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Abstract. We present a formalization of the first half of Bachmair and Ganz-
inger’s chapter on resolution theorem proving in Isabelle/HOL, culminating with
a refutationally complete first-order prover based on ordered resolution with lit-
eral selection. We develop general infrastructure and methodology that can form
the basis of completeness proofs for related calculi, including superposition. Our
work clarifies several of the fine points in the chapter’s text, emphasizing the
value of formal proofs in the field of automated reasoning.

1 Introduction

Much research in automated reasoning amounts to metatheoretical arguments, typically
about the soundness and completeness of logical inference systems or the termination
of theorem proving processes. Often the proofs contain more insights than the systems
or processes themselves. For example, the superposition calculus rules [2], with their
many side conditions, look rather arbitrary, whereas in the completeness proof the side
conditions emerge naturally from the model construction. And yet, despite being crucial
to our field, today such proofs are usually carried out without tool support beyond TEX.

We believe proof assistants are becoming mature enough to help. In this report,
we present a formalization, developed using the Isabelle/HOL system [21], of a first-
order prover based on ordered resolution with literal selection. We follow Bachmair
and Ganzinger’s account [3] from Chapter 2 of the Handbook of Automated Reasoning,
which we will simply refer to as “the chapter.” Our formal development covers the refu-
tational completeness of two resolution calculi for ground (i.e., variable-free) clauses
and general infrastructure for theorem proving processes and redundancy, culminating
with a completeness proof for a first-order prover expressed as transition rules operating
on triples of clause sets. This material corresponds to the chapter’s first four sections.

From the perspective of automated reasoning, increased trustworthiness of the re-
sults is an obvious benefit of formal proofs. But formalizing also helps clarify argu-
ments, by exposing and explaining difficult steps. Making theorem statements (includ-
ing definitions and hypotheses) precise can be a huge gain for communicating results.



Moreover, a formal proof can tell us exactly where hypotheses and lemmas are used.
Once we have created a library of basic results and a methodology, we will be in a good
position to study extensions and variants. Given that automatic theorem provers are in-
tegrated in modern proof assistants, there is also an undeniable thrill in applying these
tools to reason about their own metatheory.

From the perspective of interactive theorem proving, formalization work constitutes
a case study in the use of a proof assistant. It gives us, as developers and users of such a
system, an opportunity to experiment, contribute to lemma libraries, and get inspiration
for new features and improvements.

Our motivation for choosing Bachmair and Ganzinger’s chapter is manyfold. The
text is a standard introduction to superposition-like calculi (together with Handbook
Chapters 7 [18] and 27 [35]). It offers perhaps the most detailed treatment of the lift-
ing of a resolution-style calculus’s static completeness to a saturation prover’s dynamic
completeness. It introduces a considerable amount of general infrastructure, including
different types of inference systems (sound, reductive, counterexample-reducing, etc.),
theorem proving processes, and an abstract notion of redundancy. The resolution calcu-
lus, extended with a term order and literal selection, captures most of the insights un-
derlying ordered paramodulation and superposition, but with a simple notion of model.

The chapter’s level of rigor is uneven, as shown by the errors and imprecisions
revealed by our formalization. These are only to be expected in technical material of
this kind. Far from diminishing the original work, our corrections should increase its
value to the research community. We will see that the main completeness result does
not hold, due to the improper treatment of self-inferences. Naturally, our objective is
not to diminish Bachmair and Ganzinger’s outstanding achievements, which include the
development of superposition; rather, it is to demonstrate that even the work of some of
the most celebrated researchers in our field can benefit from formalization. Our view is
that formal proofs can be used to complement and improve their informal counterparts.

This work is part of the IsaFoL (Isabelle Formalization of Logic) project,1 which
aims at developing a library of results about logical calculi used in automated reasoning.
The Isabelle theory files are available in the Archive of Formal Proofs (AFP).2 They
amount to about 8000 lines of source text. Below we provide implicit hyperlinks from
theory and lemma names. A better way to study the theory files, however, is to open
them in Isabelle/jEdit [37], an integrated development environment for formal proof.
This will ensure that logical and mathematical symbols are rendered properly (e.g., ∀
instead of \<forall>) and let you inspect proof states. We used Isabelle version 2017,
but the AFP is continuously updated to track Isabelle’s evolution. We assume the reader
has some familiarity with the chapter’s content.

2 Preliminaries

Ordered resolution depends on little background metatheory that needs to be formalized
using Isabelle. Much of it, concerning partial and total orders, well-foundedness, and

1 https://bitbucket.org/isafol/isafol/wiki/Home
2 https://devel.isa-afp.org/entries/Ordered_Resolution_Prover.html
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finite multisets, is provided by standard Isabelle libraries. We also need literals, clauses,
models, terms, and substitutions.

Isabelle. Isabelle/HOL [21] is a proof assistant based on classical higher-order logic
(HOL) with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. It is the
logic of Gordon’s original HOL system [14] and of its many successors. HOL nota-
tions are similar to those of functional programming languages. Functions are applied
without parentheses or commas (e.g., f x y). Through syntactic abbreviations, many tra-
ditional notations from mathematics are provided, notably to denote simply typed sets
and multisets. We refer to Nipkow and Klein [20, Part 1] for a modern introduction.

Clauses and Models. We use the same library of clauses (Clausal_Logic.thy) as for
the verified SAT solver by Blanchette et al. [6], which is also part of IsaFoL. Atoms
are represented by a type variable ′a, which can be instantiated by arbitrary concrete
types—e.g., numbers or first-order terms. A literal, of type ′a literal (where the type
constructor is written in ML-style postfix syntax), can be of the form Pos A or Neg A,
where A :: ′a is an atom. The literal order > (written � in the chapter) extends a fixed
atom order > by comparing polarities to break ties, with Neg A > Pos A. Following the
chapter, a clause is defined as a finite multiset of literals, ′a clause = ′a literal multiset,
where multiset is the Isabelle type constructor of finite multisets. Thus, the clause A∨B,
where A and B are atoms, is identified with the multiset {A,B}; the clause C∨D, where
C and D are clauses, is C ]D; and the empty clause ⊥ is {}. The clause order is the
multiset extension of the literal order.

A Herbrand interpretation I is a value of type ′a set, specifying which ground atoms
are true (Herbrand_Interpretation.thy). The “models” operator � is defined in the
usual way on atoms, literals, clauses, sets, and multisets of clauses; for example, I �
C⇐⇒∃L∈C. I � L. Satisfiability of a set or multiset of clauses N is defined by sat N⇐⇒
∃I. I � N.

Multisets are central to our development. Isabelle provides a multiset library, but
it is much less developed than those of sets and lists. As part of IsaFoL, we have
already extended it considerably and implemented further additions in a separate file
(Multiset_More.thy). Some of these, notably a plugin for Isabelle’s simplifier to ap-
ply cancellation laws, are described in a recent paper [7, Section 3].

The main hurdle we faced concerned the multiset order. Multisets of clauses have
type ′a literal multiset multiset. The corresponding order is the multiset extension of the
clause order. In Isabelle, the multiset order was called #⊂#, and it relied on the element
type’s < operator, through Isabelle’s type class mechanism. Unfortunately, for multisets,
< was defined as the subset relation, so when nesting multisets (as ′a multiset multiset),
we obtained the multiset extension of the subset relation. Initially, we worked around
the issue by defining an order #⊂## on multisets of multisets, but we also saw potential
for improvement. After some discussions on the Isabelle users’ mailing list, we decided
to let < be the multiset order and introduce the symbol ⊂# for the subset relation. To
avoid introducing subtle changes in the semantics of existing developments, we first
renamed < to ⊂#, freeing up <; then, in the next Isabelle release, we renamed #⊂#
to <. In the intermediate state, all occurrences of < and of the lemmas about it were
flagged as errors, easing porting. Similar changes affected the nonstrict versions of the
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orders (e.g.,≤) and all the lemmas about them (e.g., add_mono: M≤M′ =�⇒ N ≤ N′ =�⇒
M]N ≤ M′]N′).

Terms and Substitutions. The IsaFoR (Isabelle Formalization of Rewriting) library—
an inspiration for IsaFoL—contains a definition of first-order terms and results about
substitutions and unification [32]. It makes sense to reuse this functionality. A practical
issue is that most of IsaFoR is not accessible from the AFP.

Resolution depends only on basic properties of terms and atoms, such as the exis-
tence of most general unifiers (MGUs). We exploit this to keep the development param-
eterized by a type of atoms ′a and an abstract type of substitutions ′s, through Isabelle
locales [4] (Abstract_Substitution.thy). A locale represents a module parameter-
ized by types and terms that satisfy some assumptions. Inside the locale, we can refer
to the parameters and assumptions in definitions, lemmas, and proofs. The basic oper-
ations provided by our locale are application (· :: ′a⇒ ′s⇒ ′a), identity (id :: ′s), and
composition (◦ :: ′s⇒ ′s⇒ ′s), about which some assumptions are made (e.g., A · id = A
for all atoms A). Substitution is lifted to literals, clauses, sets of clauses, and so on.
Many other operations can be defined in terms of the primitives—for example:

is_ground A ⇐⇒ ∀σ. A = A ·σ is_renaming σ ⇐⇒ ∃τ. σ◦τ= id

is_ground σ ⇐⇒ ∀A. is_ground (A ·σ) instance_of C D ⇐⇒ ∃σ. C ·σ= D

MGUs are also taken as a primitive: the mgu :: ′a set set⇒ ′s option operation takes
a set of unification constraints, each of the form A1

?
= · · · ?

= An, and returns either an
MGU or a special value (None).

Perhaps the main reason why multisets are preferable to sets for representing clauses
is that they are better behaved with respect to substitution. Using a set representation
of clauses, applying σ= {x 7→ a, y 7→ a} to either the unit clause C = p(x) or the two-
literal clause D = p(x)∨ p(y) yields a unit clause p(a). This oddity breaks a property
called “stability under substitution”—the requirement that D >C imply D ·σ >C ·σ.

To complete our formal development and ensure that our assumptions are legitimate,
we instantiate the locale’s parameters with IsaFoR types and operations and discharge its
assumptions (IsaFoR_Term.thy). This bridge is currently hosted on the IsaFoL reposi-
tory, outside the AFP.

3 Refutational Inference Systems

In their Section 2.4, Bachmair and Ganzinger introduce basic conventions for refuta-
tional inference systems. In Section 3, they present two ground resolution calculi and
prove them refutationally complete in Theorems 3.9 and 3.16. In Section 4.2, they in-
troduce a notion of counterexample-reducing inference system and state Theorem 4.4
as a generalization of Theorems 3.9 and 3.16 to all such systems. For formalization,
two courses of actions suggest themselves: follow the book closely and prove the three
theorems separately, or focus on the most general result. We choose the latter, as being
more consistent with the goal of providing a well-designed, reusable library, at the cost
of widening the gap between the text and its formal companion.
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We collect the abstract hierarchy of inference systems in a single Isabelle theory file
(Inference_System.thy). An inference, of type ′a inference, is a triple (C,D,E) that
consists of a multiset of side premises C, a main premise D, and a conclusion E. An
inference system, or calculus, is a possibly infinite set of inferences:

locale inference_system =
fixes Γ :: ′a inference set

We use an Isabelle locale to fix, within a named context (inference_system), a set Γ

of inferences between clauses over atom type ′a. Inside the locale, we define a function
infers_from that, given a clause set N, returns the subset of Γ inferences whose premises
all belong to N.

A satisfiability-preserving (or consistency-preserving) inference system enriches
the inference system locale with an assumption, whereas sound systems are charac-
terized by a different assumption:

locale sat_preserving_inference_system = inference_system +
assumes sat N =�⇒ sat (N ∪ concl_of ‘ infers_from N)

locale sound_inference_system = inference_system +
assumes (C,D,E) ∈ Γ =�⇒ I � C ∪ {D}=�⇒ I � E

The notation f ‘ X above stands for the image of the set or multiset X under function f .
Soundness is a stronger requirement than satisfiability preservation. In Isabelle, this

can be expressed as a sublocale relation:

sublocale sound_inference_system < sat_preserving_inference_system

This command emits a proof goal stating that sound_inference_system’s assumption
implies sat_preserving_inference_system’s. Afterwards, all the definitions and lemmas
about satisfiability-preserving calculi become available about sound ones.

In reductive inference systems (reductive_inference_system), the conclusion of each
inference is smaller than the main premise according to the clause order. A related
notion, the counterexample-reducing inference systems, is specified as follows:

locale counterex_reducing_inference_system = inference_system +
fixes I_of :: ′a clause set⇒ ′a set
assumes {} /∈ N =�⇒ D ∈ N =�⇒ I_of N 6� D =�⇒
(∀C∈N. I_of N 6�C =�⇒ D≤C) =�⇒
∃C⊆N.∃E. I_of N � C ∧ (C,D,E) ∈ Γ ∧ I_of N 6� E ∧ E < D

The “model functor” parameter I_of maps clause sets to candidate models. The assump-
tion is that for any clause set N that does not contain {} (i.e.,⊥), if D∈ N is the smallest
counterexample—the smallest clause in N that is falsified by I_of N—we can derive a
smaller counterexample E using an inference from clauses in N. This property is use-
ful because if N is saturated (i.e., closed under Γ inferences), we must have E ∈ N,
contradicting D’s minimality:

theorem saturated_model: saturated N =�⇒{} /∈ N =�⇒ I_of N � N
corollary saturated_complete: saturated N =�⇒¬ sat N =�⇒{} ∈ N
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Bachmair and Ganzinger claim that compactness of clausal logic follows from the
refutational completeness of ground resolution (Theorem 3.12), although they give no
justification. Our argument relies on an inductive definition of saturation of a set of
clauses: saturate :: ′a clause set⇒ ′a clause set. Most of the work goes into proving
this key lemma, by rule induction on the saturate function:

lemma saturate_finite: C ∈ saturate N =�⇒∃M⊆N. finite M ∧C ∈ saturate M

The interesting case is when C =⊥. We establish compactness in a locale that combines
counterex_reducing_inference_system and sound_inference_system:

theorem clausal_logic_compact: ¬ sat N⇐⇒∃M⊆N. finite M ∧ ¬ sat M

To give a taste of the formalization, here is the formal proof, expressed using Isabelle’s
structured Isar format [36]:

proof
assume ¬ sat N
then have {} ∈ saturate N

using saturated_complete saturated_saturate saturate.base
unfolding true_clss_def by meson

then have ∃M⊆N. finite M ∧ {} ∈ saturate M
using saturate_imp_finite_subset by fastforce

then show ∃M⊆N. finite M ∧ ¬ sat M
using saturate_sound by auto

next
assume ∃M ⊆ N. finite M ∧ ¬ sat M
then show ¬ sat N

by (blast intro: true_clss_mono)
qed

In the “implies” direction, we rely on the calculus’s refutation completeness to show that
⊥ belongs to saturate N, on the above key lemma to obtain a finite subset M from which
⊥ can be derived, and on the calculus’s soundness to conclude that M is unsatisfiable.
We believe satisfiability preservation could be used instead of soundness, relying on the
property that sat N =�⇒ sat (saturate N) for satisfiability-preserving calculi, but we have
yet to find a good way to prove this formally.

Our compactness result is meaningful only if the locale assumptions are consistent.
In the next section, we will exhibit two sound counterexample-reducing calculi that can
be used to instantiate the locale and retrieve an unconditional compactness theorem.

4 Ground Resolution

A useful strategy for establishing properties of first-order calculi is to initially restrict
our attention to ground calculi and then to lift the results to first-order formulas contain-
ing terms with variables. Accordingly, the chapter’s Section 3 presents two ground cal-
culi: a simple binary resolution calculus and an ordered resolution calculus with literal
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selection. Both consist of a single resolution rule, with built-in positive factorization.
Most of the explanations and proofs concern the simpler calculus. To avoid duplication,
we factor out the candidate model construction (Ground_Resolution_Model.thy). We
then define the two calculi and prove that they are sound and reduce counterexamples
(Unordered_Ground_Resolution.thy, Ordered_Ground_Resolution.thy).

Candidate Models. Refutational completeness is proved by exhibiting a model for any
saturated clause set N that does not contain ⊥. The model is constructed incrementally,
one clause C ∈ N at a time, starting with an empty Herbrand interpretation. The idea
appears to have originated with Brand [10] and Zhang and Kapur [38].

Bachmair and Ganzinger introduce two operators to build the candidate model: IC
denotes the current interpretation before considering C, and εC denotes the set of (zero
or one) atoms added, or produced, to ensure that C is satisfied. The candidate model
construction is parameterized by a literal selection function S. It can be ignored by
taking S := λC. {}.

locale ground_resolution_with_selection =
fixes S :: ′a clause⇒ ′a clause
assumes S C ⊆C and L ∈ S C =�⇒ is_neg L

Inside the locale, we fix a clause set N, for which we try to derive a model. Then we
define two operators corresponding to εC and IC :

function production :: ′a clause⇒ ′a set where
production C = {A |C ∈ N ∧C 6= {} ∧Max C = Pos A

∧
(⋃

D<C production D
)
6�C ∧ S C = {}}

definition interp :: ′a clause⇒ ′a set where
interp C =

⋃
D<C production D

To ensure monotonicity of the construction, any produced atom must be maximal in its
clause. Moreover, productive clauses may not contain selected literals. In the chapter, εC
and IC are expressed in terms of each other. We simplified the definition by inlining IC
in εC , so that only εC is recursive. Since the recursive calls operate on clauses D that are
smaller with respect to a well-founded order, the definition is accepted [16]. Once the
operators are defined, we can fold interp’s definition in production’s equation to derive
the intended mutually recursive specification as a lemma. Bachmair and Ganzinger’s
I C and IN operators are introduced as abbreviations:

Interp C = interp C ∪ production C INTERP =
⋃

C∈N production C

We then prove a host of lemmas about these concepts. Lemma 3.4 amounts to six
monotonicity properties:

lemma Interp_imp_interp: C ≤ D =�⇒ D < D′=�⇒ Interp D �C =�⇒ interp D′ �C
lemma Interp_imp_Interp: C ≤ D =�⇒ D≤ D′=�⇒ Interp D �C =�⇒ Interp D′ �C
lemma Interp_imp_INTERP: C ≤ D =�⇒ Interp D �C =�⇒ INTERP �C
lemma interp_imp_interp: C ≤ D =�⇒ D≤ D′=�⇒ interp D �C =�⇒ interp D′ �C
lemma interp_imp_Interp: C ≤ D =�⇒ D≤ D′=�⇒ interp D �C =�⇒ Interp D′ �C
lemma interp_imp_INTERP: C ≤ D =�⇒ interp D �C =�⇒ INTERP �C
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In the chapter, the first property is wrongly stated with D≤D′ instead of D <D′, admit-
ting the counterexample N = {{A}} and C = D = D′= {A}. Lemma 3.3, whose proof
depends on monotonicity, is better proved after 3.4:

lemma productive_imp_INTERP: production C 6= {}=�⇒ INTERP �C

A more serious oddity is Lemma 3.7. Using our notations, it can be stated as

D ∈ N =�⇒C 6= D =�⇒
(
∀D′≤D. Interp D′ �C

)
=�⇒ interp D � D′

However, the last occurrence of D′ is clearly wrong—the context suggests C instead.
Even after this amendment, we have a counterexample, corresponding to a gap in the
proof: D = {}, C = {Pos A}, and N = {D,C}. Since this “lemma” is not actually used,
we can simply ignore it.

Unordered Resolution. The unordered ground resolution calculus consists of a single
binary inference rule, with the side premise C∨A∨ ·· ·∨A, the main premise ¬A∨D,
and the conclusion C∨D:

C∨A∨·· ·∨A ¬A∨D

C∨D

Formally, this rule is captured by a predicate:

inductive unord_resolve :: ′a clause⇒ ′a clause⇒ ′a clause⇒ bool where
unord_resolve (C ] replicate (n+1) (Pos A)) ({Neg A} ] D) (C ] D)

Soundness is trivial to prove:

lemma unord_resolve_sound: unord_resolve C D E =�⇒ I �C =�⇒ I � D =�⇒ I � E
using unord_resolve.cases by fastforce

To prove completeness, it suffices to show that the calculus reduces counterexamples.
This corresponds to Theorem 3.8, except that the conclusion is strengthened slightly to
match counterex_reducing_inference_system’s assumption:

theorem unord_resolve_counterex_reducing:
assumes {} /∈ N and C ∈ N and INTERP N 6�C and
∀D∈N. INTERP N 6� D =�⇒C ≤ D

obtains D E where
D ∈ N and INTERP N � D and production N D 6= {} and
unord_resolve D C E and INTERP N 6� E and E <C

The arguments N to INTERP and production are necessary because we are outside
the block in which N was fixed. This explicit dependency allows us to instantiate the
locale’s I_of :: ′a clause set⇒ ′a set parameter with INTERP.

By instantiating the sound_inference_system and counterex_reducing_inference_
system locales, we obtain refutational completeness (Theorem 3.9 and Corollary 3.10)
and compactness of clausal logic (Theorem 3.12).

8



Ordered Resolution with Selection. Ordered ground resolution consists of a single
rule, ord_resolve. Like unord_resolve, it is sound and counterexample-reducing (The-
orem 3.15). Moreover, it is reductive (Lemma 3.13): the conclusion is always smaller
than the main premise according to the clause order. The rule is given as

C1∨A1∨·· ·∨A1 · · · Cn∨An∨·· ·∨An ¬A1∨·· ·∨¬An∨D

C1∨·· ·∨Cn∨D

with multiple side conditions whose role is to prune the search space and to make the
rule reductive.

The n-ary nature of the rule constitutes a substantial complication. The ellipsis no-
tation hides most of the complexity in the informal proof, but in Isabelle, even stating
the rule is tricky, let alone reasoning about it. We represent the n side premises by three
parallel lists of length n: CAs gives the entire clauses, whereas Cs and As store the Ci
and the Ai = Ai ∨ ·· · ∨ Ai parts separately. In addition, As is the list [A1, . . . ,An]. The
following inductive definition captures the rule formally:

inductive ord_resolve :: ′a clause list⇒ ′a clause⇒ ′a clause⇒ bool where
|CAs|= n =�⇒ |Cs|= n =�⇒ |As|= n =�⇒ |As|= n =�⇒ n 6= 0 =�⇒
(∀i<n. CAs ! i = Cs ! i ] Pos ‘As ! i) =�⇒ (∀i<n. As ! i 6= {}) =�⇒
(∀i<n.∀A∈As ! i. A = As ! i) =�⇒ eligible As (D ] Neg ‘ mset As) =�⇒
(∀i<n. strict_max_in (As ! i) (Cs ! i)) =�⇒ (∀i<n. S (CAs ! i) = {}) =�⇒
ord_resolve CAs (D ] Neg ‘ mset As) ((

⋃
mset Cs) ] D)

The xs ! i operator returns the (i + 1)st element of xs, and mset converts a list to a
multiset. Before settling on the above formulation, we tried storing the n premises in
a multiset, since their order is irrelevant. However, due to the permutative nature of
multisets, there can be no such things as “parallel multisets”; to keep the dependencies
between the Ci’s and the Ai’s, we must keep them in a single multiset of tuples, which
is very unwieldy.

A previous version of the formalization represented each Ai∨ ·· ·∨Ai as a value of
type ′a×nat—the nat representing the number of times Ai is repeated. With this ap-
proach, the definition of ord_resolve did not need to state the equality of the atoms in
each As ! i.Other than that, there was nothing to win, and the approach does not work on
the first-order level where atoms should be unifiable instead of equal. To achieve sym-
metry between the ground and first-order calculi, we went with the current approach.

Formalization revealed an error and a few ambiguities in the rule’s statement. Ref-
erences to S(D) in the side conditions should have been to S(¬A1∨·· ·∨¬An∨D). The
ambiguities are discussed in Appendix A.

Soundness is a good sanity check for our definition:

lemma ord_resolve_sound:
ord_resolve CAs DA E =�⇒ I �mset CAs =�⇒ I � DA =�⇒ I � E

The proof is by case distinction: either the interpretation I contains all atoms Ai, in
which case the D subclause of the main premise ¬A1∨ ·· ·∨¬An∨D must be true, or
there exists an index i such that Ai /∈ I, in which case the corresponding Ci must be true.
In both cases, the conclusion C1∨·· ·∨Cn∨D is true.
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5 Theorem Proving Processes

In their Section 4, Bachmair and Ganzinger switch from a static to a dynamic view of
saturation: from clause sets closed under inferences to theorem proving processes that
start with a clause set N0 and keep deriving new clauses until ⊥ is generated or no in-
ferences are possible. Proving processes support an important optimization: redundant
clauses can be deleted at any point from the clause set, and redundant inferences need
not be performed at all.

A derivation performed by a proving process is a possibly infinite sequence N0 B
N1 B N2 B · · · , where B relates clause sets (Proving_Process.thy). In Isabelle, such
sequences are captured by lazy lists, a codatatype [5] generated by LNil :: ′a llist and
LCons :: ′a⇒ ′a llist⇒ ′a llist, and equipped with lhd (“head”) and ltl (“tail”) selectors
that extract LCons’s arguments. Unlike datatypes, codatatypes allow infinite values—
e.g., LCons 0 (LCons 1 (LCons 2 . . .)). The coinductive predicate chain checks that its
argument is a nonempty lazy list whose elements are consecutively related by a given
binary predicate R:

coinductive chain :: (′a⇒ ′a⇒ bool)⇒ ′a llist⇒ bool where
chain R (LCons x LNil)
| chain R xs =�⇒ R x (lhd xs) =�⇒ chain R (LCons x xs)

A derivation is a lazy list Ns of clause sets satisfying the chain predicate with R = B.
Derivations depend on a redundancy criterion presented as two functions, RF and RI,
that specify redundant clauses and redundant inferences, respectively:

locale redundancy_criterion = inference_system +
fixes
RF :: ′a clause set⇒ ′a clause set and
RI :: ′a clause set⇒ ′a inference set

assumes
RI N ⊆ Γ and
N ⊆ N′ =�⇒RF N ⊆RF N′ and
N ⊆ N′ =�⇒RI N ⊆RI N′ and
N′ ⊆RF N =�⇒RF N ⊆RF (N \N′) and
N′ ⊆RF N =�⇒RI N ⊆RI (N \N′) and
sat (N \RF N) =�⇒ sat N

By definition, a transition from M to N is possible if the only new clauses added are
conclusions of inferences from M and any deleted clauses would be redundant in N:

inductive B :: ′a clause set⇒ ′a clause set⇒ bool where
N \M ⊆ concl_of ‘ infers_from M =�⇒ M \N ⊆RF N =�⇒ M B N

This rule combines deduction (the addition of inferred clauses) and deletion (the re-
moval of redundant clauses) in a single transition. The chapter keeps the two operations
separated, but this is problematic, as we will see in Section 7.

A key concept to connect static and dynamic completeness is that of the set of
persistent clauses, or limit of a sequence of clause sets: N∞ =

⋃
i
⋂

j≥i Nj. These are the
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clauses that belong to all clause sets except for at most a finite prefix of the sequence Ni.
We also need the supremum of a sequence,

⋃
i Ni, and of a bounded prefix,

⋃ j
i=0 Ni. We

introduce these missing functions (Lazy_List_Liminf.thy):

definition Liminf :: ′a llist⇒ ′a where
Liminf xs =

⋃
i<|xs|

⋂
j:i≤ j<|xs| xs ! j

definition Sup :: ′a llist⇒ ′a where
Sup xs =

⋃
i<|xs| xs ! i

definition Sup_upto :: ′a llist⇒ nat⇒ ′a where
Sup_upto xs j =

⋃
i:i<|xs|∧i≤ j xs ! i

Even though codatatypes open the door to coinductive methods, we follow whenever
possible the chapter’s index-based approach. When interpreting the notation

⋃
i
⋂

j≥i Nj
for the case of a finite sequence of length n, it is crucial to use the right upper bounds,
namely i, j < n. For j, it is clear that ‘< n’ is needed to keep Nj’s index within bounds.
For i, the danger is more subtle: if i≥ n, then

⋂
j : i≤ j<n Nj collapses to the trivial infimum⋂

j∈{}Nj, i.e., the set of all clauses.
Lemma 4.2 connects the redundant clauses and inferences at the limit to those of the

supremum, and the satisfiability of the limit to that of the initial clause set. Formally:

lemma Rf_limit_Sup: chain (B) Ns =�⇒RF (Liminf Ns) =RF (Sup Ns)
lemma Ri_limit_Sup: chain (B) Ns =�⇒RI (Liminf Ns) =RI (Sup Ns)
lemma sat_limit_iff : chain (B) Ns =�⇒

(
sat (Liminf Ns)⇐⇒ sat (lhd Ns)

)
The proof of the last lemma relies on

lemma deriv_sat_preserving: chain (B) Ns =�⇒ sat (lhd Ns) =�⇒ sat (Sup Ns)

In the chapter, this property follows “by the soundness of the inference system Γ and
the compactness of clausal logic,” contradicting the claim that “we will only con-
sider consistency-preserving inference systems” [2, Section 2.4] and not sound ones.
Thanks to Isabelle, we now know that soundness is unnecessary. By compactness, it
suffices to show that all finite subsets D of

⋃
i Ni are satisfiable. By finiteness of D,

there must exist an index k such that D ⊆ ⋃k
i=0 Ni. We perform an induction on k.

The base case is trivial since N0 is assumed to be satisfiable. For the induction step,
if k is beyond the end of the list, then

⋃k
i=0 Ni =

⋃k−1
i=0 Ni and we can apply the in-

duction hypothesis directly. Otherwise, we have that the set Sup_upto Ns (k− 1) ∪
concl_of ‘ infers_from (Sup_upto Ns (k−1)) is satisfiable by the induction hypothesis
and satisfiability preservation of Γ inferences. Hence, Sup_upto Ns (k−1)∪Ns !k, i.e.,
Sup_upto Ns k, is satisfiable, as desired.

Next, we show that the limit is saturated, under some assumptions and for a relaxed
notion of saturation. A clause set N is saturated up to redundancy if all inferences from
nonredundant clauses in N are redundant:

definition saturated_upto :: ′a clause set⇒ bool where
saturated_upto N ⇐⇒ infers_from (N \RF N)⊆RI N

The limit is saturated for fair derivations—derivations in which no inferences from
nonredundant persisting clauses are delayed indefinitely:
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definition fair_clss_seq :: ′a clause set llist⇒ bool where
fair_clss_seq Ns ⇐⇒ let N′ = Liminf Ns\RF (Liminf Ns) in

concl_of ‘ infers_from N′ \RI N′ ⊆ Sup Ns ∪RF (Sup Ns)

The criterion must also be effective, which is expressed by a locale:

locale effective_redundancy_criterion = redundancy_criterion +
assumes γ ∈ Γ =�⇒ concl_of γ ∈ N ∪RF N =�⇒ γ ∈RI N

In a locale that combines sat_preserving_inference_system and effective_redundancy_
criterion, we have Theorem 4.3:

theorem fair_derive_saturated_upto:
chain (B) Ns =�⇒ fair_clss_seq Ns =�⇒ saturated_upto (Liminf Ns)

It is easy to show that the trivial criterion defined by RF N = {} and RI N = {γ∈
Γ | concl_of γ ∈ N} satisfies the requirements on effective_redundancy_criterion. A
more useful instance is the standard redundancy criterion, which depends on a counter-
example-reducing inference system Γ (Standard_Redundancy.thy):

definition RF :: ′a clause set⇒ ′a clause set where
RF N = {C | ∃D⊆N. (∀I. I �D =�⇒ I �C) ∧ (∀D∈D. D <C)}

definition RI :: ′a clause set⇒ ′a inference set where
RI N = {γ∈Γ | ∃D⊆N. (∀I. I �D ] side_prems_of γ =�⇒ I � concl_of γ) ∧

(∀D∈D. D < main_prem_of γ)}

Standard redundancy qualifies as effective_redundancy_criterion. In the chapter, this is
stated as Theorems 4.7 and 4.8, which depend on two auxiliary properties, Lemmas
4.5 and 4.6. The main result, Theorem 4.9, is that counterexample-reducing calculi are
refutationally complete also under the application of standard redundancy:

theorem saturated_upto_complete: saturated_upto N =�⇒ (¬ sat N⇐⇒{} ∈ N)

The informal proof of Lemma 4.6 applies Lemma 4.5 in a seemingly impossible way,
confusing redundant clauses and redundant inferences and exploiting properties that
appear only in the first lemma’s proof. Our solution is to generalize the core argument
into the following lemma and apply it to prove Lemmas 4.5 and 4.6:

lemma wlog_non_Rf :
(∃D⊆N. (∀I. I �D]C =�⇒ I � E) ∧ (∀D′∈D. D′< D)) =�⇒
∃D⊆N \RF N. (∀I. I �D]C =�⇒ I � E) ∧ (∀D′∈D. D′< D)

Incidentally, the informal proof of Theorem 4.9 also needlessly invokes Lemma 4.5.
Finally, given a redundancy criterion (RF,RI) for Γ, its standard extension for Γ′ ⊇

Γ is defined as (RF,R′I), where R′I N = RI N ∪ (Γ′ \Γ) (Proving_Process.thy).
The standard extension is itself a redundancy criterion and it preserves effectiveness,
saturation up to redundancy, and fairness. In Isabelle, this can be expressed by leaving
the locales and using the locale predicates—explicit predicates named after the locales
and parameterized by the locale arguments:
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lemma standard_redundancy_criterion_extension:
Γ⊆ Γ′ =�⇒ redundancy_criterion ΓRF RI =�⇒ redundancy_criterion Γ′ RF R′I

lemma standard_redundancy_criterion_extension_effective:
Γ⊆ Γ′ =�⇒ effective_redundancy_criterion ΓRF RI =�⇒
effective_redundancy_criterion Γ′ RF R′I

lemma standard_redundancy_criterion_extension_saturated_upto_iff :
Γ⊆ Γ′ =�⇒ redundancy_criterion ΓRF RI =�⇒
(redundancy_criterion.saturated_upto ΓRF RI N⇐⇒
redundancy_criterion.saturated_upto Γ′ RF R′I N)

lemma standard_redundancy_criterion_extension_fair_iff :
Γ⊆ Γ′ =�⇒ effective_redundancy_criterion ΓRF RI =�⇒
(effective_redundancy_criterion.fair_clss_seq Γ′ RF R′I Ns⇐⇒
effective_redundancy_criterion.fair_clss_seq ΓRF RI Ns)

6 First-Order Resolution

The chapter’s Section 4.3 presents a first-order version of the ordered resolution rule
and a first-order prover, RP, based on that rule. The first step towards lifting the com-
pleteness of ground resolution is to show that we can lift individual ground resolution
inferences (FO_Ordered_Resolution.thy).

Inference Rule. First-order ordered resolution consists of a single rule. In the chap-
ter, ground and first-order resolution are both called O�S . In the formalization, we also
let the rules share the same name, but since they exist in separate locales the system
generates qualified names which make this unambiguous: Isabelle generates the name
ground_resolution_with_selection.ord_resolve, which refers to ground resolution, and
FO_resolution.ordered_resolve, which refers to first-order resolution. If the user is in
doubt at any time, the system can always tell which one is meant.

The rule is given as

C1∨A11∨·· ·∨A1k1 · · · Cn∨An1∨·· ·∨Ankn ¬A1∨·· ·∨¬An∨D

C1 ·σ∨·· ·∨Cn ·σ∨D ·σ

where σ is the (canonical) MGU that solves all unification problems Ai1
?
= · · · ?

= Aiki
?
=

Ai, for 1≤ i≤ n. As expected, the rule has several side conditions. The Isabelle repre-
sentation of this rule is based on that of its ground counterpart, generalized to apply σ:

inductive ord_resolve :: ′a clause list⇒ ′a clause⇒ ′s⇒ ′a clause⇒ bool where
|CAs|= n =�⇒ |Cs|= n =�⇒ |As|= n =�⇒ |As|= n =�⇒ n 6= 0 =�⇒
(∀i<n. CAs ! i = Cs ! i ] Pos ‘As ! i) =�⇒ (∀i<n. As ! i 6= {}) =�⇒
Some σ= mgu (set_mset ‘ set (map2 add_mset AsAs)) =�⇒
eligible σ As (D ] Neg ‘ mset As) =�⇒
(∀i<n. strict_max_in (As ! i ·σ) (Cs ! i ·σ)) =�⇒ (∀i<n. S (CAs ! i) = {}) =�⇒
ord_resolve CAs (D ] Neg ‘ mset As) σ (((

⋃
mset Cs) ] D) ·σ)
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The rule as stated is incomplete; for example, p(x) and ¬p(f(x)) cannot be resolved
because x and f(x) are not unifiable. Such issues arise when the same variable names
appear in different premises. In the chapter, the authors circumvent this issue by stating,
“We also implicitly assume that different premises and the conclusion have no variables
in common; variables are renamed if necessary.” For the formalization, we first consid-
ered enforcing the invariant that all derived clauses use mutually disjoint variables, but
this does not help when a clause is repeated in an inference’s premises. An example is
the inference

p(x) p(y) ¬p(a) ∨ ¬p(b)

⊥

where p(x) and p(y) are the same clause up to renaming. Instead, we rely on a predicate
ord_resolve_rename, based on ord_resolve, that standardizes the premises apart. The
renaming is performed by a function called renamings_apart :: ′a clause list⇒ ′s list
that, given a list of clauses, returns a list of corresponding substitutions to apply. This
function is part of the abstract interface for terms and substitutions (which we presented
in Section 2) and is implemented using IsaFoR.

Like for the ground case, it is important to establish soundness. We prove that any
ground instance of the rule ord_resolve is sound:

lemma ord_resolve_ground_inst_sound:
ord_resolve CAs DAAs As σ E =�⇒ I �mset CAs ·σ ·η=�⇒ I � DA ·σ ·η=�⇒
is_ground_subst η=�⇒ I � E ·η

Likewise, ground instances of ord_resolve_rename are sound. It then follows that the
rules ord_resolve and ord_resolve_rename are sound:

lemma ord_resolve_rename_sound:
ord_resolve_rename CAs DAAs As σ E =�⇒
(∀σ. is_ground_subst σ=�⇒ I � (mset CAs+{DA}) ·σ) =�⇒
is_ground_subst η=�⇒ I � E ·η

Lifting Lemma. To lift ground inferences to the first-order level, we consider a set of
clauses M and introduce an adjusted version SM of the selection function S.

definition SM :: ′a literal multiset⇒ ′a literal multiset where
SM C =
(if C ∈ grounding_of_clss M then

(SOME C′. ∃D ∈ M. ∃σ.C = D ·σ∧C′ = S D ·σ∧ is_ground_subst σ)
else

S C)

Here SOME is Hilbert’s epsilon operator, which picks an element as described if it ex-
ists and an arbitrary one otherwise. In this definition the element does exists, and so we
need not worry about it picking an arbitrary one. The new selection function depends
on both S and M and works in such a way that any ground instance inherits the selec-
tion of at least one of the nonground clauses of which it is an instance. This property is
captured formally as
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lemma S_M_grounding_of _clss:
C ∈ grounding_of M =�⇒
∃D∈M.∃σ. C = D ·σ ∧ SM C = S D ·σ ∧ is_ground_subst σ

where grounding_of M is the set of ground instances of a set of clauses M.
The lifting lemma, Lemma 4.12, states that whenever there exists a ground inference

of E from clauses belonging to grounding_of M, there exists a (possibly) more general
inference from clauses belonging to M:

lemma ord_resolve_rename_lifting:
(∀ρ C. is_renaming ρ=�⇒ S (C ·ρ) = S C ·ρ) =�⇒
ord_resolve SM CAs DAAs As σ E =�⇒
{DA} ∪ set CAs⊆ grounding_of M =�⇒
∃ηs η θ CAs0 DA0 As0 As0 E0 τ.

ord_resolve_rename S CAs0 DA0 As0 As0 τ E0 ∧
CAs0 ·ηs = CAs ∧ DA0 ·η= DA ∧ E0 · θ = E ∧ {DA0} ∪ set CAs0 ⊆ M

The informal proof of this lemma consists of two sentences spanning four lines of text.
In Isabelle, these two sentences translate to 75 lines and 400 lines, respectively, exclud-
ing auxiliary lemmas. Our proof involves six steps:

1. Obtain a list of first-order clauses CAs0 and a first-order clause DA0 that belong to
M and that generalize CAs and DA with substitutions ηs and η, respectively.

2. Choose atoms As0 and As0 in the first-order clauses on which to resolve.
3. Standardize CAs0 and DA0 apart, yielding CAs′0 and DA′0.
4. Obtain the MGU τ of the literals on which to resolve.
5. Show that ordered resolution on CAs′0 and DA′0 with τ as MGU is applicable.
6. Show that the resulting resolvent E0 generalizes E with substitution θ.

In step 1, suitable clauses must be chosen so that S (CAs0 ! i) generalizes SM (CAs !
i), for 0 ≤ i < n, and S DA0 generalizes SM DA. By the definition of SM , this is always
possible. In step 2, we choose the literals to resolve upon in the first-order inference
depending on the selection on the ground inference. If some literals are selected in DA,
we define As0 as the selected literals in DA0, such that (As0 ! i) · η = As ! i for each i.
Otherwise, As must be a singleton list containing some atom A, and we define As0 as the
singleton list consisting of an arbitrary A0 ∈DA0 such that A0 ·η= A. Step 3 may seem
straightforward until one realizes that renaming variables can in principle influence
selection. To rule this out, our lemma assumes stability under renaming: S (C · ρ) =
S C · ρ for any renaming substitution ρ and clause C. This requirement seems natural,
but it is not mentioned in the chapter.

The above choices allow us to perform steps 4 to 6. In the chapter, the authors as-
sume that the obtained CAs0 and DA0 are standardized apart from each other as well as
their conclusion E0. This means that they can obtain a single ground substitution µ that
connect CAs0, DA0, E0 to CAs, DA, E. By contrast, we provide separate substitutions
ηs, η, θ for the different side premises, the main premise, and the conclusion.
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7 A First-Order Prover

Modern resolution provers interleave inference steps with steps that delete or reduce
(simplify) clauses. In their Section 4.3, Bachmair and Ganzinger introduce the nonde-
terministic abstract prover RP that works on triples of clause sets and that generalizes
the Otter-style and DISCOUNT-style loops [12, 17]. RP’s core rule, called inference
computation, performs first-order ordered resolution as described above; the other rules
delete or reduce clauses or move them between clause sets. We formalize RP and prove
it complete assuming a fair strategy (FO_Ordered_Resolution_Prover.thy).

Abstract First-Order Prover. The RP prover is a relation ; on states of the form
(N ,P ,O), where N is the set of new clauses, P is the set of processed clauses, andO
is the set of old clauses. RP’s formal definition is very close to the original formulation:

inductive ; :: ′a state⇒ ′a state⇒ bool where
Neg A ∈C =�⇒ Pos A ∈C =�⇒ (N ∪{C},P ,O); (N ,P ,O)
| D ∈ P ∪O =�⇒ subsumes D C =�⇒ (N ∪{C},P ,O); (N ,P ,O)
| D ∈ N =�⇒ strictly_subsumes D C =�⇒ (N ,P ∪{C},O); (N ,P ,O)
| D ∈ N =�⇒ strictly_subsumes D C =�⇒ (N ,P ,O∪{C}); (N ,P ,O)
| D ∈ P ∪O =�⇒ reduces D C L =�⇒ (N ∪{C]{L}},P ,O); (N ∪{C},P ,O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P ∪{C]{L}},O); (N ,P ∪{C},O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P ,O∪{C]{L}}); (N ,P ∪{C},O)
| (N ∪{C},P ,O); (N ,P ∪{C},O)
| ({},P ∪{C},O); (concl_of ‘ infers_betweenO C,P ,O∪{C})

The rules correspond, respectively, to tautology deletion, forward subsumption, back-
ward subsumption in P and O, forward reduction, backward reduction in P and O,
clause processing, and inference computation.

Initially,N consists of the problem clauses and the other two sets are empty. Clauses
in N are reduced using P ∪O, or even deleted if they are tautological or subsumed by
P ∪O; conversely, N can be used for reducing or subsuming clauses in P ∪O. Clauses
eventually move from N to P , one at a time. As soon as N is empty, a clause from
P is selected to move to O. Then all possible resolution inferences between this given
clause and the clauses in O are computed and put in N, closing the loop.

The subsumption and reduction rules depend on the following predicates:

subsumes D C ⇐⇒ ∃σ. D ·σ⊆C
strictly_subsumes D C ⇐⇒ subsumes D C ∧ ¬ subsumes C D

reduces D C L ⇐⇒∃D′ L′σ. D = D′]{L′} ∧ −L = L′ ·σ ∧ D′ ·σ⊆C

The definition of the set infers_betweenO C, on which inference computation depends,
is more subtle. In the chapter, the set of inferences between C and O consists of all
inferences from O∪{C} that have C as exactly one of their premises. This, however,
leads to an incomplete prover, because it ignores inferences that need multiple copies
of C. For example, assuming a maximal selection function (one that always returns all
negative literals), the resolution inference

p p ¬p ∨ ¬p

⊥
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is possible. Yet if the clause ¬p ∨ ¬p reachesO earlier than p, the inference would not
be performed. This counterexample requires ternary resolution, but there also exists a
more complicated one for binary resolution, where both premises are the same clause.
Consider the clause set containing

(1) q(a,c,b) (2) ¬q(x,y,z)∨q(y,z, x) (3) ¬q(b,a,c)

and an order > on atoms such that q(c,b,a) > q(b,a,c) > q(a,c,b). Inferences between
(1) and (2) or between (2) and (3) are impossible due to order restrictions. The only
possible inference involves two copies of (2):

¬q(x,y,z)∨q(y,z, x) ¬q(x′,y′,z′)∨q(y′,z′, x′)

¬q(x,y,z)∨q(z, x,y)

From the conclusion, we derive ¬q(a,c,b) by (3) and ⊥ by (1). This incompleteness
is a severe flaw, although it is probably just an oversight. Fortunately, it can easily be
repaired by defining infers_betweenO C as {(C,D,E)∈Γ | C ∪{D} ⊆O∪{C} ∧C ∈
C ∪{D}}.

Projection to Theorem Proving Process. On the first-order level, a derivation can be
expressed as a lazy list Ss of states, or as three parallel lazy lists Ns, Ps, Os. The limit
state of a derivation Ss is defined as Liminf Ss = (Liminf Ns, Liminf Ps, Liminf Os),
where Liminf on the right-hand side is as in Section 5.

Bachmair and Ganzinger use the completeness of ground resolution to prove RP
complete. The first step is to show that first-order derivations can be projected down
to theorem proving processes on the ground level. This corresponds to Lemma 4.10.
Adapted to our conventions, its statement is as follows:

If S ; S ′, then grounding_of S �∗ grounding_of S ′, with � based on some
extension of ordered resolution with selection function S and the standard re-
dundancy criterion (RF,RI).

This raises some questions: (1) Exactly which instance of the calculus are we extend-
ing? (2) Which calculus extension should we use? (3) How can we repair the mismatch
between �∗ in the lemma statement and � where the lemma is invoked?

Regarding question (1), it is not clear which selection function to use. Is the function
the same S as in the definition of RP or is it arbitrary? It takes a close inspection of the
proof of Lemma 4.13, where Lemma 4.10 is invoked, to find out that the selection
function used there is SLiminf Os.

Regarding question (2), the phrase “some extension” is cryptic. It suggests an ex-
istential reading, and from the context it would appear that a standard extension (Sec-
tion 5) is meant. However, neither the lemma’s proof nor the context where it is invoked
supplies the desired existential witness. A further subtlety is that the witness should be
independent of S and S ′, so that transitions can be joined to form a single theorem prov-
ing derivation. Our approach is to let� be the standard extension for the proof system
consisting of all sound derivations: Γ = {(C,D,E) | ∀I. I � C ∪{D} =�⇒ I � E}. This
also eliminates the need for Bachmair and Ganzinger’s subsumption resolution rule, a
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special calculus rule that is, from what we understand, implicitly used in the proof of
Lemma 4.10 for the subcases associated with RP’s reduction rules.

As for question (3), when the lemma is invoked, it is used to join transitions together
to whole theorem proving processes. That requires these transitions to be of� – not�∗.
The need for �∗ instead of � arises because one of the cases requires a combination of
deduction and deletion, which Bachmair and Ganzinger model as separate transitions.
By merging the two transitions (Section 5), we avoid the issue altogether and can use
� in the formal counterpart of Lemma 4.10.

With these issues resolved, we can prove Lemma 4.10. In Section 6 we established
that ground instances of the resolution rule are sound. Since our ground proof system
consists of all sound inference rules we can reuse that lemma in proving the inference
computation case. We prove Lemma 4.10 for single steps and extend it to entire deriva-
tions:

lemma RP_ground_derive: S ; S ′ =�⇒ grounding_of S � grounding_of S ′

lemma RP_ground_derive_chain:
chain (;) Ss =�⇒ chain (�) (lmap grounding_of Ss)

The lmap function applies its first argument elementwise to its second argument.

Fairness and Clause Movement. From a given initial state (N 0,{},{}), many deriva-
tions are possible, reflecting RP’s nondeterminism. In some derivations, we could leave
a crucial clause in N or P without ever reducing it or moving it to O, and then
fail to derive ⊥ even if N 0 is unsatisfiable. For this reason, refutational complete-
ness is guaranteed only for fair derivations. These are defined as derivations such that
Liminf Ns = Liminf Ps = {}, guaranteeing that no clause will stay forever in N or P .

Fairness is expressed by the fair_state_seq predicate, which is distinct from the
fair_clss_seq predicate presented in Section 5. In particular, Theorem 4.3 is used in
neither the informal nor the formal proof, and appears to play a purely pedagogic role in
the chapter. For the rest of this section, we fix a lazy list of states Ss, and its projections
Ns, Ps, and Os, such that chain (;) Ss, fair_state_seq Ss, and lhdOs = {}.

Thanks to fairness, any nonredundant clause C in Ss’s projection to the ground level
eventually ends up in O and stays there. This is proved informally as Lemma 4.11, but
again there are some difficulties. The vagueness concerning the selection function can
be resolved as for Lemma 4.10, but there is another, deeper flaw.

Bachmair and Ganzinger’s proof idea is as follows. By hypothesis, the ground
clause C must be an instance of a first-order clause D in Ns ! j ∪ Ps ! j ∪ Os ! j for
some index j. If C ∈ Ns ! j, then by nonredundancy of C, fairness of the derivation, and
Lemma 4.10, there must exist a clause D′ that generalizes C in Ps ! l ∪Os ! l for some
l > j. By a similar argument, if D′ belongs to Ps ! l, it will be in Os ! l′ for some l′ > l,
and finally in all Os ! k with k ≥ l′. The flaw is that backward subsumption can delete
D′ without moving it to O. The subsumer clause would then be a strictly more general
version of D′ (and of the ground clause C).

Our solution is to choose D, and consequently D′, such that it is minimal, with re-
spect to subsumption, among the clauses that generalize C in the derivation. This works
because strict subsumption is well founded—which we also proved, by reduction to
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a well-foundedness result about the strict generalization relation on first-order terms,
included in IsaFoR [15, Section 2]. By minimality, D′ cannot be deleted by backward
subsumption. This line of reasoning allows us to prove Lemma 4.11, where O_of ex-
tracts the O component of a state:

lemma fair_imp_Liminf _minus_Rf _subset_ground_Liminf _state:
Gs = lmap grounding_of Ss =�⇒
Liminf Gs−RF (Liminf Gs)⊆ grounding_of (O_of (Liminf Ss))

In the formalization of the above proof, we do not prove l > j and l′ > l. While they
guide human intuition, they are not necessary to prove the lemma.

Soundness and Completeness. The chapter’s main result is Theorem 4.13, which
states that, for fair derivations, the prover is sound and complete. Soundness follows
from Lemma 4.2 (sat_deriv_Liminf_iff ) and is, perhaps not surprisingly, independent
of whether the derivation is fair.

theorem RP_sound:
{} ∈ clss_of (Liminf Sts) =�⇒¬ sat (grounding_of (lhd Sts))

Because we have brought Lemmas 4.10, 4.11, and 4.12 into a suitable shape, com-
pleteness is not difficult to formalize:

theorem RP_saturated_if_fair: saturated_upto (Liminf (lmap grounding_of Ss))

corollary RP_complete_if _fair:
¬ sat (grounding_of (lhd Ss)) =�⇒{} ∈O_of (Liminf Ss)

A crucial point that is not clear from the text is that we must always use the se-
lection function S on the first-order level and SLiminf Os on the ground level. Another
noteworthy part of the proof is the passage “Liminf Gs (and hence Liminf Ss) contains
the empty clause” (using our notations). Obviously, if grounding_of (Liminf Ss) con-
tains⊥, then Liminf Ss must as well. However, the authors do not explain the step from
Liminf Gs, the limit of the grounding, to grounding_of (Liminf Ss), the grounding of
the limit. Fortunately, by Lemma 4.11, the latter contains all the nonredundant clauses
of the former, and the empty clause is nonredundant. Hence the informal argument is
fundamentally correct. For the other direction, which is used in the soundness proof,
we can prove that the former includes the latter.

8 Discussion

Bachmair and Ganzinger cover a lot of ground in a few pages. We found much of the
material straightforward to formalize: it took us about two weeks to reach their Sec-
tion 4.3, which introduces the RP prover and establishes its refutational completeness.
By contrast, we needed months to fully understand and formalize that section. While
the Handbook chapter succeeds at conveying the key ideas at the propositional level,
the lack of rigor makes it difficult to develop a deep understanding of ordered resolu-
tion proving on first-order clauses.
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There are several reasons why Section 4.3 did not lend itself easily to a formaliza-
tion. The proofs often depend on lemmas and theorems from previous sections without
explicitly mentioning them. The lemmas and proofs do not quite fit together. And while
the general idea of the proofs stands up, they have many confusing flaws that must be re-
paired. Our methodology involved the following steps: (1) rewrite the informal proofs
to a handwritten pseudo-Isabelle; (2) fill in the gaps, emphasizing which lemmas are
used where; (3) turn the pseudo-Isabelle to real Isabelle, but with sorry placeholders
for the proofs; and (4) replace the sorrys with proofs. Progress was not always linear.
As we worked on each step, more than once we discovered an earlier mistake.

The formalization helps us answer questions such as, “Is effectiveness of ordered
resolution (Lemma 3.13) actually needed, and if so, where?” (Answer: It is needed to
prove Theorem 3.15.) It also allows us to track definitions and hypotheses precisely, so
that we always know the scope and meaning of every definition, lemma, or theorem.
If a hypothesis appears too strong or superfluous, we can try to rephrase or eliminate
it; the proof assistant tells us where the proof breaks. If a definition is changed, the
proof assistant tells us where proofs of the related lemmas break. In the best case, the
proofs do not break at all since the automation of the proof assistant is flexible enough
to still prove them. This happened, for example, when we changed the definition of �
to combine deduction and deletion.

Starting from RP, we could refine it to obtain an efficient imperative implemen-
tation, following the lines of Fleury, Blanchette, and Lammich’s verified SAT solver
with the two-watched-literals optimization [13]. However, this would probably involve
a huge amount of work. To increase provers’ trustworthiness, a more practical approach
is to have them generate detailed proofs that record all inferences leading to the empty
clause [27, 31]. Such output can be independently checked by verified programs or
reconstructed using a proof assistant’s inference kernel. This is the approach imple-
mented in Sledgehammer [8], which integrates automatic provers in Isabelle. Formal-
ized metatheory could in principle be used to deduce a formula’s satisfiability from a
finite saturation.

We found Isabelle/HOL eminently suitable to this kind of formalization work. Its
logic—classical simple type theory extended with polymorphism, type classes, and
the axiom of choice—balances expressiveness and automatability. We nowhere felt the
need for dependent types. We benefited from many features of the system, including co-
datatypes [5], Isabelle/jEdit [37], the Isar proof language [36], locales [4], and Sledge-
hammer [8]. It is perhaps indicative of the maturity of theorem proving technology that
most of the issues we encountered were unrelated to Isabelle. The main challenge was
to understand the informal proof well enough to design suitable locale hierarchies and
state the definitions and lemmas precisely, and correctly.

9 Related Work

Formalizing the metatheory of logic and deduction is an enticing proposition for many
researchers in interactive theorem proving. In this section, we briefly review some of
the main related work, without claim to exhaustiveness. Two recent, independent devel-
opments are particularly pertinent.
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Peltier [24] proved static refutational completeness of a variant of the superposition
calculus in Isabelle/HOL. Since superposition generalizes ordered resolution, his result
subsumes our static completeness theorem. On the other hand, he did not formalize a
prover or dynamic completeness, nor did he attempt to develop general infrastructure. It
would be interesting to extend his formal development to obtain a verified superposition
prover. We could also consider calculus extensions such as polymorphism [11,34], type
classes [34], and AVATAR [33]. Two significant differences between Peltier’s work and
ours is that he represents clauses as sets instead of multisets (to exploit Isabelle’s better
proof automation for sets) and that he relies, for terms and unification, on an example
theory file included in Isabelle (Unification.thy) instead of IsaFoR.

Hirokawa et al. [15] formalized, also in Isabelle/HOL, an abstract Knuth–Bendix
completion procedure as well as ordered (unfailing) completion, a method developed
by Bachmair, Ganzinger, and Plaisted [1]. Superposition combines ordered resolution
(to reason about clauses) and ordered completion (to reason about equality). There are
many similarities between their formalization and ours, which is unsurprising given that
both follow work by Bachmair and Ganzinger; for example, they need to reason about
the limit of fair infinite sequences of sets of equations and rewrite rules to establish
completeness.

The literature contains many other formalized completeness proofs, mostly for in-
ference systems of theoretical interest. Early work was carried out in the 1980s and
1990s, notably by Shankar [29] and Persson [25]. Some of our own efforts are also re-
lated: completeness of unordered resolution using semantic trees by Schlichtkrull [28];
completeness of a Gentzen system following the Beth–Hintikka style and soundness
of a cyclic proof system for first-order logic with inductive definitions by Blanchette,
Popescu, and Traytel [9]; and completeness of a SAT solver based on CDCL (conflict-
driven clause learning) by Blanchette, Fleury, and Weidenbach [6].

The formal Beth–Hintikka-style completeness proof mentioned above has a generic
flavor, abstracting over the inference system. Could it be used to prove completeness of
the ordered resolution calculus, or even of the RP prover? The central idea is to build
a finitely branching tree that encodes a systematic proof attempt. Given a fair strategy
for applying calculus rules, infinite branches correspond to countermodels. It should
be possible to prove ordered resolution complete using this approach, by storing clause
sets N on the tree’s nodes. Each node would have at most one child, corresponding to the
new clause set after performing a deduction. Such degenerate trees would be isomorphic
to derivations N0 B N1 B · · · represented by lazy lists. However, the requirement that
inferences can always be postponed, called persistence [9, Section 3.9], is not met for
deletion steps based on a redundancy criterion. Moreover, while the generic framework
takes care of applying inferences fairly and of employing König’s lemma to extract an
infinite path from a failed proof attempt (which is, incidentally, overkill for degenerate
trees that have only one infinite path), it offers no help in building a countermodel from
an infinite path (i.e., in proving Theorem 3.9).

Beyond completeness, Gödel’s first incompleteness theorem has been formalized
in Nqthm by Shankar [30], in Coq by O’Connor [22], in HOL Light by Harrison (in
unpublished work), and in Isabelle/HOL by Paulson [23]. Paulson additionally proved
Gödel’s second incompleteness theorem. We refer to our earlier papers [6, 9, 28] for
further discussions of related work.
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10 Conclusion

We presented a formal proof that captures the core of Bachmair and Ganzinger’s Hand-
book chapter on resolution theorem proving. For all its idiosyncrasies, the chapter with-
stood the test of formalization, once we had added self-inferences to the RP prover.
Given that the text is a basic building block of automated reasoning (as confirmed by its
placement as Chapter 2), we believe there is value in clarifying its mathematical con-
tent for the next generations of researchers. We hope that our work will be useful to the
editors of a future revision of the Handbook.

Formalization of the metatheory of logical calculi is one of the many connections
between automatic and interactive theorem proving. We expect to see wider adoption
of proof assistants by researchers in automated reasoning, as a convenient way to de-
velop metatheory. By building formal libraries of standard results, we aim to make it
easier to formalize state-of-the-art research as it emerges. We also see potential uses of
formal proofs in teaching automated reasoning, inspired by the use of proof assistants
in courses on the semantics of programming languages [19, 26].
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A Errors and Imprecisions Discovered in the Chapter

We discussed several mathematical errors and imprecisions, of various severity levels,
in Bachmair and Ganzinger’s chapter. We also found lemmas that are stated but not
explicitly applied afterwards. In this appendix, we list our findings exhaustively for
reference.

Let us start with the errors and imprecisions. We ignore infelicities that are not
mathematical in nature, such as typos and LATEX macros gone wrong (e.g., “by the
defn[candidate model]candidate model for N” on page 34); for such errors, careful
reading is a more effective antidote than formalization. We also ignore minor ambigu-
ities, such as whether the clause C ∨A∨ ·· · ∨A may contain zero occurrences of A, if
they can be resolved easily by appealing to the context and the reader’s common sense.

• One of Lemma 3.4’s claims is that if clause C is true in ID, then C is also true in
ID′, where C � D � D′. This does not hold if C = D = D′ and C is productive.
Similarly, the first sentence of the proof is wrong if D = D′ and D is productive:
“First, observe that ID ⊆ ID ⊆ ID′ ⊆ ID′ ⊆ IN , whenever D′� D.”

22



• The last occurrence of D′ in the statement of Lemma 3.7 should be changed to C. In
addition, it is not clear whether the phrase “another clause C” implies that C 6= D,
but the counterexample we gave in Section 4 works in both cases. Correspondingly,
in the proof, the case distinction is incomplete, as can be seen by specializing the
proof for the counterexample.

• In the chapter’s Figure 2, in Section 3, the selection function is wrongly applied:
references to S(D) should be changed to S(¬A1 ∨ ·· · ∨ ¬An ∨D). Moreover, in
condition (iii), it is not clear with respect to which clause the “selected atom” must
be considered, the two candidates being S(¬A1 ∨ ·· · ∨¬An ∨D) and S(Ci ∨ Ai ∨
·· ·∨Ai). We assume the latter is meant. Finally, phrases like “A1 is maximal with
respect to D” (here and in Figure 4) are slightly ambiguous, because it’s not clear
whether A1 denotes an atom or a (positive) literal, and whether it has to be maximal
with respect to D’s atoms or literals. From the context, we infer that an atom-with-
atom comparison is meant.

• The notation
⋃

i
⋂

j≥i Nj used in the chapter’s Section 4.1 only partially specifies
the range of i and j if Nj is a finite sequence. Clearly, j must be bounded by the
length of the list, but it is less obvious that i also needs a bound, to avoid the inner
intersection to expand to be the set of all clauses for indices i beyond the list’s end.

• Soundness is required in the chapter’s Section 4.1, even though it is claimed in
Section 2.4 that only consistency-preserving inference systems will be considered.

• In the proof of Theorem 4.3, the case where γ ∈RI(N∞ \RF(N∞)) is not covered.
• In Section 4.2, the phrase “side premises that are true in N” must be understood as

meaning that the side premises both belong to N and are true in IN .

• Lemma 4.5 states the basic properties of the redundant clause operator RF (mono-
tonicity and independence). Lemma 4.6 states the corresponding properties of the
redundant inference operator RI. As justification for Lemma 4.6, the authors tell
us that “the proof uses Lemma 4.5,” but redundant inferences are a more general
concept than redundant clauses, and we see no way to bridge the gap.

• Similarly, in the proof Theorem 4.9, the application of Lemma 4.5 does not fit.
What is needed is a generalization of Lemma 4.6.

• In condition (ii) of Figure 4, Section 4.2, Aiiσ should be changed to Aijσ.
• In nth side premise of Figure 4, Section 4.2, A1n should be changed to An1.
• Section 4.3 states “Subsumption defines a well-founded ordering on clauses.” A

simple counterexample is an infinite sequence repeating some clause. A correct
statement would instead be “Proper subsumption defines a well-founded ordering
on clauses.”

• In Lemma 4.10 it is not clear which selection function is used. When the lemma is
applied in the proofs of Lemma 4.11 and Theorem 4.13, it has to be SO∞

.
• In Lemma 4.10 G(S) and G(S ′) are related by �∗, but � is needed in the proofs

of Lemma 4.11 and Lemma 4.13 since then derivations in RP, which are possibly
infinite, can be projected to theorem proving processes. However G(S)�G(S ′)
does not hold in one of the cases since a combination of deduction and deletion is
required. A solution is to change the definition of � to allow such combinations.
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• In Lemma 4.10 it is not clear that the extension used should be the same between
any considered pair of states. Otherwise, the lemma cannot be used to project
derivations in RP to theorem proving processes.

• In Lemma 4.11 it is not clear which selection fuction is used. When the lemma is
applied in the proofs of Theorem 4.13, it has to be SO∞

.
• A step in the proof of Lemma 4.11 considers a clause D ∈ Pl which has a nonre-

dundant instance C. It is claimed that when D is removed from P , another clause
D′ with C as instance appears in some O′l . That, however, does not follow if D was
removed by backward subsumption. The problem can be resolved by choosing D
as minimal, with respect to subsumption, among the clauses that generalize C in
the derivation. This can be done since proper subsumption is well founded.

• In Lemma 4.11, a very minor inconsistency is that the described first-order deriva-
tion is indexed from 1 instead of 0.

• In the proof of Theorem 4.13, the conclusion of Lemma 4.11 is stated as N∞ \
R(N∞)⊆O∞, but it should have been N∞ \R(N∞)⊆G(O∞). Furthermore, when
lemma 4.11 was first stated the conclusion was N∞ \RF(N∞)⊆ G(S∞). The two
are by fairness equivalent, but we find N∞ \R(N∞) ⊆G(O∞) more intuitive since
it more clearly expresses that all nonredundant clauses grow old.

Chief among the factors that contribute to making the chapter hard to follow is
that many lemmas are stated (and usually proved) but not referenced later. We already
mentioned the unfortunate Lemma 3.7. Section 4 contains several other specimens:

• Theorem 4.3 (fair_derive_saturated_upto) states a completeness theorem for fair
derivations. However, in Section 4.3, fairness is defined differently, and neither the
text nor the formalization applies this theorem.

• For the same reason, the property stated in the next-to-last sentence of Section 4.1
(standard_redundancy_criterion_extension_fair_iff ), which lifts fairness with re-
spect to (RF,RI) to a standard extension (RF,R′I), is not needed later.

• Lemma 4.2 (sat_deriv_Liminf_iff, Ri_Sup_subset_Ri_Liminf ) is not referenced in
the text, but we need it to prove Theorem 4.13 (fair_state_seq_complete).

• Lemma 4.2 (Rf_Sup_subset_Rf_Liminf ) is not referenced in the text, but we need it
to prove Lemma 4.11 (fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state).

• Lemma 4.6 (saturated_upto_complete_if ) is not referenced in the text, but we need
it to prove Lemma 4.10 (resolution_prover_ground_derivation), Lemma 4.11 (fair_
imp_Liminf_minus_Rf_subset_ground_Liminf_state), and Theorem 4.13 (fair_
state_seq_complete).

• Theorem 4.8 (Ri_effective) is not referenced in the text, but we need it to prove
Theorem 4.13 (fair_state_seq_complete).

• Theorem 4.9 (saturated_upto_complete) is invoked implicitly in the next-to-last
sentence in the proof of Theorem 4.13 (fair_state_seq_complete).

• The sentence “In that case, if the derivation is fair with respect to inferences in Γ the
derivation is also fair with respect to inferences in Γ′, and vice versa” on page 38
of Section 4.1 (redundancy_criterion_standard_extension_saturated_upto_iff ) is
not referenced in the text, but we need it to prove Theorem 4.13 (fair_state_seq_
complete).
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