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Abstract. We present a framework for processing formulas in automatic the-
orem provers, with generation of detailed proofs. The main components are a
generic contextual recursion algorithm and an extensible set of inference rules.
Clausification, skolemization, theory-specific simplifications, and expansion of
‘let’ expressions are instances of this framework. With suitable data structures,
proof generation adds only a linear-time overhead, and proofs can be checked in
linear time. We implemented the approach in the SMT solver veriT. This allowed
us to dramatically simplify the code base while increasing the number of problems
for which detailed proofs can be produced, which is important for independent
checking and reconstruction in proof assistants.

1 Introduction

An increasing number of automatic theorem provers can generate certificates, or proofs,
that justify the formulas they derive. These proofs can be checked by other programs
and shared across reasoning systems. Some users will also want to inspect this output
to understand why a formula holds. Proof production is generally well understood for
the core proving methods and for many theories commonly used in satisfiability modulo
theories (SMT). But most automatic provers also perform some formula processing or
preprocessing—such as clausification and rewriting with theory-specific lemmas—and
proof production for this aspect is less mature.

For most provers, the code for processing formulas is lengthy and deals with a
multitude of cases, some of which are rarely executed. Although it is crucial for efficiency,
this code tends to be given much less attention than other aspects of provers. Developers
are reluctant to invest effort in producing detailed proofs for such processing, since this
requires adapting a lot of code. As a result, the granularity of inferences for formula
processing is often coarse. Sometimes, processing features are even disabled to avoid
gaps in proofs, at a high cost in proof search performance.

Fine-grained proofs are important for a variety of applications. We propose a frame-
work to generate such proofs without slowing down proof search. Proofs are expressed
using an extensible set of inference rules (Sect. 3). The succedent of a rule is an equality
between the original term and the translated term. (It is convenient to consider formulas
a special case of terms.) The rules have a fine granularity, making it possible to cleanly
separate theories. Clausification, theory-specific simplifications, and expansion of ‘let’



expressions are instances of this framework. Skolemization may seem problematic, but
with the help of Hilbert’s choice operator, it can also be integrated into the framework.
Some provers provide very detailed proofs for parts of the solving, but we are not aware
of any publications about practical attempts to provide easily reconstructible proofs for
processing formulas containing quantifiers and ‘let’ expressions.

At the heart of the framework lies a generic contextual recursion algorithm that
traverses the terms to translate (Sect. 4). The context fixes some variables, maintains a
substitution, and keeps track of polarities or other data. The transformation-specific work,
including the generation of proofs, is performed by plugin functions that are given as pa-
rameters to the framework. The recursion algorithm, which is critical for the performance
and correctness of the generated proofs, needs to be implemented only once. Another
benefit of the modular architecture is that we can easily combine several transformations
in a single pass, without complicating the code unduly or compromising the level of
detail of the proof output. For very large inputs, this can improve performance.

The inference rules and the contextual recursion algorithm enjoy many desirable
properties (Sect. 5). We show that the rules are sound and that the treatment of binders is
correct even in the presence of name clashes. Moreover, assuming suitable data structures,
we show that proof generation adds an overhead that is proportional to the time spent
processing the terms. Checking proofs represented as directed acyclic graphs (DAGs)
can be performed with a time complexity that is linear in their size.

We implemented the approach in veriT (Sect. 6), an SMT solver that is competitive on
problems combining equality, linear arithmetic, and quantifiers [3]. Compared with other
SMT solvers, veriT is known for its very detailed proofs [7], which are reconstructed in
the proof assistants Coq [1] and Isabelle/HOL [8] and in the GAPT system [15]. As a
proof of concept, we implemented a prototype checker in Isabelle/HOL.

By adopting the new framework, we were able to remove large amounts of compli-
cated code in the solver, while enabling detailed proofs for more transformations than
before. The contextual recursion algorithm had to be implemented only once and is
more thoroughly tested than any of the monolithic transformations it subsumes. Our
empirical evaluation reveals that veriT is as fast as before even though it now generates
finer-grained proofs.

A shorter version of this report was presented at CADE-26 as a system description [2].
The current report includes more explanations and examples, detailed justifications of
the metatheoretical claims, and extensive coverage of related work.

2 Conventions

Our setting is a many-sorted classical first-order logic as defined by the SMT-LIB
standard [5] or TPTP TFF [40]. Our results are also applicable to richer formalisms
such as higher-order logic (simple type theory) with polymorphism [18]. A signature
Σ = (S ,F ) consists of a set S of sorts and a set F of function symbols over these sorts.
Nullary function symbols are called constants. We assume that the signature contains a
Bool sort and constants true, false : Bool, a family (' : σ×σ→ Bool)σ∈S of function
symbols interpreted as equality, and the connectives ¬, ∧, ∨, and−�→. Formulas are terms
of type Bool, and equivalence is equality (') on Bool. Terms are built over function
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symbols from F and variables from a fixed family of infinite sets (Vσ)σ∈S . In addition
to ∀ and ∃, we rely on two more binders: Hilbert’s choice operator εx. ϕ and a ‘let’
construct, let x̄n ' s̄n in t, which simultaneously assigns n variables that can be used in
the body t.

We use the symbol = for syntactic equality on terms and =α for syntactic equality up
to renaming of bound variables. We reserve the names a,c, f,g,p,q for function symbols;
x,y,z for variables; r, s, t,u for terms (which may be formulas); ϕ,ψ for formulas; and
Q for quantifiers (∀ and ∃). We use the notations ān and (ai)

n
i=1 to denote the tuple, or

vector, (a1, . . . ,an). We write [n] for {1, . . . ,n}.
Given a term t, the sets of its free and bound variables are written FV(t) and BV(t),

respectively. The notation t[x̄n] stands for a term that may depend on distinct variables
x̄n; t[s̄n] is the corresponding term where the terms s̄n are simultaneously substituted
for x̄n. Bound variables in t are renamed to avoid capture. Following these conventions,
Hilbert choice and ‘let’ are characterized by

|= ∃x. ϕ[x]−�→ ϕ[εx. ϕ] (ε1)
|= (∀x. ϕ' ψ)−�→ (εx. ϕ)' (εx. ψ) (ε2)
|= (let x̄n ' s̄n in t[x̄n])' t[s̄n] (let)

Substitutions ρ are functions from variables to terms such that ρ(xi) 6= xi for at most
finitely many variables xi. We write them as {x̄n 7→ s̄n}; the omitted variables are mapped
to themselves. The substitution ρ[x̄n 7→ s̄n] or ρ[x1 7→ s1, . . . , xn 7→ sn] maps each vari-
able xi to the term si and otherwise coincides with ρ. The application of a substitution ρ
to a term t is denoted by ρ(t). It is capture-avoiding; bound variables in t are renamed
as necessary. Composition ρ′ ◦ρ is defined as for functions (i.e., ρ is applied first).

3 Inference System

The inference rules used by our framework depend on a notion of context defined by the
grammar

Γ ::= ∅ | Γ, x | Γ, x̄n 7→ s̄n

The empty context ∅ is also denoted by a blank. Each context entry either fixes a vari-
able x or defines a substitution {x̄n 7→ s̄n}. Any variables arising in the terms s̄n will
normally have been introduced in the context Γ on the left. If a context introduces the
same variable several times, the rightmost entry shadows the others.

Abstractly, a context Γ fixes a set of variables and specifies a substitution subst(Γ).
The substitution is the identity for ∅ and is defined as follows in the other cases:

subst(Γ, x) = subst(Γ)[x 7→ x] subst(Γ, x̄n 7→ t̄n) = subst(Γ) ◦ {x̄n 7→ t̄n}

In the first equation, the [x 7→ x] update shadows any replacement of x induced by Γ.
The examples below illustrate this subtlety:

subst(x 7→ 7, x 7→ g(x)) = {x 7→ g(7)} subst(x 7→ 7, x, x 7→ g(x)) = {x 7→ g(x)}

We write Γ(t) to abbreviate the capture-avoiding substitution subst(Γ)(t).
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Transformations of terms (and formulas) are justified by judgments of the form
Γ B t ' u, where Γ is a context, t is an unprocessed term, and u is the corresponding
processed term. The free variables in t and u must appear in the context Γ. Semantically,
the judgment expresses the equality of the terms Γ(t) and u for all variables fixed by Γ.
Crucially, the substitution applies only on the left-hand side of the equality.

The inference rules for the transformations covered in this report are presented below,
followed by explanations.

TAUTT if |=T Γ(t)' u
Γ B t ' u

Γ B s' t Γ B t ' u
TRANS if Γ(t) = t

Γ B s' u(
Γ B ti ' ui

)
n
i=1

CONG
Γ B f(t̄n)' f(ūn)

Γ, y, x 7→ y B ϕ' ψ
BIND if y /∈ FV(Qx. ϕ)

Γ B (Qx. ϕ)' (Qy. ψ)

Γ, x 7→ (εx. ϕ) B ϕ' ψ
SKO∃

Γ B (∃x. ϕ)' ψ
Γ, x 7→ (εx.¬ϕ) B ϕ' ψ

SKO∀
Γ B (∀x. ϕ)' ψ(

Γ B ri ' si
)

n
i=1 Γ, x̄n 7→ s̄n B t ' u

LET if Γ(si) = si for all i ∈ [n]
Γ B (let x̄n ' r̄n in t)' u

• TAUTT relies on an oracle |=T to derive arbitrary lemmas in a theory T . In practice,
the oracle will produce some kind of certificate to justify the inference. An important
special case, for which we use the name REFL, is syntactic equality (up to renaming
of bound variables); the side condition is then Γ(t) =α u. (We use =α instead of =
because applying a substitution can rename bound variables.)

• TRANS needs the side condition because the term t appears both on the left-hand
side of' (where it is subject to Γ’s substitution) and on the right-hand side (where it
is not). Without the side condition, the two occurrences of t in the antecedent could
denote different terms.

• CONG can be used for any function symbol f, including the logical connectives.
• BIND is a congruence rule for quantifiers. The rule also justifies the renaming of the

bound variable (from x to y). The side condition prevents an unwarranted variable
capture. In the antecedent, the renaming is expressed by a substitution in the context.
If x = y, the context is Γ, x, x 7→ x, which has the same meaning as Γ, x.

• SKO∃ and SKO∀ exploit (ε1) to replace a quantified variable with a suitable witness,
simulating skolemization. We can think of the ε expression in each rule abstractly
as a fresh function symbol that takes any fixed variables it depends on as arguments.
In the antecedents, the replacement is performed by the context.

• LET exploits (let) to expand a ‘let’ expression. Again, a substitution is used. The
terms r̄n assigned to the variables x̄n can be transformed into terms s̄n.

The antecedents of all the rules inspect subterms structurally, without modifying them.
Modifications to the term on the left-hand side are delayed; the substitution is applied
only in TAUT. This is crucial to obtain compact proofs that can be checked efficiently.
Some of the side conditions may look computationally expensive, but there are ways
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to compute them fairly efficiently. Furthermore, by systematically renaming variables
in BIND, we can satisfy most side conditions trivially, as we will prove in Sect. 5.

The set of rules can be extended to cater for arbitrary transformations that can be
expressed as equalities, using Hilbert choice to represent fresh symbols if necessary.
The usefulness of Hilbert choice for proof reconstruction is well known [10, 34, 37], but
we push the idea further and use it to simplify the inference system and make it more
uniform.

Example 1. The following derivation tree justifies the expansion of a ‘let’ expression:

CONG
B a' a

REFL
x 7→ a B x' a

REFL
x 7→ a B x' a

CONG
x 7→ a B p(x, x)' p(a,a)

LET
B (let x' a in p(x, x))' p(a,a)

It is also possible to further process the substituted term, as in this derivation:

TAUT+
B a+0' a

...
CONG

x 7→ a B p(x, x)' p(a,a)
LET

B (let x' a+0 in p(x, x))' p(a,a)

Example 2. The following derivation tree, in which εx abbreviates εx.¬p(x), justifies
the skolemization of the quantifier in the formula ¬∀x.p(x):

REFL
x 7→ εx B x' εx

CONG
x 7→ εx B p(x)' p(εx)

SKO∀
B (∀x.p(x))' p(εx)

CONG
B (¬∀x.p(x))' ¬p(εx)

The CONG inference above SKO∀ is optional; we could have directly closed the deriva-
tion with REFL. In a prover, the term εx would be represented by a fresh Skolem constant
c, and we would ignore c’s connection to εx during proof search.

Skolemization can be applied regardless of polarity. Normally, we skolemize only
positive existential quantifiers and negative universal quantifiers. However, skolemizing
other quantifiers is sound in the context of proving. The trouble is that it is generally in-
complete, if we introduce Skolem symbols and forget their definitions in terms of Hilbert
choice. To paraphrase Orwell, all quantifiers are skolemizable, but some quantifiers are
more skolemizable than others.

Example 3. The next derivation tree illustrates the interplay between the theory rule
TAUTT and the equality rules TRANS and CONG:

CONG
B k' k

TAUT×
B 1×0' 0

CONG
B k+1×0' k+0

TAUT+
B k+0' k

TRANS
B k+1×0' k

CONG
B k' k

CONG
B (k+1×0 < k)' (k < k)
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We could extend the tree at the bottom with an extra application of TRANS and TAUT< to
simplify k < k further to false. The example demonstrates that theories can be arbitrarily
fine-grained, which often makes proof checking easier. At the other extreme, we could
have derived B (k+1×0 < k)' false using a single TAUT+∪×∪< inference.

Example 4. The tree below illustrates what can go wrong if we ignore side conditions:

REFL
Γ1 B f(x)' f(x)

REFL
Γ2 B x' f(x)

REFL
Γ3 B p(y)' p(f(f(x)))

LET*
Γ2 B (let y' x in p(y))' p(f(f(x)))

LET
Γ1 B (let x' f(x) in let y' x in p(y))' p(f(f(x)))

BIND
B (∀x. let x' f(x) in let y' x in p(y))' (∀x. p(f(f(x))))

In the above, Γ1 = x, x 7→ x; Γ2 = Γ1, x 7→ f(x); and Γ3 = Γ2, y 7→ f(x). The inference
marked with an asterisk (*) is illegal, because Γ2(f(x)) = f(f(x)) 6= f(x). We exploit this
to derive an invalid judgment, with a spurious application of f on the right-hand side. To
apply LET legally, we must first rename the universally quantified variable x to a fresh
variable z using the BIND rule:

REFL
Γ1 B f(x)' f(z)

REFL
Γ2 B x' f(z)

REFL
Γ3 B p(y)' p(f(z))

LET
Γ2 B (let y' x in p(y))' p(f(z))

LET
Γ1 B (let x' f(x) in let y' x in p(y))' p(f(z))

BIND
B (∀x. let x' f(x) in let y' x in p(y))' (∀z. p(f(z)))

This time, we have Γ1 = z, x 7→ z; Γ2 = Γ1, x 7→ f(z); and Γ3 = Γ2, y 7→ f(z). LET’s side
condition is satisfied: Γ2(f(z)) = f(z).

Example 5. The dangers of capture are illustrated by the following tree, where εy stands
for εy.p(x) ∧ ∀x.q(x,y):

REFL*
x,y 7→ εy B (p(x)∧∀x.q(x,y))' (p(x)∧∀x.q(x, εy))

SKO∃x B (∃y.p(x)∧∀x.q(x,y))' (p(x)∧∀x.q(x, εy))
BIND

B (∀x.∃y.p(x)∧∀x.q(x,y))' (∀x.p(x)∧∀x.q(x, εy))

The inference marked with an asterisk would be legal if REFL’s side condition were
stated using capturing substitution. The final judgment is unwarranted, because the free
variable x in the first conjunct of εy is captured by the inner universal quantifier on the
right-hand side.

To avoid the capture, we rename the inner bound variable x to z. Then it does not
matter if we use capture-avoiding or capturing substitution:

REFL
x,y 7→ εy B p(x)' p(x)

REFL
x,y 7→ εy, x 7→ z B q(x,y)' q(z, εy)

BIND
x,y 7→ εy B (∀x.q(x,y))' (∀z.q(z, εy))

CONG
x,y 7→ εy B (p(x)∧∀x.q(x,y))' (p(x)∧∀z.q(z, εy))

SKO∃x B (∃y.p(x)∧∀x.q(x,y))' (p(x)∧∀z.q(z, εy))
BIND

B (∀x.∃y.p(x)∧∀x.q(x,y))' (∀x.p(x)∧∀z.q(z, εy))

6



4 Contextual Recursion

We propose a generic algorithm for term transformations, based on structural recursion.
The algorithm is parameterized by a few simple plugin functions embodying the essence
of the transformation. By combining compatible plugin functions, we can perform
several transformations in one traversal. Transformations can depend on some context
that encapsulates relevant information, such as bound variables, variable substitutions,
and polarity. Each transformation can define its own notion of context that is threaded
through the recursion.

The output is generated by a proof module that maintains a stack of derivation trees.
The procedure apply(R, n, Γ, t, u) pops n derivation trees D̄n from the stack and pushes
the tree

D1 · · · Dn
R

Γ B t ' u

onto the stack. The plugin functions are responsible for invoking apply as appropriate.

4.1 The Generic Algorithm

The algorithm performs a depth-first postorder contextual recursion on the term to
process. Subterms are processed first; then an intermediate term is built from the resulting
subterms and is processed itself. The context ∆ is updated in a transformation-specific
way with each recursive call. It is abstract from the point of view of the algorithm.

The plugin functions are divided into two groups: ctx_let, ctx_quant, and ctx_app
update the context when entering the body of a binder or when moving from a function
symbol to one of its arguments; build_let, build_quant, build_app, and build_var return
the processed term and produce the corresponding proof as a side effect.

function process(∆, t)
match t

case x:
return build_var(∆, x)

case f(t̄n):
∆̄′n← (ctx_app(∆, f, t̄n, i))n

i=1
return build_app

(
∆, ∆̄′n, f, t̄n, (process(∆′i, ti))n

i=1
)

case Qx. ϕ:
∆′← ctx_quant(∆, Q, x, ϕ)
return build_quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′← ctx_let(∆, x̄n, r̄n, t′)
return build_let(∆, ∆′, x̄n, r̄n, t′, process(∆′, t′))

4.2 ‘Let’ Expansion

The first instance of the contextual recursion algorithm expands ‘let’ expressions and
renames bound variables systematically to avoid capture. Skolemization and theory
simplification, presented below, assume that this transformation has been performed.
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The context consists of a list of fixed variables and variable substitutions, as in Sect. 3.
The plugin functions are as follows:

function ctx_let(Γ, x̄n, r̄n, t)
return Γ, x̄n 7→ (process(Γ, ri))

n
i=1

function ctx_app(Γ, f, t̄n, i)
return Γ

function build_let(Γ, Γ′, x̄n, r̄n, t, u)
apply(LET, n+1, Γ, let x̄n ' r̄n in t, u)
return u

function build_app(Γ, Γ̄′n, f, t̄n, ūn)
apply(CONG, n, Γ, f(t̄n), f(ūn))
return f(ūn)

function ctx_quant(Γ, Q, x, ϕ)
y← fresh variable
return Γ, y, x 7→ y

function build_quant(Γ, Γ′, Q, x, ϕ, ψ)
y← Γ′(x)
apply(BIND, 1, Γ, Qx. ϕ, Qy. ψ)
return Qy. ψ

function build_var(Γ, x)
apply(REFL, 0, Γ, x, Γ(x))
return Γ(x)

The ctx_let and build_let functions process ‘let’ expressions. In ctx_let, the substituted
terms are processed further before they are added to a substitution entry in the context. In
build_let, the LET rule is applied and the transformed term is returned. Analogously, the
ctx_quant and build_quant functions rename quantified variables systematically. This
ensures that any variables that arise in the range of the substitution specified by ctx_let
will resist capture when the substitution is applied (cf. Example 4). Finally, the ctx_app,
build_app, and build_var functions simply reproduce the term traversal in the generated
proof; they perform no transformation-specific work.

Example 6. Following up on Example 1, assume ϕ= let x' a in p(x, x). Given the above
plugin functions, process(∅, ϕ) returns p(a,a). It is instructive to study the evolution
of the stack during the execution of process. First, in ctx_let, the term a is processed
recursively; the call to build_app pushes a nullary CONG step with succedent B a' a
onto the stack. Then the term p(x, x) is processed. For each of the two occurrences of x,
build_var pushes a REFL step onto the stack. Next, build_app applies a CONG step to
justify rewriting under p: The two REFL steps are popped, and a binary CONG is pushed.
Finally, build_let performs a LET inference with succedent B ϕ' p(a,a) to complete
the proof: The two CONG steps on the stack are replaced by the LET step. The stack now
consists of a single item: the derivation tree of Example 1.

4.3 Skolemization

Our second transformation, skolemization, assumes that ‘let’ expressions have been
expanded and bound variables have been renamed apart. The context is a pair ∆ = (Γ, p),
where Γ is a context as defined in Sect. 3 and p is the polarity (+, −, or ?) of the term
being processed. The main plugin functions are those that manipulate quantifiers:
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function ctx_quant((Γ, p), Q, x, ϕ)
if (Q, p)∈{(∃,+), (∀,−)} then

Γ′← Γ, x 7→ sko_term(Γ, Q, x, ϕ)
else

Γ′← Γ, x
return (Γ′, p)

function build_quant((Γ, p), ∆
′,

Q, x, ϕ, ψ)
if (Q, p)∈{(∃,+), (∀,−)} then

apply(SKOQ, 1, Γ, Qx. ϕ, ψ)
return ψ

else
apply(BIND, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

The polarity component of the context is updated by ctx_app, which is not shown. For
example, ctx_app((Γ,−), ¬, ϕ, 1) returns (Γ,+), because if ¬ϕ occurs negatively in a
larger formula, then ϕ occurs positively. The plugin functions build_app and build_var
are as for ‘let’ expansion.

Positive occurrences of ∃ and negative occurrences of ∀ are skolemized. All other
quantifiers are kept as is. The sko_term function returns an applied Skolem function sym-
bol following some reasonable scheme; for example, outer skolemization [35] creates
an application of a fresh function symbol to all variables fixed in the context. To comply
with the inference system, the application of SKO∃ or SKO∀ in build_quant instructs the
proof module to systematically replace the Skolem term with the corresponding ε term
when outputting the proof.

Example 7. Let ϕ = ¬∀x. p(x). The call process((∅,+), ϕ) skolemizes ϕ into ¬p(c),
where c is a fresh Skolem constant. The initial process call invokes ctx_app on ¬ as the
second argument, making the context negative, thereby enabling skolemization of ∀. The
substitution x 7→ c is added to the context. Applying SKO∀ instructs the proof module to
replace c with εx.¬p(x). The resulting derivation tree is as in Example 2.

4.4 Theory Simplification

All kinds of theory simplification can be performed on formulas. We restrict our focus to
a simple yet quite characteristic instance: the simplification of u+0 and 0+u to u. We
assume that ‘let’ expressions have been expanded. The context is a list of fixed variables.
The plugin functions ctx_app and build_var are as for ‘let’ expansion (Sect. 4.2); the
remaining ones are presented below:

function ctx_quant(Γ, Q, x, ϕ)
return Γ, x

function build_quant(Γ, Γ′, Q, x, ϕ, ψ)
apply(BIND, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

function build_app(Γ, Γ̄′n, f, t̄n, ūn)
apply(CONG, n, Γ, f(t̄n), f(ūn))
if f(ūn) has form u+0 or 0+u then

apply(TAUT+, 0, Γ, f(ūn), u)
apply(TRANS, 2, Γ, f(t̄n), u)
return u

else
return f(ūn)

The quantifier manipulation code, in ctx_quant and build_quant, is straightforward. The
interesting function is build_app. It first applies the CONG rule to justify rewriting the
arguments. Then, if the resulting term f(ūn) can be simplified further into a term u, it
performs a transitive chain of reasoning: f(t̄n)' f(ūn)' u.
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Example 8. Let ϕ= k+1×0 < k. Assuming that the framework has been instantiated
with theory simplification for additive and multiplicative identity, invoking process(∅, ϕ)
returns the formula k < k. The generated derivation tree is as in Example 3.

4.5 Combinations of Transformations

Theory simplification can be implemented as a family of transformations, each member
of which embodies its own set of theory-specific rewrite rules. If the union of the rewrite
rule sets is confluent and terminating, a unifying implementation of build_app can apply
the rules in any order until a fixpoint is reached. Moreover, since theory simplification
modifies terms independently of the context, it is compatible with ‘let’ expansion and
skolemization. This means that we can replace the build_app implementation from Sect.
4.2 or 4.3 with that of Sect. 4.4. In particular, this allows us to perform arithmetic sim-
plification in the substituted terms of a ‘let’ expression in a single pass (cf. Example 1).

The combination of ‘let’ expansion and skolemization is less straightforward. Con-
sider the formula ϕ= let y'∃x.p(x) in y→ y. When processing the subformula ∃x.p(x),
we cannot (or at least should not) skolemize the quantifier, because it has no unambigu-
ous polarity; indeed, the variable y occurs both positively and negatively in the ‘let’
expression’s body. We can of course give up and perform two passes: The first pass
expands ‘let’ expressions, and the second pass skolemizes and simplifies terms. The first
pass also provides an opportunity to expand equivalences, which are problematic for
skolemization.

There is also a way to perform all the transformations in a single instance of the
framework. The most interesting plugin functions are ctx_let and build_var:

function ctx_let((Γ, p), x̄n, r̄n, t)
for i = 1 to n do

apply(REFL, 0, Γ, xi, Γ(ri))

Γ′← Γ, x̄n 7→ (Γ(ri))
n
i=1

return
(
Γ′, p)

function build_var((Γ, p), x)
apply(REFL, 0, Γ, x, Γ(x))
u← process((Γ, p), Γ(x))
apply(TRANS, 2, Γ, Γ(x), u)
return u

In contrast with the corresponding function for ‘let’ expansion (Sect. 4.2), ctx_let does
not process the terms r̄n, which is reflected by the n applications of REFL, and it must
thread through polarities. The call to process is in build_var instead, where it can exploit
the more precise polarity information to skolemize the formula.

The build_let function is essentially as before. The ctx_quant and build_quant func-
tions are as for skolemization (Sect. 4.3), except that the else cases rename bound vari-
ables apart (Sect. 4.2). The ctx_app function is as for skolemization, whereas build_app
is as for theory simplification (Sect. 4.4).

For the formula ϕ given above, process((∅,+), ϕ) returns (∃x.p(x))→ p(c), where
c is a fresh Skolem constant. The substituted term ∃x.p(x) is put unchanged into the
substitution used to expand the ‘let’ expression. It is processed each time y arises in
the body y−�→ y. The positive occurrence is skolemized; the negative occurrence is left
as is. Using caching and a DAG representation of derivations, we can easily avoid the
duplicated work that would arise if y occurred several times with positive polarity.
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4.6 Scope and Limitations

Other possible instances of contextual recursion are the clause normal form (CNF) trans-
formation and the elimination of quantifiers using one-point rules. CNF transformation
is an instance of rewriting of Boolean formulas and can be justified by a TAUTBool

rule. Tseytin transformation can be supported by representing the introduced constants
by the formulas they represent, similarly to our treatment of Skolem terms. One-point
rules—e.g., the transformation of ∀x. x' a−�→ p(x) into p(a)—are similar to ‘let’ ex-
pansion and can be represented in much the same way in our framework. The rules for
eliminating universal and existential quantifiers are as follows:

Γ B s' t Γ, x 7→ t B ϕ' ψ
1PT∀ if x /∈ FV(s) and Γ(t) = t

Γ B (∀x. x' s−�→ ϕ)' ψ

Γ B s' t Γ, x 7→ t B ϕ' ψ
1PT∃ if x /∈ FV(s) and Γ(t) = t

Γ B (∃x. x' s∧ϕ)' ψ

The plugin functions used by process would also be similar as those for ‘let’ expansion,
except that detecting the assignment at ctx_quant requires examining the body of the
quantified formula to determine whether the one-point rule is applicable.

Some transformations, such as symmetry breaking [14] and rewriting based on global
assumptions, require a global analysis of the problem that cannot be captured by local
substitution of equals for equals. They are beyond the scope of the framework. Other
transformations, such as simplification based on associativity and commutativity of func-
tion symbols, require traversing the terms to be simplified when applying the rewriting.
Since process visits terms in postorder, the complexity of the simplifications would be
quadratic, while a processing that applies depth-first preorder traversal can perform the
simplifications with a linear complexity. Hence, applying such transformations optimally
is also outside the scope of the framework.

5 Theoretical Properties

Before proving any properties of contextual recursion or proof checking, we establish
the soundness of the inference rules they rely on. We start by encoding the judgments
in a well-understood theory of binders: the simply typed λ-calculus. A context and a
term will be encoded together as a single λ-term. We call these somewhat nonstandard
λ-terms metaterms. They are defined by the grammar

M ::= t | λx. M | (λx̄n. M) t̄n

where xi and ti are of the same sort for each i ∈ [n]. A metaterm is either a term t
decorated with a box , a λ-abstraction, or the application of an n-tuple of terms to an
uncurried λ-abstraction that simultaneously binds n distinct variables. We let =αβ denote
syntactic equality modulo α- and β-equivalence (i.e., up to renaming of bound variables
and reduction of applied λ-abstractions). We use the letters M,N,P to refer to metaterms.
The notion of type is as expected for simply typed λ-terms: The type of t is the sort
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of t; the type of λx. M is σ→ τ, where σ is the sort of x and τ the type of M; and the
type of (λx̄n. M) t̄n is the type of M. It is easy to see that all metaterms contain exactly
one boxed term. M[t] denotes a metaterm whose box contains t, and M[N] denotes the
same metaterm after its box has been replaced with the metaterm N.

Encoded judgments will have the form M ' N. The λ-abstractions and applications
represent the context, whereas the box stores the term. To invoke the theory oracle |=T ,
we will need to reify equalities on metaterms—i.e., map them to equalities on terms. Let
M, N be metaterms of type σ1→ ·· · → σn→ σ. We define reify(M ' N) as ∀x̄n. t ' u,
where M =αβ λx1. . . .λxn. t and N =αβ λx1. . . .λxn. u . Thanks to basic properties of the
λ-calculus, t and u are always defined uniquely up to the names of the bound variables.
For example, if M = λu. (λv. p(v) ) u and N = λw. q(w) , we have M =αβ λx. p(x)
and N =αβ λx. q(x) , and the reification of M ' N is ∀x. p(x)' q(x).

The inference rules presented in Sect. 3 can now be encoded as follows. We refer to
these new rules collectively as the encoded inference system:

TAUTT if |=T reify(M ' N)
M ' N

M ' N N′ ' P
TRANS if N =αβ N′

M ' P

(
M[ti]' N[ui]

)
n
i=1

CONG
M[f(t̄n)]' N[f(ūn)]

M[λy. (λx. ϕ) y]' N[λy. ψ]
BIND if y /∈ FV(Qx. ϕ)

M[Qx. ϕ]' N[Qy. ψ]

M[(λx. ϕ) (εx. ϕ)]' N
SKO∃M[∃x. ϕ]' N

M[(λx. ϕ) (εx.¬ϕ)]' N
SKO∀M[∀x. ϕ]' N(

M[ri]' N[si]
)

n
i=1 M[(λx̄n. t) s̄n]' N[u]

LET if M[si] =αβ N[si] for all i ∈ [n]
M[let x̄n ' r̄n in t]' N[u]

Lemma 1. If the judgment M ' N is derivable using the encoded inference system with
the theories T1, . . . ,Tn, then |=T reify(M ' N) with T = T1 ∪ ·· · ∪Tn ∪ ' ∪ ε ∪ let.

Proof. By structural induction on the derivation of M ' N. For each inference rule,
we assume |=T reify(Mi ' Ni) for each judgment Mi ' Ni in the antecedent and show
that |=T reify(M ' N). Most of the cases implicitly depend on basic properties of the
λ-calculus to reason about reify.
CASE TAUTT ′ : Trivial because T ′ ⊆T by definition of T .
CASES TRANS, CONG, AND BIND: These follow from the theory of equality (').
CASES SKO∃, SKO∀, AND LET: These follow from (ε1) and (ε2) or (let) and from the
congruence of equality. ut

A judgment Γ B t ' u is encoded as L(Γ)[t]' R(Γ)[u], where

L(∅)[t] = t R(∅)[u] = u
L(x,Γ)[t] = λx.L(Γ)[t] R(x,Γ)[u] = λx.R(Γ)[u]

L(x̄n 7→ s̄n,Γ)[t] = (λx̄n. L(Γ)[t]) s̄n R(x̄n 7→ s̄n,Γ)[u] = R(Γ)[u]
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The L function encodes the substitution entries of Γ as λ-abstractions applied to tuples.
Reducing the applied λ-abstractions effectively applies subst(Γ). For example:

L(x 7→ 7, x 7→ g(x))[x] = (λx. (λx. x ) (g(x))) 7 =αβ g(7)
L(x 7→ 7, x, x 7→ g(x))[x] = (λx. λx. (λx. x ) (g(x))) 7 =αβ λx. g(x)

For any derivable judgment Γ B t ' u, the terms t and u must have the same sort,
and the metaterms L(Γ)[t] and R(Γ)[u] must have the same type. Another property is that
L(Γ)[t] is of the form M[t] for some M that is independent of t and similarly for R(Γ)[u],
motivating the suggestive brackets around L’s and R’s term argument.

Lemma 2. Let x̄n be the variables fixed by Γ in order of occurrence. Then L(Γ)[t] =αβ

λx1. . . .λxn. Γ(t) .

Proof. By induction on Γ.

CASE ∅: L(∅)[t] = t = ∅(t) .

CASE x, Γ: Let ȳn be the variables fixed by Γ.

L(x, Γ)[t] = λx. L(Γ)[t]

=αβ λx.λy1. . . .λyn. Γ(t) {by the induction hypothesis}
= λx.λy1. . . .λyn. (x, Γ)(t) {by (∗)}

where (∗) is the property that subst(Γ) = subst(x,Γ) for all x and Γ, which is easy to
prove by structural induction on Γ.

CASE x̄n 7→ s̄n, Γ: Let ȳn be the variables fixed by Γ, and let ρ= {x̄n 7→ s̄n}[ȳn 7→ ȳn].

L(x̄n 7→ s̄n, Γ)[t] = (λx̄n. L(Γ)[t]) s̄n

=αβ (λx̄n.λy1. . . .λyn. Γ(t) ) s̄n {by the induction hypothesis}
=αβ λy1. . . .λyn. ρ(Γ(t)) {by β-reduction}
= λy1. . . .λyn. (x̄n 7→ s̄n, Γ)(t) {by (∗∗)}

where (∗∗) is the property that ρ ◦ subst(Γ) = subst(x̄n 7→ s̄n, Γ) for all x̄n, s̄n, and Γ,
which is easy to prove by structural induction on Γ. ut

Lemma 3. If the judgment Γ B t ' u is derivable using the original inference system,
then L(Γ)[t]' R(Γ)[u] is derivable using the encoded inference system.

Proof. By structural induction on the derivation of Γ B t ' u.

CASE TAUTT : We have |=T Γ(t)' u. Using Lemma 2, we can easily show that |=T

Γ(t)' u is equivalent to |=T reify(L(Γ)[t]' R(Γ)[u]), the side condition of the encoded
TAUTT rule.

CASE BIND: The encoded antecedent is M[λy. (λx. ϕ) y]' N[λy. ψ] (i.e., L(Γ,y, x 7→ y)
[ϕ] ' R(Γ,y, x 7→ y)[ψ]), and the encoded succedent is M[Qx. ϕ] ' N[Qy. ψ]. By the
induction hypothesis, the encoded antecedent is derivable. Thus, by the encoded BIND
rule, the encoded succedent is derivable.
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CASES CONG, SKO∃, AND SKO∀: Similar to BIND.
CASE TRANS: If Γ(t) = t, the substitution entries of Γ affect only variables that do not
occur free in t. Hence, R(Γ)[t] =αβ L(Γ)[t], as required by the encoded TRANS rule.
CASE LET: Similar to TRANS. ut

Incidentally, the converse of Lemma 3 does not hold, since the encoded inference
rules allow metaterms that contain applied λ-abstractions on the right-hand side of '.

Theorem 4 (Soundness of Inferences). If the judgment Γ B t ' u is derivable using
the original inference system with the theories T1, . . . ,Tn, then |=T Γ(t)' u with T =
T1 ∪ ·· · ∪Tn ∪ ' ∪ ε ∪ let.

Proof. This follows from Lemmas 1 and 3. The equivalence of |=T Γ(t)' u and |=T

reify(L(Γ)[t]' R(Γ)[u]) can be established along the lines of case TAUTT of Lemma 3.
ut

We turn to the contextual recursion algorithm that generates derivations in that
system. The first question is, Are the derivation trees valid? In particular, it is not
obvious from the code that the side conditions of the inference rules are always satisfied.
First, we need to introduce some terminology. A term is shadowing-free if nested binders
always bind variables with different names; for example, ∀x. (∀y. p(x, y)) ∧ (∀y. q(y))
is shadowing-free, while ∀x. (∀x. p(x, y)) ∧ (∀y. q(y)) is not. The set of variables fixed
by Γ is written fix(Γ), and the set of variables replaced by Γ is written repl(Γ). They are
defined as follows:

fix(∅) = {} repl(∅) = {}
fix(Γ, x) = {x} ∪ fix(Γ) repl(Γ, x) = repl(Γ)

fix(Γ, x̄n 7→ s̄n) = fix(Γ) repl(Γ, x̄n 7→ s̄n) = {xi | si 6= xi} ∪ repl(Γ)

Trivial substitutions x 7→ x are ignored, since they have no effect. The set of variables
introduced by Γ is defined by intr(Γ) = fix(Γ) ∪ repl(Γ). A context Γ is consistent if all
the fixed variables are mutually distinct and the two sets of variables are disjoint—i.e.,
fix(Γ) ∩ repl(Γ) = {}.

A judgment Γ B t ' u is canonical if Γ is consistent, FV(t) ⊆ intr(Γ), FV(u) ⊆
fix(Γ), and BV(u) ∩ intr(Γ) = {}. The canonical inference system is a variant of the
system of Sect. 3 in which all judgments are canonical and rules TRANS, BIND, and
LET have no side conditions.

Lemma 5. Any inference in the canonical inference system is also an inference in the
original inference system.

Proof. It suffices to show that the side conditions of the original rules are satisfied.
CASE TRANS: Since the first judgment in the antecedent is canonical, FV(t)⊆ fix(Γ).
By consistency of Γ, we have fix(Γ) ∩ repl(Γ) = {}. Hence, FV(t) ∩ repl(Γ) = {} and
therefore Γ(t) = t.
CASE BIND: Since the succedent is canonical, we have (1) FV(Qx. ϕ)⊆ intr(Γ) and
(2) BV(Qy. ψ) ∩ intr(Γ) = {}. From (2), we deduce y /∈ intr(Γ). Hence, by (1), we get
y /∈ FV(Qx. ϕ).
CASE LET: Similar to TRANS. ut
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Theorem 6 (Total Correctness of Recursion). For the instances presented in Sects.
4.2 to 4.4, the contextual recursion algorithm always produces correct proofs.

Proof. The algorithm terminates because process is called initially on a finite input and
recursive calls always have smaller inputs.

For the proof of partial correctness, only the Γ part of the context is relevant. We will
write process(Γ, t) even if the first argument actually has the form (Γ, p) for skolemiza-
tion. The pre- and postconditions of a process(Γ, t) call that returns the term u are

PRE1 Γ is consistent;
PRE2 FV(t)⊆ intr(Γ);
PRE3 BV(t) ∩ fix(Γ) = {};

POST1 u is shadowing-free;
POST2 FV(u)⊆ fix(Γ);
POST3 BV(u) ∩ intr(Γ) = {}.

For skolemization and simplification, we may additionally assume that bound variables
have been renamed apart by ‘let’ expansion, and hence that the term t is shadowing-free.

The initial call process(∅, t) trivially satisfies the preconditions on an input term t
that contains no free variable. We must show that the preconditions for each recursive call
process(Γ′, t′) are satisfied and that the postconditions hold at the end of process(Γ, t).

PRE1 (Γ′ is consistent): First, we show that the fixed variables are mutually distinct. For
‘let’ expansion, all fixed variables are fresh. For skolemization and simplification, a pre-
condition is that the input is shadowing-free. For any two fixed variables in Γ′, the input
formula must contain two quantifiers, one in the scope of the other. Hence, the variables
must be distinct. Second, we show that fix(Γ′) ∩ repl(Γ′) = {}. For ‘let’ expansion, all
fixed variables are fresh. For skolemization, the condition is a direct consequence of the
precondition that the input is shadowing-free. For simplification, we have repl(Γ′) = {}.
PRE2 (FV(t′) ⊆ intr(Γ′)): We have FV(t) ⊆ intr(Γ). The desired property holds be-
cause the ctx_let and ctx_quant functions add to the context any bound variables that
become free when entering the body t′ of a binder.

PRE3 (BV(t′) ∩ fix(Γ′) = {}): The only function that fixes variable is ctx_quant. For
‘let’ expansion, all fixed variables are fresh. For skolemization and simplification, the
condition is a consequence of the shadowing-freedom of the input.

POST1 (u is shadowing-free): The only function that builds quantifiers is build_quant.
The process(Γ′, ϕ) call that returns the processed body ψ of the quantifier is such that
y ∈ intr(Γ′) in the ‘let’ expansion case and x ∈ intr(Γ′) in the other two cases. The in-
duction hypothesis ensures that ψ is shadowing-free and BV(ψ) ∩ intr(Γ′) = {}; hence,
the result of build_quant (i.e., Qy. ψ or Qx. ψ) is shadowing-free. Quantifiers can also
emerge when applying a substitution in build_var. This can happen only if ctx_let has
added a substitution entry to the context, in which case the substituted term is the result
of a call to process and is thus shadowing-free.

POST2 (FV(u)⊆ fix(Γ)): In most cases, this condition follows directly from the induc-
tion hypothesis POST2. The only case where a variable appears fixed in the context Γ′

of a recursive call to process and not in Γ is when processing a quantifier, and then that
variable is bound in the result. For variable substitution, it suffices to realize that the
context in which the substituted term is created (and which fixes all the free variables
of the term) is a prefix of the context when the substitution occurs.
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POST3 (BV(u) ∩ intr(Γ) = {}): In most cases, this condition follows directly from the
induction hypothesis POST3: For every recursive call, intr(Γ) ⊆ intr(Γ′). Two cases
require attention. For ‘let’ expansion, a variable may be replaced by a term with bound
variables. Then the substituted term only contains variables that do not occur in the
input. The variables introduced by Γ will be other fresh variables or variables from the
input. The second case is when a quantified formula is built. For ‘let’ expansion, a fresh
variable is used. For skolemization and simplification, we have BV(Qx. ϕ) ∩ fix(Γ) = {}
(PRE3); hence x /∈ fix(Γ). Finally, we must show that x /∈ repl(Γ); this is a consequence
of the shadowing-freedom of the input.

It is easy to see that each apply call generates a rule with an antecedent and a
succedent of the right form, ignoring the rules’ side conditions. Moreover, all calls to
apply generate canonical judgments thanks to the pre- and postconditions proved above.
Correctness follows from Lemma 5. ut

Observation 7 (Complexity of Recursion). For the instances presented in Sects. 4.2
to 4.4, the ‘process’ function is called at most once on every subterm of the input.

Justification. It suffices to notice that a call to process(∆, t) induces at most one call for
each of the subterms in t. ut

As a corollary, if all the operations performed in process excluding the recursive calls
can be accomplished in constant time, the algorithm has linear-time complexity with
respect to the input. There exist data structures for which the following operations take
constant time: extending the context with a fixed variable or a substitution, accessing
direct subterms of a term, building a term from its direct subterms, choosing a fresh
variable, applying a context to a variable, checking if a term matches a simple template,
and associating the parameters of the template with the subterms. Thus, it is possible to
have a linear-time algorithm for ‘let’ expansion and simplification.

On the other hand, construction of Skolem terms is at best linear in the size
of the context and of the input formula in process. Hence, skolemization is at best
quadratic in the worst case. This is hardly surprising because in general, the for-
mula ∀x1.∃y1. . . .∀xn.∃yn. ϕ[x̄n, ȳn], whose size is proportional to n, is translated to
∀x1. . . .∀xn. ϕ[x̄n, f1(x̄1), f2(x̄2), . . . , fn(x̄n)], whose size is quadratic in n.

Observation 8 (Overhead of Proof Generation). For the instances presented in Sects.
4.2 to 4.4, the number of calls to the ‘apply’ procedure is proportional to the number of
subterms in the input.

Justification. This is a corollary of Observation 7, since the number of apply calls per
process call is bounded by a constant (3, in build_app for simplification). ut

Notice that all arguments to apply must be computed regardless of the apply calls. If
an apply call takes constant time, the proof generation overhead is linear in the size of
the input. To achieve this performance, it is necessary to use sharing to represent contexts
and terms in the output; otherwise, each call to apply might itself be linear in the size of
its arguments, resulting in a nonlinear overhead on the generation of the entire proof.
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Observation 9 (Cost of Proof Checking). Checking an inference step can be per-
formed in constant time if checking the side condition takes constant time.

Justification. The inference rules involve only shallow conditions on contexts and terms,
except in the side conditions. Using suitable data structures with maximal sharing, the
contexts and terms can be checked in constant time. ut

The above statement may appear weak, since checking the side conditions might
itself be linear, leading to a cost of proof checking that can be at least quadratic in the
size of the proof (measured as the number of symbols that represent it). Fortunately,
most of the side conditions can be checked efficiently. For example, for simplification
(Sect. 4.4), the BIND rule is always applied with x = y, which implies the side condition
y /∈ FV(Qx. ϕ); and since no other rule contributes to the substitution, subst(Γ) is the
identity. Thus, simplification proofs can be checked in linear time. Moreover, certifying
a proof by checking each step locally is not the only possibility. An alternative is to use
an algorithm similar to the process function to check a proof in the same way as it has
been produced. Such an algorithm can exploit sophisticated invariants on the contexts
and terms.

6 Implementation

The ideas presented in this report have been implemented in two tools. We implemented
the contextual recursion algorithm and the transformations described in Sect. 4 in the
SMT solver veriT [11], showing that replacing the previous ad hoc code with the generic
proof-producing framework had no significant detrimental impact on the solving times.
In addition, we developed a prototypical proof checker for the inference system described
in Sect. 3 using Isabelle/HOL [32], to convince ourselves that veriT’s output can easily
be reconstructed.

6.1 Isabelle

The Isabelle/HOL proof assistant is based on classical higher-order logic (HOL) [18], a
variant of the simply typed λ-calculus. Thanks to the availability of λ-terms, we could
follow the lines of the encoded inference system of Sect. 5 to represent judgments in
HOL. The proof checker is included in the development version of Isabelle.1

Derivations are represented by a recursive datatype in Standard ML, Isabelle’s
primary implementation language. A derivation is a tree whose nodes are labeled by
rule names. Rule TAUTT additionally carries a theorem that represents the oracle
|=T , and rules TRANS and LET are labeled with the terms that occur only in the
antecedent (t and s̄n). Terms and metaterms are translated to HOL terms, and judgments
M ' N are translated to HOL equalities t ' u, where t and u are HOL terms. Uncurried
λ-applications are encoded using a polymorphic combinator case× : (α→ β→ γ)→

1 http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_

Preprocessing.thy
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α×β→ γ; in Isabelle/HOL, λ(x,y). t is syntactic sugar for case× (λx.λy. t). This scheme
is iterated to support n-tuples, represented by nested pairs (t1,(· · ·(tn−1, tn) · · ·)).

To implement the inference rules, it is necessary to be able to locate any meta-
term’s box. There is an easy criterion: Translated metaterms are of the form (λ. . . .) . . . or
case× . . . , which is impossible for a translated term. Because reconstruction is not veri-
fied, there are no guarantees that it will always succeed, but when it does, the result is cer-
tified by Isabelle’s LCF-style inference kernel [19]. We hard-coded a few dozen examples
to test different cases, such as this one: Given the HOL terms t = ¬ ∀x. p ∧ ∃x. ∀x. q x x
and u = ¬ ∀x. p ∧ ∃x. q (εx.¬ q x x) (εx.¬ q x x) and the ML tree

N (Cong, [N (Bind, [N (Cong, [N (Refl, []),N (Bind, [N (Sko_All, [N (Refl, [])])])])])]))

the reconstruction function returns the HOL theorem t ' u.

6.2 veriT

We implemented the contextual recursion framework in the SMT solver veriT,2 replacing
large parts of the previous non-proof-producing, hard-to-maintain code. Even though
it offers more functionality (proof generation), the preprocessing module is about 20%
smaller than before and consists of about 3000 lines of code. There are now only two
traversal functions instead of 10. This is, for us, a huge gain in maintainability.

Proofs Previously, veriT provided detailed proofs for the resolution steps performed by
the SAT solver and the lemmas added by the theory solvers and instantiation module.
All transformations performed in preprocessing steps were represented in the proof in a
very coarse manner, amounting to gaps in the proof. For example, when ‘let’ expressions
were expanded in a formula, the only information present in the proof would be the
formula before and after ‘let’ expansion.

When extending veriT to generate more detailed proofs, we were able to reuse its
existing proof module and proof format [7]. A proof is a list of inferences, each of
which consists of an identifier (e.g., .c0), the name of the rule, the identifiers of the
dependencies, and the derived clause. The use of identifiers makes it possible to represent
proofs as DAGs. We extended the format with the inference rules of Sect. 3. The rules
that augment the context take a sequence of inferences—a subproof —as a justification.
The subproof occurs within the scope of the extended context. Following this scheme,
the skolemization proof for the formula ¬∀x. p(x) from Example 2 is presented as

(.c0 (Sko_All :conclusion ((∀x. p(x))' p(εx.¬p(x)))
:args (x 7→ (εx.¬p(x)))
:subproof ((.c1 (Refl :conclusion (x' (εx.¬p(x)))))

(.c2 (Cong :clauses (.c1) :conclusion (p(x)' p(εx.¬p(x))))))))
(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x))' ¬p(εx.¬p(x)))))

Formerly, no details of these transformations would be recorded. The proof would have
contained only the original formula and the skolemized result, regardless of how many
quantifiers appeared in the formula.

2 http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz
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In contrast with the abstract proof module described in Sect. 4, veriT leaves REFL
steps implicit for judgments of the form Γ B t ' t. The other inference rules are general-
ized to cope with missing REFL judgments. In addition, when printing proofs, the proof
module can automatically replace terms in the inferences with some other terms. This is
necessary for transformations such as skolemization and ‘if–then–else’ elimination. We
must apply a substitution in the replaced term if the original term contains variables. In
veriT, efficient data structures are available to perform this.

Transformations The implementation of contextual recursion uses a single global
context, augmented before processing a subterm and restored afterwards. The context
consists of a set of fixed variables, a substitution, and a polarity. In our setting, the
substitution satisfies the side conditions by construction. If the context is empty, the
result of processing a subterm is cached. For skolemization, a separate cache is used for
each polarity. No caching is attempted under binders.

Invoking process on a term returns the identifier of the inference at the root of its
transformation proof in addition to the processed term. These identifiers are threaded
through the recursion to connect the proof. The proofs produced by instances of con-
textual recursion are inserted into the larger resolution proof produced by veriT. This is
achieved through an inference of the form

ϕ D
TAUT'¬(ϕ' ψ) ∨ ¬ϕ ∨ ψ
RESOLVE

ψ

where ϕ is the original formula, ψ is the processed formula, and D is a derivation of
B ϕ' ψ. The derivation D may itself depend on instances of rule TAUTT , each with its
own proof of the side condition that must also be included in the overall proof.

Transformations performing theory simplification were straightforward to port to the
new framework: Their build_app functions simply apply rewrite rules until a fixpoint
is reached. Porting transformations that interact with binders required special attention
in handling the context and producing proofs. Fortunately, most of these aspects are
captured by the inference system and the abstract contextual recursion framework, where
they can be studied independently of the implementation.

Some transformations are performed outside of the framework. Proofs of CNF trans-
formation are expressed using the inference rules of veriT’s underlying SAT solver,
so that any tool that can reconstruct SAT proofs can also reconstruct these proofs.
Simplification based on associativity and commutativity of function symbols is imple-
mented as a dedicated procedure, for efficiency reasons (Sect. 4.6). It currently produces
coarse-grained proofs.

Evaluation To evaluate the impact of the new contextual recursion algorithm and of
producing detailed proofs, we compare the performance of different configurations of
veriT. Our experimental data is available online.3 We distinguish three configurations.
BASIC only applies transformations for which the old code provided some (coarse-
grained) proofs. EXTENDED also applies transformations for which the old code did not

3 http://matryoshka.gforge.inria.fr/pubs/processing/

19

http://matryoshka.gforge.inria.fr/pubs/processing/


provide any proofs, whereas the new code provides detailed proofs. COMPLETE applies
all transformations available, regardless of whether they produce proofs.

More specifically, BASIC applies the transformations for ‘let’ expansion, skolemiza-
tion, elimination of quantifiers based on one-point rules, elimination of ‘if–then–else’,
theory simplification for rewriting n-ary symbols as binary, and elimination of equiva-
lences and exclusive disjunctions with quantifiers in subterms. EXTENDED adds Boolean
and arithmetic simplifications to the transformations performed by BASIC. COMPLETE
performs global rewriting simplifications and symmetry breaking in addition to the
transformations in EXTENDED.

The evaluation was carried out on two main sets of benchmarks from SMT-LIB [5]:
the 20916 benchmarks in the quantifier-free (QF) categories QF_ALIA, QF_AUFLIA,
QF_IDL, QF_LIA, QF_LRA, QF_RDL, QF_UF, QF_UFIDL, QF_UFLIA, and QF_
UFLRA; and the 30250 benchmarks labeled as unsatisfiable in the non-QF categories
AUFLIA, AUFLIRA, UF, UFIDL, UFLIA, and UFLRA. The categories with bit vectors
and nonlinear arithmetic are not supported by veriT. Our experiments were conducted
on servers equipped with two Intel Xeon E5-2630 v3 processors, with eight cores per
processor, and 126 GB of memory. Each run of the solver uses a single core. The time
limit was set to 30 s, a reasonable value for interactive use within a proof assistant.

The tables below indicate the number of benchmark problems solved by each config-
uration for the quantifier-free and non-quantifier-free benchmarks:

QF Old code New code

BASIC without proofs 13 489 13 496
with proofs 13 360 13 352

EXTENDED without proofs 13 539 13 537
with proofs N/A 13 414

COMPLETE without proofs 13 826 13 819
with proofs N/A N/A

NON-QF Old code New code

BASIC without proofs 28 746 28 762
with proofs 28 744 28 766

EXTENDED without proofs 28 785 28 852
with proofs N/A 28 857

COMPLETE without proofs 28 759 28 794
with proofs N/A N/A

These results indicate that the new generic contextual recursion algorithm and the
production of detailed proofs do not impact performance negatively in any significant way
compared with the old code. The time difference is less than 0.1%, and the small changes
in solved problems are within the difference one can observe when renaming symbols or
reordering axioms. In addition, fine-grained proofs are now provided, whereas before
only the original formula and the result were given after each set of transformations,
without any further details, which arguably did not even constitute a proof.
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Allowing Boolean and arithmetic simplifications leads to some improvements, espe-
cially for the quantifier-free benchmarks. We expect that generating proofs for the global
transformations would lead to substantial improvements on these problems.

7 Related Work

Most automatic provers that support the TPTP syntax for problems generate proofs in
TSTP (Thousands of Solutions for Theorem Provers) format [41]. Like a veriT proof,
a TSTP proof consists of a list of inferences. TSTP does not mandate any inference
system; the meaning of the rules and the granularity of inferences vary across systems.
For example, the E prover [38] combines clausification, skolemization, and variable
renaming into a single inference, whereas Vampire [26] appears to cleanly separate
preprocessing transformations. SPASS’s [42] custom proof format does not record
preprocessing steps; reverse engineering is necessary to make sense of its output, and
optimizations ought to be disabled [8, Sect. 7.3].

Most SMT solvers can parse the SMT-LIB [5] format, but each solver has its own
output syntax. Z3’s proofs can be quite detailed [31], but rewriting steps often combine
many rewrites rules. CVC4’s format is an instance of LF [23] with Side Conditions
(LFSC) [39]; despite recent progress [22, 25], neither skolemization nor quantifier
instantiation are currently recorded in the proofs. Proof production in Fx7 [30] is based
on an inference system whose formula processing fragment is subsumed by ours; for
example, skolemization is more ad hoc, and there is no explicit support for rewriting.

Proof assistants for dependent type theory, including Agda, Coq, Lean, and Matita,
provide very precise proof terms that can be checked by relatively simple checkers,
meeting De Bruijn’s criterion [4]. Exploiting the Curry–Howard correspondence, a
proof term is a λ-term whose type is the proposition it proves; for example, the term
λx. x, of type A→ A, is a proof that A implies A. Proof terms have also been imple-
mented in Isabelle [6], but they slow down the system considerably and are normally
disabled. Frameworks such as LF, LFSC, and Dedukti [13] provide a way to specify
inference systems and proof checkers based on proof terms. Our encoding into λ-terms
is vaguely reminiscent of LF. The encoded rules also bear a superficial resemblance to
deep inference [21].

Isabelle and the proof assistants from the HOL family (HOL4, HOL Light, HOL Zero,
and ProofPower–HOL) are based on the LCF architecture [19]. Theorems are represented
by an abstract data type. A small set of primitive inferences derives new theorems from
existing ones. This architecture is also the inspiration behind automatic systems such as
Psyche [20]. In Cambridge LCF, Paulson introduced an idiom, conversions, for express-
ing rewriting strategies [36]. A conversion is an ML function from terms t to theorems of
the form t' u. Basic conversions perform β-reduction and other simple rewriting. Higher-
order functions combine conversions. Paulson’s conversion library culminates with a
function that replaces Edinburgh LCF’s monolithic simplifier. Conversions are still in use
today in Isabelle and the HOL systems. They allow a style of programming that focuses
on the terms to rewrite—the proofs arise as a side effect. Our framework is related, but we
trade programmability for efficiency on very large problems. Remarkably, both Paulson’s
conversions and our framework emerged as replacements for earlier monolithic systems.
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Over the years, there have been many attempts at integrating automatic provers into
proof assistants. To reach the highest standards of trustworthiness, some of these bridges
translate the proofs found by the automatic provers so that they can be checked by the
proof assistant. The TRAMP subsystem of ΩMEGA is one of the finest examples [28].
For integrating superposition provers with Coq, De Nivelle studied how to build efficient
proof terms for clausification and skolemization [33]. For SMT, the main integrations
with proof reconstruction are CVC Lite in HOL Light [27], haRVey (veriT’s predecessor)
in Isabelle/HOL [17], Z3 in HOL4 and Isabelle/HOL [9,10], veriT in Coq [1], and CVC4
in Coq [16]. Some of these simulate the proofs in the proof assistant using dedicated
tactics, in the style of our simple checker for Isabelle (Sect. 6.1). Others employ reflection,
a technique whereby the proof checker is specified in the proof assistant’s formalism
and proved correct; in systems based on dependent type theory, this can help keep proof
terms to a manageable size. A third approach is to translate the SMT output into a proof
text that can be inserted in the user’s formalization; Isabelle/HOL supports veriT and Z3
in this way [8].

Proof assistants are not the only programs used to check machine-generated proofs.
Otterfier invokes the Otter prover to check TSTP proofs from various sources [43].
GAPT imports proofs generated by resolution provers with clausifiers to a sequent
calculus and uses other provers and solvers to transform the proofs [15, 24]. Dedukti’s
λΠ-calculus modulo [13] has been used to encode resolution and superposition proofs
[12], among others. λProlog provides a general proof-checking framework that allows
nondeterminism, enabling flexible combinations of proof search and proof checking [29].

8 Conclusion

We presented a framework to represent and generate proofs of formula processing and
its implementation in veriT and Isabelle/HOL. The framework centralizes the delicate
issue of manipulating bound variables and substitutions soundly and efficiently, and it
is flexible enough to accommodate many interesting transformations. Although it was
implemented in an SMT solver, there appears to be no intrinsic limitation that would
prevent its use in other kinds of first-order, or even higher-order, automatic provers. The
framework covers many preprocessing techniques and can be part of a larger toolbox.

Detailed proofs have been a defining feature of veriT for many years now. It now
produces more detailed justifications than ever, but there are still some global transfor-
mations for which the proofs are nonexistent or leave much to be desired. In particular,
supporting rewriting based on global assumptions would be essential for proof-producing
inprocessing, and symmetry breaking would be interesting in its own right.
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