In ongoing work, we are completing the RP proof
and are developing a verified superposition prover.

6 Conclusion

We presented a formal framework for saturation theorem proving inspired by
Bachmair and Ganzinger’s Handbook chapter [6]. Users can conveniently derive
a dynamic refutational completeness result for a concrete prover based on a stat-
ically refutationally complete calculus. The key was to strengthen the standard
redundancy criterion so that all prover operations, including subsumption dele-
tion, can be justified by inference or redundancy. The framework is mechanized
in Isabelle/HOL, where it can be instantiated to verify concrete provers.

To employ the framework, the starting point is a statically complete satura-
tion calculus that can be expressed as the lifting (FInf ,RedG) or (FInf ,Red∩G)
of a ground calculus (GInf ,Red), where Red qualifies as a redundancy crite-
rion and G qualifies as a grounding function or grounding function family. The
framework can be used to derive two main results:

1. After defining a well-founded ordering = or a family of well-founded order-
ings that capture subsumption, invoke Theorem 48 to show (FInf ,Red∩G,=)
dynamically complete.

2. Based on the previous step, invoke Theorem 62 or 67 to derive the dynamic
completeness of a prover architecture building on the given clause procedure,
such as the Otter loop, the DISCOUNT loop, or the Zipperposition loop
(Examples 63, 68, and 69).

The framework can also help establish the static completeness of the nonground
calculus. For many calculi (with the notable exceptions of constraint superposi-
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tion and hierarchic superposition), Theorem 27 or 45 can be used to lift the
static completeness of (GInf ,Red) to (FInf ,RedG) or (FInf ,Red∩G).

The main missing piece of the framework is a generic treatment of clause
splitting. The only formal treatment of splitting we are aware of, by Fietzke and
Weidenbach [17], hard-codes both the underlying calculus and the splitting strat-
egy. Voronkov’s AVATAR architecture [33] is more flexible and yields impressive
empirical results, but it offers no dynamic completeness guarantees.
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