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Abstract

Concurrent revisions is a concurrency control model developed by Microsoft Research.
It has many interesting properties that distinguish it from other well-known models
such as transactional memory. One of these properties is determinacy: programs written
within the model always produce the same outcome, independent of scheduling activity.
The concurrent revisions model has an operational semantics, with an informal proof of
determinacy. This thesis describes an Isabelle/HOL formalization of this semantics and
the proof of determinacy. We identify a number of subtle ambiguities in the specification
of the semantics, the resolution of which requires the semantics to be modified. We
also work out many details of the proof of determinacy, and show that the proof can
be simplified. While the uncovered issues do not appear to map to bugs in existing
implementations, the formalization highlights some of the challenges that are involved
in the general design and verification of concurrency control models.
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Chapter 1
Introduction

This thesis presents an Isabelle/HOL formalization of the semantics of concurrent re-
visions. The subject of the formalization, concurrent revisions, is a relatively recent
concurrency control model developed by Microsoft Research. The formalization tool,
Isabelle/HOL, is a higher-order logic interactive theorem prover with strong proof au-
tomation.

1.1 Motivation

Concurrency refers to the phenomenon in which the executions of multiple processes
are interleaved non-deterministically. If these processes interact through shared state or
through some message passing protocol, then it is important to ensure that any unwel-
come interactions are ruled out. This requires one to first identify which of the expo-
nentially many interleavings are unsafe, and to then prevent them from ever occurring.
Should a programmer fail to meet either of these requirements, then it may take many
executions before a dormant bug manifests itself. When it inadvertently does manifest,
the consequences can be severe, and the cause exceptionally difficult to pinpoint in the
post-mortem analysis.

Survey studies support the folklore claim that developing concurrent software is chal-
lenging. Godefroid and Nagappan [GN08] conducted a large internal questionnaire on
the subject at Microsoft, which revealed that its engineers judge concurrency bugs to be
difficult to detect, reproduce, debug and fix, and that they are usually classified as severe.
Relatedly, Lu et al. [LPSZ08] surveyed the bug characteristics of 105 randomly selected
real world concurrency bugs. With respect to severity, they found that 34 of these bugs
caused program crashes, and 37 bugs caused programs to hang. With respect to diag-
nosis, they found that bug reporters complained about the inability to reproduce bugs,
sometimes leading to bug reports being closed prematurely, or bugs being incorrectly
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1.1. MOTIVATION

fixed based on guesswork. They also found that none of the bug reports mentioned the
use of automatic diagnostic tools—a situation that contrasts starkly with, e.g., memory
bug reports, in which programmers frequently report the use of diagnostic tools such as
Valgrind.

Case studies also vividly illustrate the catastrophic potential of concurrency bugs. A
particularly egregious example is found in Facebook’s initial public offering (IPO) on
the NASDAQ stock exchange, which was the third largest IPO in U.S. history [KL13].
Usually, NASDAQ’s IPO Cross software takes less than 40 microseconds to compute an
opening price based on a stock’s initial bids and offers. Due to the heavy interest in Face-
book, however, this time it took 5 milliseconds. Concurrently to this calculation, investors
were allowed to change their orders, which causes the software to recalculate the open-
ing price. An endless loop ensued—fuelled by panic spreading among investors—which
eventually required manual intervention: the publication of the opening bid ended up
being delayed by half an hour. Some estimates claim that this glitch cost traders a total
of $100 million, and it was reported that hundreds of hours of testing failed to expose
the concurrency bug.

What can be done? Part of the solution is to provide programmers with concurrency
control abstractions that help write safe and understandable concurrent software. In
essence, such abstractions establish one or more properties that function as simplify-
ing assumptions for writing concurrent software. Well-known abstractions include the
lock and the family of transactional memory (TM) [HLR10] models, with software trans-
actional memory (STM) [ST97] being a particularly influential variant. The concurrent
revisions model—of central interest to the present thesis—is another, much less well-
known concurrency control abstraction, whose interesting details we reserve for Chapter
2.

Since the programmer relies on the properties of a concurrency control abstraction, it
is vital that they are well defined and well understood, and that any underlying design
or implementation actually establishes them. The research related to the formal speci-
fication and verification of a variety of TM models, for instance, is abundant. Relevant
studies include publications by

• Harris et al. [HMPJH05], who extended the default STM model with blocking and
choice mechanics, in the form of both an implementation (STM Haskell) and a
formal operational semantics;

• Manovit et al. [MHC+06], who developed a formal axiomatic framework and pseu-
dorandom testing methodology for TM systems, and used it to uncover bugs in
the relatively well-known Transactional memory Coherence and Consistency (TCC)
[HWC+04] system;

• Abadi et al. [ABHI08], who developed a formal semantics for the Automatic Mutual
Exclusion (AME) model (a transactional model related to TM), and used it to study

7



1.2. CONTRIBUTIONS

design trade-offs and errors that occur in known STM implementations, such as
‘Bartok-STM’ [HPST06];

• Cohen et al. [CPZ08] and Doherty et al. [DGLM13], who both developed frame-
works for the formal verification of TM implementations, using the interactive the-
orem prover PVS; and

• Doherty et al. [DDD+17], who presented the first formal verification of a so-called
‘pessimistic’ (i.e., non-aborting) STM algorithm using Isabelle/HOL, extending a
refinement strategy pursued in their earlier work [DGLM13].

By contrast, the formal theory related to the concurrent revisions model consists
of just a single publication: a technical report describing a formal semantics [BL11]
(inspired by the semantics for AME), which serves as an accompaniment to a more
practically-oriented paper (describing an implementation in C#) [BBL10]. The techni-
cal report establishes a number of defining properties of the concurrent revisions model.
One of these requires us to distinguish between determinism and determinacy, a practice
originating from the parallel programming community [KM66]: a program is determinis-
tic if it always give rise to the same execution, and it is determinate if it always produces
the same outcome. Programs written within the concurrent revisions model are deter-
minate, assuming the absence of external sources of indeterminacy (such as random
number generation). This is quite different from the situation for locks, where the out-
come of an execution may depend on which process obtains a lock first, and the situation
for TM, where the outcome of an execution may depend on which process first commits
its transaction.

This thesis describes a formal verification of the concurrent revisions semantics, with
an emphasis on the proof of determinacy. The motivation is twofold. First, we want to
strengthen the theoretical foundations of the concurrent revisions model in particular:
are the formal semantics well specified, and does it indeed establish determinacy? If
not, what changes to the semantics are necessary? Second, we wish to provide a general
case study for the application of formal methods in the design of concurrency control
abstractions—one that is intended to be more accessible to the non-specialist than most
published literature on formal verification.

1.2 Contributions

This main contributions of this thesis are the following:

• We raise interpretation questions for three details of the operational semantics
(namely, the definition of a program expression, and the side conditions on the
operational rules (fork) and (new)). We show that the straightforward interpreta-
tions of these definitions lead to an indeterminate concurrency model. We suggest

8



1.3. THESIS OUTLINE

how this situation should be remedied. We also show that two other side conditions
(namely, those on rules (get) and (set)) are redundant.

• We fill out many of the details omitted in the original proof of determinacy, and
provide a proof simplification.

• We formalized all the proofs using Isabelle/HOL. The resulting artifact is a little
over 3000 lines, and will be published to The Archive of Formal Proofs, the official
archive for Isabelle verifications.1

1.3 Thesis outline

The thesis is structured as follows. In Chapter 2, we provide the required high-level
background on the concurrent revisions model (Section 2.1), and describe its formal se-
mantics (Section 2.2). In describing the formal semantics, we highlight three perceived
ambiguities, which we address and resolve in Chapter 3, leading to a modified ver-
sion of the formal semantics. We prove determinacy for this version of the semantics
in Chapter 4, and include an explicit comparison with the original proof (Section 4.3.2).
In Chapter 5, we provide extensive background on Isabelle/HOL, tailored to readers
unacquainted with formal methods. This background chapter contains most of the in-
formation needed to acquire a global understanding of the Isabelle/HOL formalization,
described in Chapter 6. Finally, we discuss the significance of our findings and comment
on the formalization process in Chapter 7.

1The Archive of Formal Proofs is available at https://www.isa-afp.org.
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Chapter 2
Concurrent revisions

The concurrent revisions model was originally formulated by Burckhardt, Baldassin and
Leijen in 2010 [BBL10]. Their aim was to formulate a mechanism for managing shared
data between asynchronous tasks, that would moreover be relatively easy to write and
reason about (relative to, arguably, locks). The original paper included an implemen-
tation in C#, and was accompanied by a technical report describing a formal semantics
[BL11], for which certain desired properties (such as determinacy of executions) were
proven to hold. Since then, multiple papers have been published on concurrent revi-
sions as part of an encompassing Microsoft research project.1 Among the contributions
of these publications are model extensions, such as support for incremental computation
[BLS+11], as well as an implementation in Haskell [LFB11].

In this chapter we first provide a high-level description of the original concurrent
revisions model (Section 2.1), highlighting its virtues. We then provide a detailed de-
scription of the formal semantics (Section 2.2), which is the subject of the formalization
described by this thesis.

2.1 High-level description

The central unit of concurrency in the concurrent revisions model is the revision. A revi-
sion is a task that operates on a (conceptually) isolated, local copy of shared data, and is
uniquely identified by an identifier (which is part of the program logic). All computation
takes place within some revision. Initially, there is only one revision: the main revision.

Revisions do not interact, unless an explicit synchronization operation is performed,
of which only two exist. The first synchronization operation is the fork. When a revision
r forks some task, a new revision r ′ is created that executes the task. At creation, the

1An overview of the project is available at https://www.microsoft.com/en-us/research/project/

concurrent-revisions/.

10

https://www.microsoft.com/en-us/research/project/concurrent-revisions/
https://www.microsoft.com/en-us/research/project/concurrent-revisions/


2.1. HIGH-LEVEL DESCRIPTION

r3 · ·
r2 · · · · c

r1 · a · b d

Figure 2.1: A simple revision diagram. Dotted arrows denote fork and join relations.

store of revision r ′ is initialized with a copy of the data of revision r, and the identifier
of revision r ′ is exposed to revision r. The second synchronization operation is the join.
When revision r knows the identifier of revision r ′, then r can join r ′. This causes r to
block until r ′ has finished its computation. When r ′ is finished, the stores of r and r ′ are
merged at r to form a new store, and r ′ ceases to exist. Joining a non-existent revision is
considered an error.

The merge of two stores can be best explained in relation to a revision diagram, which
is a diagram that depicts the interactions between revisions. In these diagrams, we use
solid arrows to depict computational steps within revisions, and dotted arrows to depict
fork and join relations between revisions. Figure 2.1 shows a simple example, in which
four states are marked (a, b, c and d). In state a, r1 forks r2. In state b, r1 initiates a join
on r2, which blocks until r2 reaches its terminal state c. The stores of b and c contain
modifications relative to the closest common ancestor a: if none of these modifications
conflict (i.e., no data object in the original store was updated to two distinct values), then
the merged store at d is effectively the store that is obtained by applying all of b and c’s
modifications to store a.

Stores that need to be merged may have performed writes to the same values (a
write-write conflict). Whereas lock-based programs are designed to avoid conflicts, and
STM discards tentative transactions that turn out to conflict with the committed memory,
concurrent revisions asks one to resolve all conflicts. This happens through the following
data-centric approach. Every declaration of a shared data object is annotated with an
isolation type. The isolation type determines which merge function is used to resolve a
conflict on that object. The merge function computes a value based on (1) the value at
the closest common ancestor in the revision diagram, (2) the value at the joiner and (3)
the value at the joinee. The merge function should be deterministic, as to not threaten
the important determinacy property of concurrent revisions (discussed in Section 1.1).
Other than that, which merge function to use is up to the programmer, as it is application-
dependent.

We illustrate the concept of an isolation type with two standard examples: Versioned
and Cumulative isolation types. If an object has the Versioned isolation type, then any
conflict is resolved by choosing the joinee’s value. This isolation type is particularly
useful if there exists a clear priority order between tasks. The Cumulative isolation type,
by contrast, is more sophisticated: it effectively applies the changes by both revisions to

11



2.1. HIGH-LEVEL DESCRIPTION

Versioned <Int>

r2 · ·

r1 · · · · [x 7→ 2]

x := 2

x := 3 x := 7

Cumulative <Int>

r2 · ·

r1 · · · · [x 7→ 7]

x := 5

x := 3 x := 5

Figure 2.2: Merging: Versioned <Int> versus Cumulative <Int>.

r3 · · ·
r4 · ·
r2 · ·
r1 · · · · · · ·

Figure 2.3: A valid ‘bridge-nested’ revision diagram.

the original object. Thus, in the case of a Cumulative <Int> merge, where x is the original
value, y is the value at the joiner, and z is the value at the joinee, the result of the merge
is y+ z− x (Figure 2.2).

Just like any other data, revision identifiers can be stored. Thus, it is possible for a
revision to gain access to a revision identifier r by joining a revision that has a reference
to r in its store. This fact explains complex revision diagrams, such as the so-called
‘bridge-nested’ diagram (Figure 2.3). By contrast, a ‘cross-over’ diagram (Figure 2.4)
is impossible, since there is no way in which revision r1 could have seen identifier r3.
Burckhardt and Leijen [BL11] show that each pair of states has a unique closest common
ancestor, which implies that the merge operation is well defined.

Apart from determinacy, the concurrent revisions approach to concurrency differs

r3 · ·
r2 · ·
r1 · · · · ·

Figure 2.4: An invalid ‘cross-over’ diagram.

12



2.2. FORMAL SEMANTICS

from other paradigms in another important way. Unlike most building blocks of trans-
actional paradigms, revisions are not serializable, meaning that they cannot always be
arranged in some serial (i.e. non-overlapping) order. For instance, consider the following
pseudocode program, in which the main revision forks two revisions r1 and r2, and then
joins them:

Versioned <Int> x := 0
Versioned <Int> y := 0
r1 := fork { if x = 0 then y := 1 }

r2 := fork { if y = 0 then x := 1 }

join r1
join r2
print (x,y)

It is easy to check that the main revision will print (1,1): neither r1 nor r2 can therefore
in any way be said to have occurred before the other.

Serializability is often desired because the behaviour of serial executions is well un-
derstood. Burckhardt and Leijen argue that this reduction to the sequential world is
not strictly required: programmers can reason about non-linear histories of state using
revision diagrams, while relying on the fact that executions are determinate. This, com-
bined with the declarative, data-centric approach to conflict resolution, make concurrent
revisions an elegant model for concurrent applications in which conflicts are resolvable.

2.2 Formal semantics

Burckhardt and Leijen present a semantics of concurrent revisions [BL11]. The semantics
takes the form of an operational semantics, which they call the revision calculus. The
calculus is very expressive: it defines the types, syntax and semantics of a rudimentary
programming language; and it captures the concepts of a simple memory model, a very
precise (but implicit) evaluation order, and asynchronous computation. The calculus is
also very concise, as it fits on a single page. These properties make it highly suitable as
a reference for implementations and as a tool for studying extensions of the model.

This section describes the revision calculus as it was presented by Burckhardt and
Leijen. On a small number of aspects, more than one interpretation seemed reasonable
to us: we highlight these perceived ambiguities here, and fully explore them in Chapter
3. We also introduce some additional notation that is needed for our own purposes.

The function notations (which are largely adopted from the original paper) have the
following meanings:

• A⇀ B denotes the set of partial functions from A to B;

• fJx 7→ yK denotes a function f for which f x = y (we write fJx1 7→ y1, x2 7→ y2K for
fJx1 7→ y1KJx2 7→ y2K);

13



2.2. FORMAL SEMANTICS

Syntactic symbols
x ∈ Var
l ∈ Loc
r ∈ Rid
c ∈ Const ::= unit | false | true
v ∈ Val ::= c | x | l | r | λx.e
e ∈ Expr ::= v | e e | e ? e : e

| ref e | !e | e := e
| rfork e | rjoin e

State
σ ∈ Snapshot = Loc ⇀ Val
τ ∈ LocalStore = Loc ⇀ Val

LocalState = Snapshot× LocalStore× Expr
s ∈ GlobalState = Rid ⇀ LocalState

Execution contexts
E ∈ Cntxt ::= �

| E e | v E | E ? e : e
| ref E | !E | E := e | l := E

| rjoin E

Operational semantics
(apply) sJr 7→ 〈σ, τ,E[(λx.e) v]〉K →r s(r 7→ 〈σ, τ,E[[v/x]e]〉)
(if-true) sJr 7→ 〈σ, τ,E[true ? e1 : e2]〉K →r s(r 7→ 〈σ, τ,E[e1]〉)
(if-false) sJr 7→ 〈σ, τ,E[false ? e1 : e2]〉K →r s(r 7→ 〈σ, τ,E[e2]〉)

(new) sJr 7→ 〈σ, τ,E[ref v]〉K →r s(r 7→ 〈σ, τ(l 7→ v),E[l]〉) if l /∈ s
(get) sJr 7→ 〈σ, τ,E[!l]〉K →r s(r 7→ 〈σ, τ,E[(σ::τ) l]〉) if l ∈ dom (σ::τ)
(set) sJr 7→ 〈σ, τ,E[l := v]〉K →r s(r 7→ 〈σ, τ(l 7→ v),E[unit]〉) if l ∈ dom (σ::τ)

(fork) sJr 7→ 〈σ, τ,E[rfork e]〉K →r s(r 7→ 〈σ, τ,E[r ′]〉, r ′ 7→ 〈σ::τ, ε, e〉) if r ′ /∈ s
(join) sJr 7→ 〈σ, τ,E[rjoin r ′]〉, r ′ 7→ 〈σ ′, τ ′, v〉K →r s(r 7→ 〈σ, τ::τ ′,E[unit]〉, r ′ 7→ ⊥)
(joinε) sJr 7→ 〈σ, τ,E[rjoin r ′]〉, r ′ 7→ ⊥K →r ε

Figure 2.5: The syntax and operational semantics of the revision calculus.

• f(x 7→ y) denotes an updated function, i.e. it denotes the function that maps x to y
and z 6= x to f z (we write f(x1 7→ y1, x2 7→ y2) for f(x1 7→ y1)(x2 7→ y2));

• dom f and ran f respectively denote the domain and range of f;

• f x = ⊥ means x /∈ dom f;

• f−1 denotes the inverse of an injective function f;

• f :: g is a function that maps all x ∈ dom g to g x and all x /∈ dom g to f x;

• ε denotes the empty function.

2.2.1 Definition

Figure 2.5 defines the syntax and semantics of the revision calculus.2 We discuss each of
the four sections in turn.

2Ignoring some presentational modifications, the figure is an exact reproduction of Figure 5 of the origi-
nal article.
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2.2. FORMAL SEMANTICS

Syntactic symbols The basic syntactic units of the calculus are variables (Var), location
identifiers (Loc), revision identifiers (Rid) and constants (Const). The set of values (Val)
and the set of expressions (Expr) are defined through mutual induction: any value v is
an expression, and if x is a variable and e is an expression, then λx. e is a value.

For readability, we will sometimes write x • y to denote the application x y.
For values and expressions x, we write LID x to denote the set of all location identi-

fiers occurring in x. Similarly, we write RID x to denote the set of all revision identifiers
occurring in x.

State Snapshots (stores inherited from the forker) and local stores (stores tracking local
changes) are partial functions from location identifiers to values; local states are triples
consisting of a snapshot, a local store and an expression; and global states are partial
functions from revision identifiers to local states.

For a local state L, we will write Lσ, Lτ and Le to denote respectively the first, second
and third projection of L. Furthermore, we will write doms L to denote dom Lσ ∪ dom Lτ
(‘the domains of L’).

Let f ‘ S denote the set {f x | x ∈ S}. For local stores and snapshots σ ∈ Loc ⇀ Val, we
define

LID σ = dom σ∪
⋃

(LID ‘ ran σ)

and
RID σ =

⋃
(RID ‘ ran σ).

For local states 〈σ, τ, e〉, we define

LID 〈σ, τ, e〉 = LID σ∪ LID τ∪ LID e

and
RID 〈σ, τ, e〉 = RID σ∪RID τ∪RID e.

For global states s, finally, we define

LID s =
⋃

(LID ‘ ran s)

and
RID s = dom s∪

⋃
(RID ‘ ran s).

Execution contexts An execution context is an expression with exactly one hole (�) in
it. The expression obtained by ‘plugging’ an expression e into the hole of some context E
is denoted by E[e]. Given an expression E[e], we will say that e completes E, and that E[e]
is a completion. If r is a reducible expression (redex), then we call E[r] a redex-completion.

Execution contexts provide a concise syntactic method for defining an evaluation
order. This follows from two facts: (1) the rules of the operational semantics exclusively
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r2 ·
r3 · · · ·
r1 · · · · · ·

rjoin r2

rfork unit rjoin r2

Figure 2.6: Without rule (joinε), either r1 or r3 would first join r2, and then the other
revision would be blocked.

match against redex-completions, and (2) for any expression e containing redexes, there
exists a unique redex-completion E[r] = e. From (1) and (2) it follows that the next redex
to contract in some given expression is always uniquely determined.

Example 1. The expression ((λx. x) x) ((λy.y) y) can be decomposed into the context
� ((λy.y) y) and redex (λx. x) x, since � ((λy.y) y) is a context by constructor E e. The
decomposition into the context ((λx. x) x) � and redex (λy.y) y, by contrast, is invalid:
the application (λx. x) x is not a value, so the application constructor v E cannot be used.

A more detailed explanation of execution contexts is given by Harper [Har16].
We sometimes underline a redex r in an expression e to signify that e would decom-

pose uniquely into E[r], with E the context surrounding r in e. In the context of execution
traces, we will refer to r as the active site (of a computation).

Operational semantics The operational semantics define an indexed family of relations
→r ⊆ GlobalState×GlobalState, where the r intuitively denotes the revision that performs
the transition.

The rules of the operational semantics are divided into groups of three. The first
group contains rules that only affect the local expression, the second group contains
local rules that interact with the stores, and the third group contains the rules in which
revisions interact.

In rule (apply), the notation [v/x]e denotes the operation ‘v substituted for x in e’.
Hence rule (apply) is β-contraction. From Burckhardt and Leijen’s proofs it is clear that
they consider rule (apply) to be deterministic. The typical definition of β-contraction
is non-deterministic because the variable renaming in capture-avoiding substitution is
not defined deterministically. Such renamings can be made deterministic by linearizing
the set of variables and choosing, e.g., the smallest variable that correctly implements
capture avoidance.

The rules (new) and (fork) are the only non-deterministic rules. The side condition
on rule (new) is l /∈ s, which Burckhardt and Leijen write as a shorthand for ‘l does not
appear in any snapshot or local store of s’. The side condition on rule (fork) is r /∈ s,
and is a shorthand for ‘r does not appear in any snapshot or local store of s, and is not
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mapped by s’. In terms of the notations we have introduced, we believe the most faithful
formalizations of these phrasings are respectively

l /∈ s⇐⇒ l /∈
⋃

{LID Lσ ∪ LID Lτ | L ∈ ran s}

and
r /∈ s⇐⇒ r /∈ dom s∪

⋃
{RID Lσ ∪RID Lτ | L ∈ ran s},

rather than the more strict (and more straightforward) candidates

l /∈ s⇐⇒ l /∈ LID s

and
r /∈ s⇐⇒ r /∈ RID s.

We explore the consequences of these interpretation choices in Chapter 3.
Rule (join) resolves all conflicts according to the Versioned isolation type: custom

merge functions are not yet considered. We briefly discuss how this rule could be gener-
alized in Section 2.2.4.

Rule (joinε) is included so that when two revisions race to join a third revision r,
the global state collapses to the error state ε as soon as the second join is performed.
Without this rule, the calculus would be indeterminate, since only the second joiner
would be forced to block on the join of r (Figure 2.6).

2.2.2 Executions

Since determinacy is a property of execution traces, we need a small vocabulary for
reasoning about executions.

An initial state is of the form ε(r 7→ 〈ε, ε, e〉), with r ∈ Rid and e an arbitrary program
expression. A program expression is an expression that ‘does not contain any revision
identifiers’. A question is whether this means

RID e = ∅

or whether the phrase should be interpreted as ‘does not contain any identifiers of the
revision calculus’:

RID e = LID e = ∅.

This question is explored in Chapter 3.
Define → =

⋃
{→r | r ∈ Rid}. We write →= for the reflexive closure (zero or one

step), →+ for the transitive closure (one or more steps), →∗ for the reflexive transitive
closure (zero or more steps), and →n for the n-fold composition (n steps) of →. As is
customary, mirrored versions of these symbols denote their inverses. An execution is a
sequence s→∗ s ′, with s an initial state. Such an execution is maximal if there exists no
state s ′′ such that s ′ → s ′′. We say that a state s is reachable if there exists an execution
towards s. Finally, we write e ↓ s if there exists a maximal execution for a program
expression e that ends in s.

17
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2.2.3 Renaming-equivalence

The side conditions for the rules (new) and (fork) make the revision calculus indetermi-
nate, even though the non-deterministically chosen identifier names have no real sig-
nificance (similar to the names of bound variables in the lambda calculus). Hence, de-
terminacy of the calculus should be proven modulo renaming of location and revision
identifiers.

More precisely, let α be a permutation of revision identifiers (i.e. a bijective function
from Rid to itself), and let α s denote the global state obtained by renaming every revision
identifier r in s to α r. Let β and β s be defined analogously for location identifiers. Two
states s and s ′ are said to be renaming-equivalent under α and β, denoted s ≈αβ s ′, if
α (β s) = s ′. Two states s and s ′ are said to be renaming-equivalent, denoted s ≈ s ′, if
there exist some α and β such that s ≈αβ s ′.

2.2.4 Generalizing rule (join)

Rule (join) is quite restrictive, in the sense that it resolves all conflicts according to the
Versioned isolation type. To generalize the calculus, Burckhardt and Leijen suggest that
this rule can be replaced by

(join-merge) sJr 7→ 〈σ, τ,E[rjoin r ′]〉, r ′ 7→ 〈σ ′, τ ′, v〉K→r
s(r 7→ 〈σ, merge(τ, τ ′,σ ′),E[unit]〉, r ′ 7→ ⊥)

with

merge(τ, τ ′,σ ′) l =


τ l, if τ ′ l = ⊥
τ ′ l, if σ ′ l = τ l
mergel(τ l, τ ′ l,σ ′ l) otherwise

and mergel a merge function specifically defined for the values stored at location l. Bur-
ckhardt and Leijen claim that the choice of these individual merge functions does not
influence determinacy, as long as they are a function of their three inputs.

We see two issues with this approach. First, because of how rule (new) is defined,
a value v that is stored can end up at any fresh location l. Consequently, the merge
function that will be invoked on v is arbitrary, which seems to violate the principle that
merge functions are specific to particular data types.

Second, even if a location-specific merge function is a function of its three inputs, it
can still violate determinacy. As an example, consider

mergel(v, v
′, v ′′) =

{
true if l ′ ∈ LID v

false otherwise

where l and l ′ are fixed location identifiers. While mergel is a function of its three
inputs, whether l ′ ∈ LID v could depend on previous applications of rule (new), which
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allocates identifiers non-deterministically. Thus in some executions the merge operation
may resolve to true, while in others it may resolve to false.

We believe these issues could be remedied as follows. First, which individual merge
function is invoked should depend on the types of its values, rather than the location
at which these values are stored. This might require further subtyping in the calculus.
Second, the behaviour of individual merge functions should never be allowed to be
contingent on non-deterministic aspects of its arguments. For the present formulation
of the calculus, we believe it is sufficient to forbid references to location and revision
identifiers in these function definitions. However, we do not explore the topic further,
and restrict ourselves to the calculus that uses rule (join).
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Chapter 3
Formal semantics: investigating
ambiguities

In the previous chapter, we identified three potential ambiguities in the formal definition
of the revision calculus:

1. A program expression e is an expression that ‘does not contain any revision iden-
tifiers’. Does this imply that a program expression is allowed to contain location
identifiers? Or should we read ’revision identifiers’ as ‘identifiers of the revision
calculus’, resulting in a more restrictive definition? In other words, we must choose
between the definitions

e is a program expression ⇐⇒ RID e = ∅

and
e is a program expression ⇐⇒ RID e = LID e = ∅.

2. The side condition on rule (fork) states that the freshly allocated revision identifier
r ‘does not appear in any snapshot or local store of [the source state] s, and is not
mapped by s’. The third projections or expressions of local states seem explicitly
excluded from this definition. Is this because it is not necessary to require that r
is fresh relative to expressions? In other words, we must choose between the side
conditions

r /∈ dom s∪
⋃

{RID Lσ ∪RID Lτ | L ∈ ran s}

and
r /∈ RID s.
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3. Similarly, for the side condition on rule (new), we must choose between

l /∈
⋃

{LID Lσ ∪ LID Lτ | L ∈ ran s}

and
l /∈ LID s.

In this chapter, we first argue that the definition

e is a program expression ⇐⇒ RID e = LID e = ∅.

is preferable (Section 3.1). We then address item (2), and show that the stronger side con-
dition on fork (i.e., r /∈ RID s) is required for determinacy (Section 3.2), regardless of the
interpretation that is fixed for item (1). Finally, we show that assuming the interpretation

e is a program expression ⇐⇒ RID e = LID e = ∅,

the weaker formulation of the side condition on (new) actually suffices (Section 3.3). The
reason is that for any local state 〈σ, τ, e〉, the property LID 〈σ, τ, e〉 = dom σ ∪ dom τ is
invariant under execution. As a corollary of this result, both side conditions for (set) and
(get) can be omitted as well, as they are always guaranteed to be satisfied.

3.1 Definition of program expressions

Can location identifiers occur in program expressions? To answer this question, we start
with the observation that if location identifiers are allowed to occur in program expres-
sions and expressions are not checked for location identifiers upon allocation, indetermi-
nacy results. A counter-example to determinacy under these assumptions is given by the
program expression

ref unit • !l

which can be checked to admit two distinct maximal executions when initialized on some
arbitrary r ∈ Rid, namely

ε(r 7→ 〈ε, ε, ref unit • !l〉) →r ε(r 7→ 〈ε, ε(l 7→ unit), l • !l〉)
→r ε(r 7→ 〈ε, ε(l 7→ unit), l • unit〉)

and
ε(r 7→ 〈ε, ε, ref unit • !l〉) →r ε(r 7→ 〈ε, ε(l ′ 7→ unit), l ′ • !l〉)

for l ′ 6= l. The question, then, is which of the two assumptions should be modified.
In our opinion, there seems to be little reason for allowing location identifiers to occur

in program expressions. This is mainly because there appears to be no clear use case for
user-defined location identifiers: the side condition on rule (set) requires an assigned
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location to be in the domain of one of the stores, while location identifiers can only
be introduced into the domains of stores through rule (new). Thus, assuming that the
counter-example above is avoided, user-defined location identifiers would never become
readable or assignable: they would remain completely inert throughout the execution.

Our decision, therefore, is to allow neither revision nor location identifiers in program
expressions. Burckhardt agrees that this is a better definition.1

3.2 (fork) side condition

We ask whether a revision identifier r can be safely allocated in a global state s if one only
ensures that r does not occur in any local store or snapshot, and is not mapped by s. The
answer is no: this would result in indeterminacy, even if the initial program expression
does not contain any location and revision identifiers.

r3 · ?

r5 ·
r1 · · · · · ·
r2 ·

6. rjoin r2

1. (fork) 2. (apply) 3. (fork) 4. rjoin r2 5. (fork)

Figure 3.1: Revision diagram for the counter-example described in Section 3.2. The
numbers denote the order in which the steps are performed.

What follows is a counter-example to determinacy. Define P to be the following
program expression:2

P =
(
λx. rfork (rjoin x) • (rjoin x • rfork unit)

)
• rfork unit.

Now consider some initial state that initializes P on some r1 ∈ Rid:

r1 7→ 〈ε, ε,P〉

An execution trace demonstrating indeterminacy is the following, where the numbers of
the enumeration correspond to the numbered transitions in Figure 3.1.

1. The main revision r1 performs the (fork)-step. The global state becomes

r1 7→ 〈ε, ε,
(
λx. rfork (rjoin x) • (rjoin x • rfork unit)

)
• r2〉

r2 7→ 〈ε, ε, unit〉

for some r2 6= r1.
1Personal communication through email (August 13, 2018).
2In general, we fork unit whenever we just want create some arbitrary revision that can be joined.
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2. Revision r1 performs the (apply)-step, giving

r1 7→ 〈ε, ε, rfork (rjoin r2) • (rjoin r2 • rfork unit)〉
r2 7→ 〈ε, ε, unit〉

3. Revision r1 performs the (fork)-step, giving

r1 7→ 〈ε, ε, r3 • (rjoin r2 • rfork unit)〉
r2 7→ 〈ε, ε, unit〉
r3 7→ 〈ε, ε, rjoin r2〉

for some r3 with r3 6= r1 and r3 6= r2.

4. Now r3 and r1 are concurrent. Let revision r1 again perform the next step, giving

r1 7→ 〈ε, ε, r3 • (unit • rfork unit)〉
r3 7→ 〈ε, ε, rjoin r2〉

At this point, the revision identifier r2 exists in an expression only. Hence, it may
be forked.

5. Let r1 perform its final step, forking some r4 with r4 6= r1 and r4 6= r3:

r1 7→ 〈ε, ε, r3 • (unit • r4)〉
r3 7→ 〈ε, ε, rjoin r2〉
r4 7→ 〈ε, ε, unit〉

6. We now perform a case distinction on r2 = r4 to determine the effect of r3’s final
transition. If r2 = r4, then the step by r3 results in the terminal global state

r1 7→ 〈ε, ε, r3 • (unit • r4)〉
r3 7→ 〈ε, ε, unit〉

If r2 6= r4, however, r3 performs an erroneous join and the global state collapses to
the error state ε.

Thus, the revision calculus is shown to be non-deterministic.
Replacing the informal (fork) side condition r /∈ s by the side condition r /∈ RID s

solves the problem: if a revision r in s is about to join a nonexistent revision r ′, then
r ′ ∈ RID s, and so r ′ is guaranteed to remain unallocated.

Remark. Right-association in the subexpression

rfork (rjoin x) • (rjoin x • rfork unit)
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of P is required for the evaluation at r1 to go through completely. If left-association is
used, then a normal form is already reached in the expression (r3 • unit) • rfork unit. The
reason for this is that the application r3 •unit is not a value, while it must be if (r3 •unit) �
is to be an evaluation context for rfork unit.

More generally, let each expression ei be able to independently normalize to a value
vi that is not an abstraction. By the evaluation order, the right-associated expression

e1 (e2 (. . . (en−1 en)) . . .)

normalizes to
v1 (v2 (. . . (vn−1 vn)) . . .),

while the left-associated expression

(. . . ((e1 e2) e3) . . .) en

normalizes to
(. . . ((v1 v2) e3) . . .) en

To us this seems like a curious asymmetry. Perhaps replacing the evaluation context
definition v E by (λx. e) E should be considered, so that function arguments are only
evaluated if function applications have been established to be ‘proper’.

We further note that while the counter-example we gave is no longer valid if v E is
replaced by (λx. e) E, it does not solve the problem of indeterminacy. Define

P ′ =
(
λx. (λy. (λz. rfork unit) • rfork (rjoin x)) • rfork (rjoin x)

)
• rfork unit

We can check that P ′ exhibits the same behaviour as P, except that it performs some
additional (apply) steps:(

λx. (λy. (λz. rfork unit) • rjoin x) • rfork (rjoin x)
)
• rfork unit

→
(
λx. (λy. (λz. rfork unit) • rjoin x) • rfork (rjoin x)

)
• r2

→ (λy. (λz. rfork unit) • rjoin r2) • rfork (rjoin r2)

→ (λy. (λz. rfork unit) • rjoin r2) • r3

→ (λz. rfork unit) • rjoin r2
→ (λz. rfork unit) • unit
→ rfork unit
→ r4

Thus, a counter-example to indeterminacy is the same as in Figure 3.1, except that revi-
sion r1 performs additional (apply) steps after steps 3. (fork) and 4. rjoin r2.
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3.3 (new) side condition

Can a location identifier l be safely allocated in a global state s if we only ensure that l
does not occur in any local store or snapshot? The answer is yes, assuming that program
expressions are not allowed to contain location identifiers (Section 3.1).

Definition 1 (Subsuming domains). The domains of a local state L subsume its location iden-
tifiers, denoted S L, when LID L ⊆ doms L. We write SG s for a global state s when S L holds for
all local states L ∈ ran s.

We have that SG is an execution invariant for global states s. An execution invariant
is a property that holds for all reachable states of a transition system. Hence, it would
suffice to only consider the domains of local stores and snapshots when allocating a fresh
location identifier.

A common method for formally proving an execution invariant P is to prove an
inductive invariant that implies P. An inductive invariant is a property I that satisfies two
conditions:

• I holds for all initial states, and

• if I holds for s and s→ s ′, then I holds for s ′.

Inductive invariants do not discriminate between reachable and unreachable states, since
some transitions might not be part of any execution trace. This can make finding a
suitable inductive invariant significantly harder than finding an execution invariant.

Unfortunately, property SG is too weak to be an inductive invariant. The culprit is
rule (join):

sJr 7→ 〈σ, τ,E[rjoin r ′]〉, r ′ 7→ 〈σ ′, τ ′, v〉K→r s(r 7→ 〈σ, τ::τ ′,E[unit]〉, r ′ 7→ ⊥)

The problem is that the inductive assumptions S 〈σ, τ,E[rjoin r ′]〉 and S 〈σ ′, τ ′, v〉 are not
strong enough to prove S 〈σ, τ::τ ′,E[unit]〉. The reason for this is that τ ′ may map to a
value containing some identifier l that is only subsumed by the snapshot of s r ′. More
precisely, the case in which

• l ∈ LID v for some v ∈ ran τ ′,

• l ∈ dom σ ′, and

• l /∈ dom σ∪ dom τ::τ ′

is not ruled out.
How should property SG be strengthened? Informally, we would like to say that if

revision r1 has access to the handle of r2 in the context of some global state s, then the set

25



3.3. (NEW) SIDE CONDITION

of location identifiers in r2’s snapshot is a subset of the domains at s r1. The following
definition captures this property.

Definition 2 (Subsuming accessed snapshots). Let s be a global state with r1, r2 ∈ dom s.
We write A r1 r2 s if

r2 ∈ RID (s r1)⇒ LID (s r2)σ ⊆ doms (s r1).

If we have A r1 r2 s for all r1, r2 ∈ dom s, then we write AG s.

We have the following result.

Lemma 1. SG s∧AG s is an inductive invariant for global states s.

Proof. Both properties hold trivially for any initial state ε(r 7→ 〈ε, ε, e〉), since the stores
are empty and because program expressions e do not contain any revision or location
identifiers.

For proving inductive step, assume that s→r s ′ with SG s and AG s.
We first establish SG s

′ by a case distinction on the step s →r s ′. It suffices to show
S (s ′ r ′) for indices r ′ that have been updated, i.e. for which s r ′ 6= s ′ r ′. This is because
unlike AG, the property S is not dependent on the context of the global state.

Cases (app), (if-true) and (if-false) are similar in that they do not introduce location
identifiers into the local states, while leaving the domains unchanged:

LID (s ′ r)
⊆ LID (s r)
⊆ doms (s r) (S (s r))
= doms (s ′ r)

Case (new) introduces a new identifier l, but also adds it to the domain of the local store:

LID 〈σ, τ(l 7→ v),E[l]〉
= LID 〈σ, τ,E[ref v]〉 ∪ {l}
⊆ dom σ∪ dom τ∪ {l} (S (s r))
⊆ dom σ∪ dom (τ(l 7→ v))

Case (get) effectively shuffles location identifiers around:

LID 〈σ, τ,E[(σ::τ)l]〉
= LID 〈σ, τ,E[!l]〉
⊆ dom σ∪ dom τ (S (s r))

Case (get) does the same, but overwrites a value in τ, possibly causing a loss of location
identifiers:

LID 〈σ, τ(l 7→ v),E[unit]〉
⊆ LID 〈σ, τ,E[l := v]〉
⊆ dom σ∪ dom τ (S (s r))
⊆ dom σ∪ dom (τ(l 7→ v))
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Case (fork) creates two new local states:

LID 〈σ, τ,E[r ′]〉
⊆ LID 〈σ, τ,E[rfork e]〉
⊆ dom σ∪ dom τ (S (s r))

LID 〈σ::τ, ε, e〉
⊆ LID 〈σ, τ,E[rfork e]〉
⊆ dom σ∪ dom τ (S (s r))
= dom (σ::τ)∪ dom ε

Case (join) is the only case that requires the assumption AG s:

LID 〈σ, τ::τ ′,E[unit]〉
⊆ LID 〈σ, τ,E[rjoin r ′]〉 ∪ LID τ ′

⊆ dom σ∪ dom τ∪ LID τ ′ (S (s r))
⊆ dom σ∪ dom τ∪ dom σ ′ ∪ dom τ ′ (S (s r ′))
= dom σ∪ dom τ∪ dom σ∪ dom τ∪ dom τ ′ (A r r ′ s)
= dom σ∪ dom τ∪ dom τ ′

= dom σ∪ dom (τ::τ ′)

Case (joinε), finally, is vacuous since s ′ is the empty map. This concludes the subproof
for SG s ′.

It remains to show AG s
′. Note two things. First, A r r s ′ for all r ∈ dom s ′ follows

from SG s
′.3 Second, if s ′ r1 = s r1 and s ′ r2 = s r2, then A r1 r2 s

′ follows directly from
A r1 r2 s. Hence, it suffices to show that A r1 r2 s

′ for all distinct r1, r2 ∈ dom s ′ with
s ′ r1 6= s r1 or s ′ r2 6= s r2.

We again perform a case analysis on the step s →r s ′. Case (joinε) again holds
vacuously.

Let us consider the six rules that modify only the revision r. We have to show A r r? s ′

and A r? r s ′ for arbitrary r? ∈ dom s ′ with r? 6= r.

1. A r r? s ′: Assume r? ∈ RID (s ′ r). Since none of the six rules under consideration
could have introduced r?, r? ∈ RID (s r). A r r? s ′ is shown as follows:

LID (s ′ r?)σ
= LID (s r?)σ (r? was not updated)
⊆ doms (s r) (r? ∈ RID (s r) and A r r? s)
⊆ doms (s ′ r) (steps do not delete from domains)

3It seems obvious that a revision can never have access to its own handle. However, we need not prove
it.
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2. A r? r s ′: Assume r ∈ RID (s ′ r?). We also have r ∈ RID (s r?) since r? was not
updated. We have

LID (s ′ r)σ
= LID (s r)σ (none of the rules modify the snapshot)
⊆ doms (s r?) (r ∈ RID (s r?) and A r? r s)
= doms (s ′ r?) (r? was not updated)

For (join), we also only have to show A r r? s ′ and A r? r s ′ for arbitrary r? ∈ dom s ′

with r? 6= r:

1. A r r? s ′: Assume r? ∈ RID (s ′ r). We perform a case distinction on r? ∈ RID τ ′.

If r? ∈ RID τ ′, then A r r? s ′ is shown as follows:

LID (s ′ r?)σ
= LID (s r?)σ (r? was not updated)
⊆ doms (s r ′) (r? ∈ RID (s r ′) and A r ′ r? s)
= dom σ ′ ∪ dom τ ′

⊆ LID σ ′ ∪ dom τ ′

⊆ dom σ∪ dom τ∪ dom τ ′ (r ′ ∈ RID (s r) and A r r ′ s)
= dom σ∪ dom (τ::τ ′)
= doms (s ′ r)

If r? /∈ RID τ ′, then r? ∈ RID (s r). We have

LID (s ′ r?)σ
= LID (s r?)σ (r? was not updated)
⊆ doms (s r) (r? ∈ RID (s r) and A r r? s)
⊆ doms (s ′ r)

2. A r? r s ′: Exactly like the A r? r s ′ case for the six rules covered before.

That leaves only case (fork). Since fork creates two new local states at r and r ′, there
is a total of six cases, in which r? ∈ dom s ′ again denotes an arbitrary unchanged revision
(r? 6= r and r? 6= r ′):

1. A r r? s ′: Analogous to the A r? r s ′ case for the six rules covered before, using
r? 6= r ′.

2. A r? r s ′: Exactly like the A r? r s ′ case for the six rules covered before.

3. A r ′ r? s ′: Assume r? ∈ RID (s ′ r ′). This implies r? ∈ RID (s r), since r was the
forker of r ′. Since s ′ r? = s r? and A r r? s, LID (s ′ r?)σ ⊆ doms (s r) = doms (s ′ r ′).
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4. A r? r ′ s ′: Holds vacuously: the freshness condition r ′ /∈ RID s implies that the
assumption r ′ ∈ RID (s ′ r?) = RID (s r?) is unsatisfiable.

5. A r r ′ s ′: We know that r ′ ∈ RID (s ′ r). The goal is shown by

LID (s ′ r ′)σ
= LID (σ::τ)
⊆ LID σ∪ LID τ

⊆ LID (s ′ r)
⊆ doms (s ′ r) (S (s ′ r))

6. A r ′ r s ′: Suppose that r ∈ RID (s ′ r ′). We have

LID (s ′ r)σ
⊆ LID (s ′ r)
⊆ doms (s ′ r) (S (s ′ r))
= dom σ∪ dom τ

= dom (σ::τ)∪ dom ε

= doms (s ′ r ′)

Corollary 1. SG s is an execution invariant for global states s.

Let the family → ′r be defined as →r (with r /∈ RID s as the side condition on (fork)),
except that

• the side condition for (new) is replaced with l /∈
⋃

{doms l ′ | l ′ ∈ ran s}, and

• the side conditions for (get) and (set) are omitted.

We have that→ ′r and→r define the same transition system.

Lemma 2. Let s be a reachable state in the original system. Then

∀r s ′. s→r s ′ ⇐⇒ s→ ′r s ′.
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Chapter 4
Determinacy

The revision calculus is determinate (modulo renaming-equivalence): for any program
expression, there is at most one final state. In this chapter we build towards a proof of
this claim. We split the proof into three parts:

1. We prove what we call rule determinism: at any point, a fixed revision r can perform
a step according to at most one rule (Section 4.1). This relies subtly on the definition
of execution contexts, and is not proven in Burckhardt and Leijen’s account.

2. By using rule determinism and analyzing the behaviour of pairs of diverging steps,
we prove strong local confluence (Section 4.2):

s2 ←r s1 →r ′ s ′2 =⇒ s2 →=
r ′ s3 ≈ s ′3 ←=

r s
′
2.

The main proof in this section is highly indebted to Burckhardt and Leijen.

3. From strong local confluence we prove confluence (modulo renaming-equivalence):

s2 ←∗ s1 ≈ s ′1 →∗ s ′2 =⇒ s2 →∗ s3 ≈ s ′3 ←∗ s ′2,

which has determinacy as its corollary (Section 4.3.1).

The first part of the proof of confluence roughly follows the outline described by
Burckhardt and Leijen. For completeness, we work out the details of this proof. Our
proof differs from Burckhardt and Leijen’s proof in one way, however: we avoid
reasoning about reductions on the level of equivalence classes. For the purposes of
formalization, we consider this a simplification. We provide a brief comparison of
the two approaches in Section 4.3.2.
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4.1. RULE DETERMINISM

4.1 Rule determinism

We begin by showing that the plug operation is injective for a fixed context E.

Lemma 3 (Plug is injective).

E[e] = E[e ′] ⇐⇒ e = e ′.

Proof. Direction ⇐= is trivial. Direction =⇒ follows by a straightforward structural in-
duction on E.

Lemma 4 (Redex-completions are not values). If r is a redex, then E[r] /∈ Val.

Proof. By a case distinction on the context E. If E = �, the conclusion follows from the
fact that none of the constructors for Val can be used to construct a redex, while �[r] = r
is a redex. In all other cases, the result of E[r] is some complex expression (such as
an application or branching statement) that similarly cannot be constructed using the
constructors for Val.

One immediate consequence of Lemma 4 is that active revisions cannot be joined.
For if a revision can still perform some step, then its expression is of the form E[r] (with
r a redex), and a revision can only be subject to a join if its expression has resolved to a
value.

Suppose that we are given an expression e containing redexes. Intuitively, the fol-
lowing formal definition describes how the active site of e should be found, and it also
provides the context in which it occurs.

Definition 3 (Decomposition). The decomposition of an expression e into a context E and a
(reducible) expression r, denoted eB (E, r), is defined inductively by the rules in Figure 4.1.

rdx:
redex e
eB (�, e)

applyL:
¬(redex (e1 e2)) e1 B (E, r)

e1 e2 B (E e2, r)

applyR:
¬(redex (v e2)) e2 B (E, r)

v e2 B (v E, r)

setL:
¬(redex (e1 := e2)) e1 B (E, r)

e1 := e2 B (E := e2, r)

setR:
¬(redex (l := e2)) e2 B (E, r)

l := e2 B (l := E, r)

ite:
¬(redex (e1 ? e2 : e3)) e1 B (E, r)
e1 ? e2 : e3 B (E ? e2 : e3, r)

ref :
¬(redex (ref e)) eB (E, r)

ref eB (ref E, r)

get:
¬(redex (!e)) eB (E, r)

!eB (!E, r)

join:
¬(redex (rjoin e)) eB (E, r)

rjoin eB (rjoin E, r)

Figure 4.1: The decomposition rules.
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It is clear that any decomposition ends with an application of rule rdx. This means
that a normal form cannot be decomposed. An alternative sensible definition would
allow one to derive e B 〈E, e ′〉 whenever E[e ′] = e. However, our strict definition is
sufficient since we are only decomposing redex-completions E[r].

Example 2. Recall the term e = ((λx. x) x) ((λy.y) y) from Example 1. We can derive
eB (� ((λy.y) y), (λx. x) x) as follows:

¬(redex e)
redex ((λx. x) x)

(λx. x) xB (�, (λx. x) x)
rdx

eB (� ((λy.y) y), (λx. x) x)
applyL

By contrast, it is easy to see that eB (((λx. x) x) �, (λy.y) y) cannot match the conclusion
of any of the derivation rules.

The following lemma demonstrates a fundamental connection between plugging and
decomposing (for redexes r): if e decomposes into E and r, then r can be plugged back
into E to recover e; and if plugging r into E results in e, then there exists some derivation
that decomposes e into E and r again.

Lemma 5 (Plug-decomposition equivalence). For any redex r

eB (E, r) ⇐⇒ E[r] = e.

Proof. We discuss each direction in turn.

(=⇒) By rule induction on eB (E, r).

(rdx) By the conclusion of the rule, E = � and r = e, hence E[r] = r = e.
(applyL) By the conclusion of the rule, e = e1 e2, E = E ′ e2 and r = r ′ (for some e1,

e2, E ′ and r ′), and by the right premiss of the rule, e1 B (E ′, r ′). We must
thus show (E ′ e2)[r

′] = (E ′[r ′] e2) = e1 e2, which holds since the induction
hypothesis can be used to show that E ′[r ′] = e1.

The remaining cases are similar to applyL.

(⇐=) By structural induction on the context E.

(E = �) We have �[r] = r = e. We thus have to show rB (�, r), which follows from
rule rdx.

(E = E ′ e2) We have (E ′ e2)[r] = (E ′[r]) e2 = e. We thus have to show (E ′[r]) e2B (E ′ e2, r).
We apply rule applyL, which requires us to show that (1) (E ′[r]) e2 is not a re-
dex and that (2) E ′[r]B (E ′, r). Requirement (1) follows from the following
impossibility: for the application (E ′[r]) e2 to be a redex, (E ′[r]) must be an
abstraction, and thus more generally a value, contradicting Lemma 4. Re-
quirement (2) follows from the induction hypothesis.

32



4.1. RULE DETERMINISM

The remaining cases are similar to case (E = E ′ e2).

Lemma 5 does not rule out the possibility where an expression can be decomposed
in two different ways. The following lemma demonstrates that always at most one de-
composition is possible.1

Lemma 6 (Unique decomposition). Assume eB (E1, r1) and eB (E2, r2). Then E1 = E2.

Proof. By rule induction on eB (E1, r1), letting E2 be arbitrary.

(rdx) e is a redex and E1 = �. Since e is a redex, eB (E2, r2) can only have been derived
using rule rdx as well, forcing E2 = �.

(applyL) e is an application e1 e2 with e1B (E1, r1). Since e is an application, eB (E2, r2) must
have been derived using either rule applyL or applyR.

If eB (E2, r2) was derived using rule applyL, then e1B (E2, r2) by the rule’s premiss,
and consequently E1 = E2 by the induction hypothesis.

If eB (E2, r2) was derived using applyR, then e1 ∈ Val. By e1 B (E1, r1) and Lemma
5, E1[r1] = e1, so by Lemma 4, e1 /∈ Val. Contradiction.

The remaining cases are similar to case applyL.

We can now state our main result: if two redex-completions are equal, then so are the
arguments of the plug operation.

Lemma 7 (Completion equivalence). Let r and r ′ be redexes. We have

E[r] = E ′[r ′] ⇐⇒ E = E ′ ∧ r = r ′.

Proof. Direction ⇐= is trivial. For direction =⇒, assume E[r] = E ′[r ′]. By Lemma 5, we
have E[r]B (E, r) and E ′[r ′]B (E ′, r ′) (using E[r] = E[r] and E ′[r ′] = E ′[r ′], respectively).
From Lemma 6 and E[r] = E ′[r ′] we then obtain E = E ′. By Lemma 3 and E[r] = E[r ′],
finally, we derive r = r ′.

Lemma 7 is crucial for proving determinacy. It implies that if the source state of a
step matches the source state of a certain rule, then we can infer that this rule must have
been performed.

Lemma 8 (Rule determinism). We have the following equivalences:

1.
sJr 7→ 〈σ, τ,E[(λx.e) v]〉K→r s ′ ⇐⇒
s ′ = s(r 7→ 〈σ, τ,E[[v/x]e]〉)

1r1 = r2 can be shown using context injectivity (Lemma 3).
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2.
sJr 7→ 〈σ, τ,E[true ? e1 : e2]〉K→r s ′ ⇐⇒
s ′ = s(r 7→ 〈σ, τ,E[e1]〉)

3.
sJr 7→ 〈σ, τ,E[false ? e1 : e2]〉K→r s ′ ⇐⇒
s ′ = s(r 7→ 〈σ, τ,E[e2]〉)

4.
sJr 7→ 〈σ, τ,E[ref v]〉K→r s ′ ⇐⇒
∃l. l /∈ s∧ s ′ = s(r 7→ 〈σ, τ(l 7→ v),E[l]〉)

5.
sJr 7→ 〈σ, τ,E[!l]〉K→r s ′ ⇐⇒
s ′ = s(r 7→ 〈σ, τ,E[(σ::τ) l]〉)

6.
sJr 7→ 〈σ, τ,E[l := v]〉K→r s ′ ⇐⇒
s ′ = s(r 7→ 〈σ, τ(l 7→ v),E[unit]〉)

7.
sJr 7→ 〈σ, τ,E[rfork e]]〉K→r s ′ ⇐⇒
∃r ′. r ′ /∈ s∧ s ′ = s(r 7→ 〈σ, τ,E[r ′]〉, r ′ 7→ 〈σ::τ, ε, e〉)

8.
sJr 7→ 〈σ, τ,E[rjoin r ′]〉, r ′ 7→ 〈σ ′, τ ′, v〉K→r s ′ ⇐⇒
s ′ = s(r 7→ 〈σ, τ::τ ′,E[unit]〉, r ′ 7→ ⊥)

9.
sJr 7→ 〈σ, τ,E[rjoin r ′]〉, r ′ 7→ ⊥K→r s ′ ⇐⇒
s ′ = ε

Proof. Direction ⇐= of each sublemma follows directly from the operational semantics.
For the =⇒ direction, assume that s r matches two rules, where one rule matches (s r)e
against the redex-completion E1[r1] and the other rule matches (s r)e against the redex-
completion E2[r2] (with r1 and r2 redexes). By Lemma 7, r1 = r2. Thus either the rules
are the same or one rule is (join) and the other rule is (joinε): the latter case is impossible
since it would imply that the joinee r ′ is both defined and undefined.

4.2 Strong local confluence

For proving strong local confluence, we follow Burckhardt and Leijen in first proving the
preliminary lemma below.

Lemma 9 (Local determinism). s2 ←r s1 →r s ′2 =⇒ s2 ≈ s ′2.

Proof. By a case analysis on the left step s2 ←r s1. In every case other than (new) and
(fork), we have s ′2 = s2 using Lemma 8, and therefore s2 ≈ s ′2 by reflexivity of ≈.

In case (new), we are given that s2 = s(r 7→ 〈σ, τ(l 7→ v),E[l]〉) (for l /∈ LID s), and by
Lemma 8, we can infer s ′2 = s(r 7→ 〈σ, τ(l ′ 7→ v),E[l ′]〉) (for l ′ /∈ LID s). Define α = id and
β = id(l := l ′, l ′ := l). We have that β is bijective and that α (β s2) = s

′
2, hence s2 ≈ s ′2.

The argument for case (fork) is analogous to case (new).
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The following proposition states two obvious preservation laws for freshness of loca-
tion and revision identifiers.

Proposition 1 (Freshness preservation laws). Suppose s→ s ′. Then

1. RID s ′ ⊆ RID s if s→ s ′ is not a (fork) step, and

2. LID s ′ ⊆ LID s if s→ s ′ is not a (new) step.

Proof. By a trivial case distinction on s→ s ′.

In addition, the following lemma is needed for proving strong local confluence. It
implies that there always exists a fresh identifier, on the condition that the universes of
revision and location identifiers are infinite.

Lemma 10 (Finiteness). If s is reachable, then LID s and RID s are finite.

Proof. Since s is reachable, there exists a reduction sequence s0 →n s, with s0 = ε(r 7→
〈ε, ε, e〉 some initial state. The proof proceeds by induction on the length n. If n = 0,
s0 = s. Since program expressions do not contain identifiers, RID s0 = {r} and LID s0 = ∅,
hence RID s and LID s are finite. For the inductive step s0 →n s ′ → s with RID s ′ and
LID s ′ finite, a simple case analysis on the step s ′ → s shows that at most one location or
revision identifier is introduced (through (new) or (fork), respectively). Hence RID s and
LID s are finite also.

We will represent binary relations and reduction patterns using graphs. To this end
we introduce the notions of a segment and of a reduction diagram.

Notation 1 (Segment). An elementary segment is an edge between two logical variables,
and represents a binary relation. A segment’s length is irrelevant. We introduce the
following elementary segments S for global states s and s ′, where I(S) denotes the inter-
pretation of S:

segment S I(S)

s s ′ s→ s

s s ′
=

s→= s ′

s s ′
n

s→n s
s s ′ s→∗ s ′
s s ′ s = s ′

s s ′≈ s ≈ s ′

s s ′
r

s→r s ′
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In addition, we sometimes add additional annotations segments, whose meaning is then
fixed by accompanying text.

Segments can be composed to form a complex segment: if x y
†

and y z
? are seg-

ments, then so is x y z
† ? . For complex segments we define

I(x y z
† ?

) = I(x y
†

)∧ I(y z
?

).

Finally, segments can be oriented vertically, in which case

I(
x

y
) = I(x y).

Definition 4 (Reduction diagram). Let x1, x2, . . . , xn denote the n > 0 logical variables oc-
curring in the arbitrary segments a by and a cx (excluding a, b and c). Similarly, let
y1,y2, . . . ,ym denote the m > 0 logical variables occurring in the arbitrary segments c dw

and b dz (excluding b, c and d).
A reduction diagram is a rectangular graph

a b

c d

x

y

z

w

expressing
∀a b c x1 . . . xn. I(a by )∧ I(a cx ) =⇒
∃d y0 . . . ym. I(b dz )∧ I(c dw ).

Example 3. The diagram

a b c

d e

≈ r

expresses the false proposition

∀a b c d.a ≈ b∧ b→r c∧ a→ d =⇒ c = e∧ d→∗ e.

In natural language:

Assume a ≈ b, where a takes some diverging step a → d and b takes some
diverging step b →r c. Then there exists an e such that the reductions can
converge again using c = e and d→∗ e.
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Lemma 11 (Strong local confluence). Let s1 be a reachable state, and assume that the universes
of location and revision identifiers are infinite. We have

s2 ←r s1 →r ′ s ′2 =⇒ ∃s3 s
′
3. s2 →=

r ′ s3 ≈ s ′3 ←=
r s
′
2.

Proof. If r = r ′, then the conclusion follows trivially from Lemma 9.
For the r 6= r ′ case, we perform a case analysis on the left step s2 ←r s1. For the right

step we then consider each possible rule that has not yet been considered as the left step:
this is permitted since the cases on the left and right step are symmetric.

(joinε) Suppose revision r joins a non-existent revision r ′′ in the left step. We distinguish
two cases for the right step s1 →r ′ s ′2, performed by revision r ′: it is either a (joinε)
step, or not (denoted by (joinε)). We discuss both cases in turn.

(joinε) Suppose revision r ′ erroneously joins a non-existent revision r ′′′ in the right
step. Then the two steps meet directly in the error state ε (Figure 4.2, left).

(joinε) We have s ′2 r = s1 r and s ′2 r
′′ = ⊥ (r ′′ could not have been forked, since

r ′′ ∈ RID (s1 r)). Thus, revision r can still erroneously join r ′′ in state s ′2 and
collapse the global state to ε (Figure 4.2, right).

s1 s ′2

s2 ε ε

r ′ : joinε(r
′′′)

r : joinε(r
′′)

s1 s ′2

s2 ε ε

r ′ : joinε

r : joinε(r
′′) r : joinε(r

′′)

Figure 4.2: Strong local confluence: case (joinε).

(join) Suppose revision r successfully joins a revision r ′′ in the left step. We again distin-
guish two cases for the right step s1 →r ′ s ′2, performed by revision r ′: either r ′ also
succesfully joins r ′′, or not (denoted by (join(r ′′))).

(join(r ′′)) r ′ also joins revision r ′′ specifically, so that both s2 r
′′ = ⊥ and s ′2 r

′′ = ⊥.
Moreover, s2 r

′ = s1 r
′ and s ′2 r = s1 r. Hence s2 →r ′ ε←r s ′2 (Figure 4.3, left).

(join(r ′′)) r ′ does not join revision r ′′. In this case, the diverging steps commute, since
the left step can still be performed in s ′2, and the right step can still be per-
formed in s2 (Figure 4.3, right).
The details of this case involve reasoning about freshness. Namely, if the right
step forks r ′′′, then r ′′′ can still be forked in s2, since the left step did not
introduce any revision identifiers (Proposition 1). A similar argument applies
if the right step is a (new) step.
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s1 s ′2

s2 ε ε

r ′ : join(r ′′)

r : join(r ′′) r : joinε(r
′′)

r ′ : joinε(r
′′)

s1 s ′2

s2 s3 s ′3

r ′ : join(r ′′)

r : join(r ′′) r : join(r ′′)

r ′ : join(r ′′)

Figure 4.3: Strong local confluence: case (join).

(local) Under a (local) step we here understand any step that is an (apply), (ifTrue), (ifFalse),
(get) or (set) step: we exclude (new) for technical reasons. The right step is a (*)
(local), (new) or (fork) step. It is easy to see that both steps commute (Figure 4.4). As
in the previous case, Proposition 1 is used if the right step is a (new) or (fork) step.

s1 s ′2

s2 s3 s ′3

r ′ : *

r : local r : local

r ′ : *

Figure 4.4: Strong local confluence: case (local).

(new) We distinguish two cases for when the left step allocates a location identifier l.
Either the right step also allocates l, or it does not (i.e., it allocates some l ′ 6= l or is
some (fork) step).

(new(l)) The right step allocates l as well. By Lemma 10 and the assumption that
the universe of location identifiers is infinite, there exists some l ′′ /∈ LID s2 ∪
LID s ′2. Hence s2 →r ′ s3 and s ′2 →r s ′3 can be chosen to allocate l ′′. For α = id
and β = id(l := l ′′, l ′′ := l), then, s3 ≈αβ s ′3 (Figure 4.5, left).

(new(l)) The right step allocates some location identifier l ′ 6= l or is a (fork) step (Figure
4.5, right). In the first case, l ′ /∈ LID s2 and l /∈ LID s ′2, so that the steps
can commute. In the case of (fork), the steps can be shown to commute using
Proposition 1.

s1 s ′2

s2 s3 s ′3

r ′ : new(l)

r : new(l) r : new(l ′′)

r ′ : new(l ′′)
≈

s1 s ′2

s2 s3 s ′3

r ′ : new(l)

r : new(l) r : new(l)

r ′ : new(l)

Figure 4.5: Strong local confluence: case (new).
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(fork) Finally, we consider the case where the left step is a (fork) step. For the right step,
it only remains to consider the case where the right step is also a (fork) step. Either
both steps allocate the same revision identifier r ′′ (Figure 4.6, left) or not (Figure
4.6, right). The more detailed arguments for these cases are analogous to those in
case (new) above.

s1 s ′2

s2 s3 s ′3

r ′ : fork(r ′′)

r : fork(r ′′) r : fork(r ′′′)

r ′ : fork(r ′′′)
≈

s1 s ′2

s2 s3 s ′3

r ′ : fork(r ′′′)

r : fork(r ′′) r : fork(r ′′)

r ′ : fork(r ′′′)

Figure 4.6: Strong local confluence: case (fork), with r ′′ 6= r ′′′.

4.3 Confluence and determinacy

We are now ready to prove confluence (modulo renaming-equivalence) – and conse-
quently determinacy – from strong local confluence. Like Burkchardt and Leijen, our
proofs make use of the diagram tiling method, in which reduction diagrams are com-
posed to construct new reduction diagrams [BKdV03]. We write out the steps of these
proofs (which could be purely visual), so that no preliminary knowledge is required.

We first prove determinacy (Section 4.3.1), and then compare our proof to the one
given by Burckhardt and Leijen (Section 4.3.2).

4.3.1 The proof

We first abstract away from the revision identifier indices in Lemma 11.

Lemma 12 (Strong local confluence (abstracted)). If s1 is reachable and the universes of
location and revision identifiers are infinite, then

s1 s ′2

SLC

s2 s3 s ′3

=

= ≈

Proof. From the assumption s2 ← s1 → s ′2 and the definition of → we know that there
exist r, r ′ such that s2 ←r s1 →r ′ s ′2. By Lemma 11, there exist s3, s ′3 such that s2 →=

r ′ s3 ≈
s ′3 ←=

r s
′
2. Again using the definition of→, then, s2 →= s3 ≈ s ′3 ←= s ′2.
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Corollary 2 (Strong local confluence with reflexive step). If s1 is reachable and the universes
of location and revision identifiers are infinite, then

s1 s ′2

SLC=

s2 s3 s ′3

=

=

= ≈

Proof. By a case distinction on the step s1 →= s ′2. If s1 → s2, then the result follows
directly from Lemma 12. If s1 = s ′2, then the diverging steps can trivially join in s2.

The following lemma states that the relations→ and ≈ commute. Or stated in a more
operational language: that equivalent global states can mimic each other’s steps.

Lemma 13 (Mimicking).

s1 s ′1

M

s2 s ′2

≈

≈

Proof. Assume s1 → s2 and s1 ≈ s ′1. By the definition of → and ≈, there exist some r, α
and β such that s1 →r s2 and α (β s1) = s ′1. In particular, then, s ′1 (α r) is a renaming
of local state s1 r. We perform a case distinction on the step s1 →r s2. By inspecting all
of the deterministic rules (i.e., every rule except (new) and (fork)), it is easy to see that
s ′1 (α r) can perform the same rule as s1 r, giving a global state s ′2 with α (β s2) = s ′2.
For the non-deterministic rules (new) and (fork), s1 r allocates a fresh identifier l or r ′′,
respectively. By the properties of a permutation, β l and α r ′′ are fresh in s ′1. Thus,
s ′1(α r) can allocate these, again giving a global state s ′2 with α (β s2) = s

′
2.

Corollary 3 (Mimicking generalized).

s1 s ′1

M∗

s2 s ′2

≈

≈

Proof. By induction on the length of the left reduction sequence, using Lemma 13.
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Lemma 14 (Strip lemma). If s1 is reachable and the universes of location and revision identifiers
are infinite, then

s1 s ′2

STRIP

s2 s3 s ′3

=

≈

Proof. By induction on the length n of the left reduction sequence s1 →∗ s2. The base
case n = 0 is trivial. For the inductive step, assume s1 →n+1 s2. Thus, there exists some
a such that s1 → a →n s2. By a ← s1 →= s ′2 and Corollary 2, there exists some b and
c such that a →= b ≈ c ← s ′2. By s2 ←n a →= b and the induction hypothesis, there
exists some s3 and d such that s2 →∗ s3 ≈ d←∗ b. By d←∗ b ≈ c and Lemma 3, finally,
there exists an s ′3 such that d ≈ s ′3 ←∗ c. The joining reduction s2 →∗ s3 ≈ d ≈ s ′3 implies
s2 →∗ s3 ≈ s ′3 (using transitivity of ≈), and the joining reduction s ′2 → c →∗ s ′3 implies
s ′2 →∗ s ′3, as required. Pictorially:

s1 s ′2

SLC=

a b c

IH M∗

s2 s3 d s ′3

=

n

= ≈

≈ ≈

Lemma 15 (Confluence modulo renaming-equivalence). If s1 is reachable and the universes
of location and revision identifiers are infinite, then

s1 s ′1 s ′2

CR≈

s2 s3 s ′3

≈

≈

Proof. By induction on the length n of the left reduction sequence s1 →∗ s2. The base
case n = 0 is trivial. For the inductive step, assume s1 →n+1 s2. Thus, there exists an
a such that s1 →n a → s2. By a ←n s1 ≈ s ′1 →∗ s2 and the induction hypothesis, there
exist states b and c such that a →∗ b ≈ c ←∗ s ′2. By s2 ← a →∗ b and Lemma 14, there
exist states s3 and d such that s2 →∗ s3 ≈ d←∗ b. By d←∗ b ≈ c and Lemma 3, finally,
there exists an s ′3 such that d ≈ s ′3 ←∗ c. The joining reduction s2 →∗ s3 ≈ d ≈ s ′3 implies
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s2 →∗ s3 ≈ s ′3 (using transitivity of ≈), and the joining reduction s ′2 →∗ c →∗ s ′3 implies
s ′2 →∗ s ′3, as required. Pictorially:

s1 s ′1 s ′2

IH

a b c

STRIP M∗

s2 s3 d s ′3

n

≈

≈

≈ ≈

Theorem 1 (Determinacy). Let e be a program expression, and assume that the universes of
location and revision identifiers are infinite. If e ↓ s and e ↓ s ′, then s ≈ s ′.

Proof. By e ↓ s, there exists some initialization s0 = ε(r 7→ 〈ε, ε, e〉) with s0 →∗ smaximal.
Similarly, by e ↓ s ′, there exists some initialization s ′0 = ε(r ′ 7→ 〈ε, ε, e〉) with s ′0 →∗ s ′
maximal. Since e is a program expression, RID e = ∅, so clearly s0 ≈ s ′0, using the
renaming α = (id(r := r ′)). By Lemma 15, there exist reductions s →∗ s3 and s ′ →∗ s ′3
with s3 ≈ s ′3. By maximality of the reductions s0 →∗ s and s ′0 →∗ s ′ we have s = s3 and
s ′ = s ′3, and therefore s ≈ s ′.

4.3.2 Comparison with the original proof

The mimicking diagram (Lemma 13) does not appear in Burckhardt and Leijen’s ac-
count. Instead, they derive confluence modulo renaming-equivalence from strong local
confluence by the following argument.

First, their strong local confluence lemma is stated as follows:2

s2 ←r s1 ≈αβ s ′1 →r ′ s ′2 =⇒ ∃s3 s
′
3. s2 →=

(α−1 r ′) s3 ≈ s ′3 ←=
(α r) s

′
2. (4.1)

(Our version of this lemma follows as a corollary by choosing s1 = s ′1 and α = β = id.)
Next, they lift the relation → to equivalence classes C of states modulo renaming-

equivalence, producing the relation →C ⊆ C× C. From the implication (4.1), it is then
easy to show the strong local confluence lemma

C2 ←C C1 →C C
′
2 =⇒ ∃C3.C2 →=

C C3 ←=
C C

′
2

2 Burckhardt and Leijen actually write the strong local confluence lemma as

s2 ←r s1 ≈ s ′1 →r′ s
′
2 =⇒ ∃s3 s

′
3. s2 →=

r′ s3 ≈ s ′3 ←
=
r s
′
2.

This is slightly informal, since, e.g., revision r in s ′1 might not in any way relate to revision r in s1 at all.
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for C1,C2 ∈ C: unlifting the hypothesis C2 ←C C1 →C C
′
2 produces the hypothesis for

(4.1), and the conclusion of (4.1) can be directly lifted to ∃C3.C2 →=
C C3 ←=

C C ′2. The
diagram tiling technique can then be used to show confluence of→C:

C2 ←∗C C1 →∗C C ′2 =⇒ ∃C3.C2 →∗C C3 ←∗C C ′2 (4.2)

using more standard versions of the proofs to Lemmas 14 and 15.
For the final step, Burckhardt and Leijen only remark that the confluence modulo

renaming-equivalence property follows from implication (4.2). Our attempt to fill in the
details of this step proceeded as follows.

To begin, the confluence modulo renaming-equivalence hypothesis

s2 ←∗ s1 ≈ s ′1 →∗ s ′2

can be lifted to C2 ←∗C C1 →∗C C ′2, allowing us to derive C2 →∗C C3 ←∗C C ′2 for some C3,
using (4.2). A subtle complication now arises when we attempt to unlift C2 →∗C C3 ←∗C C ′2
to s2 →∗ s3 ≈ s ′3 ←∗ s ′2 (for some s3, s ′3): it must be shown that for any reduction
sequence C →∗C C ′, there also exists a corresponding reduction sequence on the level of
states s →∗ s ′ with s ∈ C and s ′ ∈ C ′. From the black arrows in Figure 4.7, it is evident
that this is not necessarily the case: the sequence C1 →C C2 →C C3 →C C4 unlifts to
s1 → s2 6= s3 → s4 6= s5 → s6. If equivalent states can mimic each other’s steps, however,
then such a reduction sequence can always be constructed from an arbitrary unlifting
(gray arrows): in this case, s1 → s2 → s ′1 → s ′2.

s1

C1

s2

s3

C2

s4

s5

s ′1

C3

s6

s ′2

C4

Figure 4.7: Unlifting a reduction sequence C1 →C C2 →C C3 →C C4.

Thus, a proof of the mimicking diagram seems required. Our approach weaves the
mimicking diagram directly into the diagram tiling proofs, allowing us to altogether cir-
cumvent the concepts of equivalence classes, lifting and unlifting. It also allows us to
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prove simpler statements of local determinism and strong local confluence, where the
root of the divergence is now a single fixed state, rather than an equivalence. The ad-
vantage for the mechanical formalization is that we only have to reason about renamings
(such as how they distribute over proof terms that represent global states) when they are
actually required to establish equivalence.
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Chapter 5
Isabelle/HOL

Isabelle/HOL is an interactive theorem prover (or proof assistant). The user of an interactive
theorem prover specifies a formal theory, and formulates theorems. The machine gen-
erates the proof obligations for these theorems, which are then solved in an interactive
process: the user suggests transformations of the proof state, which the machine pro-
cesses if they are judged to be logically sound. This cycle continues until all obligations
are solved.

‘Isabelle’ is the name of an interactive theorem prover designed by Paulson in 1986
[Pau89]. Its so-called ‘meta-logic’ is deliberately minimal, as it is meant to serve as
a generic framework for the implementation of other, more expressive ‘object logics’.
‘HOL’, which abbreviates higher-order logic, refers to such an object logic [NPW18]. Other
available object logics include ZF (Zermelo-Fraenkel set theory) and FOL (first-order
logic) [Pau18b]. Despite Isabelle’s genericity, we note that the contemporary interest in
Isabelle revolves almost exclusively around Isabelle/HOL.

Isabelle’s design is a descendant of the so-called ‘LCF approach’ to theorem proving,
formulated by Robert Milner in the 1970s. In this approach, theorems are values of a
special data type thm, and inference rules are operations defined over thm. The combina-
tion of a small, trusted inference kernel on the one hand, and strict type-checking on the
other, ensures that all values of type thm are indeed theorems. LCF’s influence on Isabelle
is more than conceptual: Milner invented the programming language ML to implement
his LCF system, which is also Isabelle’s implementation language.

Considered as a platform, the Isabelle/HOL has a rich variety of constructs, libraries
and proofs methods, a highly expressive proof language (Isar), a dedicated editor (Isa-
belle/jEdit), a document preparation system, and more. In the remainder of this chapter,
we cover the facets of Isabelle/HOL that are crucial for understanding the formalization
described by this thesis.
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5.1 Organization

Isabelle encourages a highly structured, hierarchical approach to formalization. Theory
development takes place within a theory file, whose function can be likened to that of a
module or library of a general-purpose programming language. A theory A can import
another theory B (provided that their signatures are compatible), making the namespace
of B available to A. Importing has a recursive effect, giving rise to a tree of dependencies.

A collection of related theories is called a session. At the root of each session is the
theory Pure, which contains Isabelle’s meta-logic. The HOL object logic is contained in
theory HOL, which imports Pure. The denomination ‘HOL’ is also used more broadly to
refer to a session which includes the theory HOL and associated theories for generic data
structures and fundamental mathematical theories.

5.2 The logic

Isabelle’s meta-logic is a polymorphic, intuitionistic higher order logic. The HOL object
logic is classical and considerably more expressive. In this section we give an overview
of both logics, and we explain how they relate. We choose to ignore technical subtleties
that would only obfuscate the exposition. Useful technical accounts for respectively the
meta-logic and the object logic are written by Paulson [Pau18c, Pau18a].

5.2.1 Isabelle’s meta-logic

Isabelle’s meta-logic exists for the implementation of object logics. Its main syntactic
categories are types and terms.

Types

Types are defined inductively as follows:

• Base types. A base type is represented by some declared constant symbol. A base
type is interpreted as a non-empty set. The only base type predefined in Isabelle’s
meta-logic is prop, which is interpreted as the set of meta-level truths.

• Type variables. A type variable can be regarded as a placeholder type. Isabelle uses
ML-style syntax: an identifier prefixed by an apostrophe (’) (such as ’a) denotes
a type variable. A type variable can be schematic, in which case it is prefixed by
?. The difference between schematic variables and non-schematic variables is that
schematic variables can be instantiated in a proof search. Since free non-schematic
variables in lemmas are automatically generalized to schematic variables after a
lemma has been proven, it is usually unnecessary to write schematic variables
explicitly.
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• Compound types. Isabelle supports the introduction of compound types through
the use of type constructors. Pure contains only one type constructor: fun. If σ
and τ are types, then (σ, τ) fun is a type, which can be more conveniently written
as σ ⇒ τ. A type σ ⇒ τ is interpreted as the set of total functions from σ to
τ. As is customary in functional programming languages, the infix notation ⇒ is
right-associative. Thus the expression σ1 ⇒ σ2 ⇒ σ3 is parsed as σ1 ⇒ (σ2 ⇒ σ3).

Isabelle also supports Haskell-style type classes [HW06, Haf18]. Type classes can
be likened to interfaces from object-oriented programming languages: they specify con-
stants that any type class instance must implement, and optionally specify assumptions
that the implementation must satisfy. Type classes are convenient because they enable
operator overloading.

Terms

Every term t has a type σ. A term t can be constrained to have a type σ by writing t :: σ,
which is interpreted as asserting set membership. The Isabelle framework adopts ML’s
type inference system, and convention dictates that type constraints are only written
when type inference fails to infer the intended type.

Terms are constructed as in the simply typed lambda-calculus:

• Any variable x is a term. Like type variables, term variables can be schematic.

• Any constant term c is a term. Isabelle’s meta-logic defines three constants, which
are axiomatized to behave as meta-level logical connectives.1 These constants are,
for arbitrary types σ:

– =⇒ :: prop⇒ prop⇒ prop (‘implication’)

–
∧

:: (σ⇒ prop)⇒ prop (‘universal quantification’)

– ≡ :: σ⇒ σ⇒ prop (‘equivalence’)

Notice how
∧

encodes the universal quantifier: it takes a function with type σ ⇒
prop (intuitively, a ‘predicate’) and maps it to a prop (i.e., a judgement on whether
that predicate holds universally). More in line with its semantics, expressions of
the form

∧
(λx.P) are written as

∧
x.P in Isabelle.

• Application. If t is a term of type σ⇒ τ and t ′ is a term of type σ, then t t ′ is a term
of type τ.

• Abstraction. If x is variable of type σ and t is a term of type τ, then λx. t is a term
of type σ⇒ τ.

1 A 1989 paper by Paulson [Pau89] describes a core subset of the axioms.
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5.2.2 The HOL object logic

The theory HOL introduces the type bool, which is the type of object-level truths. Terms of
type bool are called formulae. The object logic introduces and axiomatizes many familiar
constants over formulae, such as the connectives of first order logic with equality (=,
6=, ¬, ∨, ∧, →, ∀, ∃), and some functional programming constructs, such as if-then-
else and case expressions. It also introduces a number of logical axioms, such as the
law of excluded middle (which makes the logic classical) and the axiom of function
extensionality.

The meta-logic and the object logic connect through the hidden function

Trueprop :: bool ⇒ prop

which lifts object-level truths to meta-level truths. It is used internally to coerce types
from bool to prop, allowing us to reason about formulae on a meta-level. For instance, p
∧ q =⇒ q ∧ p is syntactic sugar for Trueprop (p ∧ q) =⇒ Trueprop (q ∧ p).

The HOL session contains many libraries for generic data structures and fundamental
mathematical theories, greatly simplifying the formalization effort. Examples of partic-
ularly valuable libraries for our formalization are the theories Set, Nat, Map, Fun and
Transitive_Closure, which contain many useful definitions and lemmas for reasoning
about respectively sets, natural numbers, partial functions, general function properties
and relation closures.

5.3 Definitional mechanisms

Isabelle/HOL offers a variety of definitional mechanisms. A definitional mechanism allows
the introduction of new types and constants, provided that the definitions satisfy certain
soundness-preserving constraints. A general constraint is that the body of a definition
should not contain free variables. By contrast, arbitrary axiomatizations (axiomatization
in Isabelle/HOL) impose no constraints, meaning that one could accidentally introduce
logical inconsistency when using them.

For the formalization of this thesis, we were able to safely limit ourselves to the use
of definitional mechanisms. In this section we cover the major ones that we have used.

5.3.1 Type synonyms

Type synonyms can be defined through the type_synonym command. For instance, the
declaration

type_synonym natFunction = "nat⇒ nat"

allows us to write NatFunction to denote the type nat⇒ nat.
Type synonyms are fully expanded in the internal logic of Isabelle/HOL. Thus, type

synonyms are used purely for enhancing readability of theories.
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5.3.2 Inductive data types

Inductive data types can be declared using the datatype command [BBB+17, BBD+18].
Declarations are allowed to be mutually inductive and argument types can be parame-
terized. A toy example of a mutually inductive data type with a single type parameter
is

datatype α redStack = redBox α | extendBlue "α blueStack" α
and α blueStack = blueBox α | extendRed "α redStack" α

which defines the types α redStack and α blueStack for arbitrary types α. Intuitively, a
data object with type α redStack represents an alternating stack of red and blue boxes
(each box containing an element of type α), for which the top box is red.

A datatype declaration generates and proves many useful theorems, including dis-
tinction laws (C1 x1 . . . xn 6= C2 y1 . . . ym for distinct constructors C1 and C2) and (mu-
tual) induction principles. It also introduces a number of useful constants, such as a
function that collects all α occurrences in some α-parameterized data type, and returns
it as a set.

5.3.3 Inductive predicates

Inductive predicates and relations are defined using the inductive command. An exam-
ple of a declaration is

inductive even :: "nat ⇒ bool" where
zero: "even 0"

| step: "even n =⇒ even (Suc (Suc n))"

which allows us to derive even n for all even natural numbers n, using the automatically
generated induction rule even.induct. An inductive declaration also implicitly defines
negative cases: if we can show for some n that even n is not derivable from the specified
rules, then we may conclude ¬even n.

5.3.4 Definitions and abbreviations

Constant definitions can be introduced through the command definition. An example is

definition double :: "nat ⇒ nat" where
"double n = 2*n"

which adds the constant double and the equation double ?n = 2*?n (under the name
double_def) to the internal logic.

The command abbreviation is the syntactic sugar analogue of definition. As a rule
of thumb, definition is used to define complex concepts for which one would like to hide
the actual definition as an ‘implementation detail’. Doing so, one can maintain the right

49



5.3. DEFINITIONAL MECHANISMS

level of abstraction for automation tools, and prevent them from garbling proof states. If
one would just like to introduce a name for something simple, however, abbreviation is
more suitable, since it eliminates the need to make trivial definitional expansions.

One of the constraints on definition and abbreviation is that they do not allow re-
cursive definitions. The next subsection describes two definitional mechanisms that do
allow recursion.

5.3.5 Recursive functions

The command fun allows for recursive function definitions. Pattern matching can be
used to distinguish cases, making the declaration style reminiscent of that of a functional
programming language such as Haskell. An example is the declaration

fun fac :: "nat ⇒ nat" where
"fac 0 = 1"

| "fac n = n * (fac (n - 1))"

which defines fac as the factorial function.
For soundness reasons, recursive functions must terminate. A fun declaration there-

fore includes a hidden automated attempt at a termination proof. If this attempt fails,
then a fun declaration

fun f :: τ
where

equations
...

can be expanded to the equivalent function declaration

function (sequential) f :: τ
where

equations
...

by pat_completeness auto

termination by lexicographic_order

In this expansion, the command termination initiates the termination proof for f, which
the proof by lexicographic_order attempts to solve. The proof can be replaced if it is
not adequate.

We found that the shorthand fun usually suffices. However, in one case we were
forced to use a function declaration in order to inspect and substitute a failed termination
proof.

See Krauss [Kra] for more details on, e.g., the full semantics of function and the
default termination proof.
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5.4 Locales

A locale allows one to abstractly specify constants and assumptions about those con-
stants. For instance, the locale declaration

locale fixed_point =

fixes f :: "’a ⇒ ’a"

assumes f_has_fixed_point: "∃x. f x = x"

fixes a function f that has a fixed point.
Unlike axiomatiziations, the constants and assumptions of locales are not visible in

the global context. Rather, the assumptions of a locale are bound to a local context, which
must be explicitly opened and closed:

context fixed_point

begin
...

end

Any theorems proven between commands begin and end will be visible to any context
that includes the fixed_point locale.

Locales can be useful when one wants to reason abstractly about certain constants.
In our case, this concerned the lambda calculus substitution operation: Burckhardt and
Leijen do not commit to a specific implementation, so neither do we. A benefit is that
the locale assumptions make explicit which properties the constant must specify.

Let ct denote the type of a constant c. A locale declaration l that fixes constants
c1,. . .,cn also generates a function l :: ct1 ⇒ . . . ⇒ ctn ⇒ bool that tests whether its
arguments satisfy the assumptions of locale l. This function can be used to show that the
locale has a model, i.e., that one can actually define constants that satisfy the locale’s spec-
ification. For the locale fixed_point, for instance, we could prove fixed_point id, where
id is the identity function. Providing a model for a locale is recommended practice, since
this guarantees that the locale describes a class of mathematical objects.

Locales have a much wider relevance than what we have described here. For more
details, see Ballarin [Bal03].

5.5 Lemmas and proofs

In this section we explain how to state and prove lemmas.

5.5.1 Lemmas

Lemmas can be stated using the lemma command (or its equivalents: theorem, proposi-
tion and corollary). An example is
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lemma positive_product:

"(n :: nat) > 0 =⇒ (m :: nat) > 0 =⇒ n * m > 0"

which states that the product of two positive natural numbers n and m is positive, and
stores the equation under the (optional) label positive_product. Instead of writing A1
=⇒ A2 =⇒ . . . =⇒ An =⇒ C, we can also group the assumptions of a statement by
writing J A1 ; A2 ; . . . ; An K =⇒ C.

The Isar proof language (explained in the subsection below) allows us to take a more
structured approach and write

lemma positive_product:

fixes n :: nat and m :: nat

assumes

n_positive: "n > 0" and

m_positive: "m > 0"

shows "n * m > 0"

to express the same lemma. An advantage of this formulation is that we can refer to the
assumptions by name in proofs.

5.5.2 Proofs

A proof immediately follows some logical assertion. Proofs can be written in two ways:
using apply-style scripts or using Isar proof scripts.

An apply-style script consists of sequence of tactics, each of which applies a transfor-
mation to the proof state, followed by a done command when all subgoals are solved.
While the intermediary proof states were visible to the user writing the script, they are
not explicit in the proof script itself.

The trivial conjecture p∧q =⇒ q∧p, for instance, can be proven using an apply-style
proof script as follows:

lemma "p ∧ q =⇒ q ∧ p"

apply (erule conjE)

apply (rule conjI)

apply (assumption)

apply (assumption)

done

In this simple example, the conjunction elimination rule

?P∧ ?Q =⇒ (?P =⇒ ?Q =⇒ ?R) =⇒ ?R (conjE)

is first applied in a forward fashion, transforming the conjecture into the new subgoal

p =⇒ q =⇒ q ∧ p.
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Next, the conjunction introduction rule

?P =⇒ ?Q =⇒ ?P∧ ?Q (conjI)

is applied in a backwards fashion, producing a proof state consisting of the two subgoals

p =⇒ q =⇒ q

and
p =⇒ q =⇒ p.

The conclusions of these subgoals are among the respective assumptions of these sub-
goals: two applications of the tactic apply (assumption) are used to solve them.

By comparison, an Isar [Wen18a] proof for the same theorem might look as follows:

lemma "p ∧ q =⇒ q ∧ p"

proof -

assume p_and_q: "p ∧ q"

have p: "p" by (rule conjunct1[OF p_and_q])

have q: "q" by (rule conjunct2[OF p_and_q])

show "q ∧ p" by (rule conjI[OF q p])

qed

Intermediary results are stated explicitly, and can be named, resulting in a proof script
that is much better readable and maintainable, especially for large proofs. The syntax
[OF . . .] is a theorem modifier that is used to instantiate the conditions of the rules that are
used.

More generally, a typical simple Isar proof script has the format

lemma P1
proof M1
fixes C1 and . . .
assume P2 and . . .
have P3 by M2
...

have Pn−1 by Mn−2
show Pn by Mn−1

qed

where the Pi represent formulae, the Ci represent constants, and the Mi represent proof
methods. We make three observations:

• The singular argument to the proof command is called the initial proof method. The
initial proof method applies an initial transformation to the conjecture. The method
- leaves the proof state as it is. In the example above, the rule (erule conjE) could
have been used as an initial proof method, rather than -.
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• Out of the commands in the body of the proof block, only the command show is
required, and the proof for the statement Pn must solve the active subgoal.

• Command qed closes the proof block, assuming all active subgoals has been solved.

• proof blocks can follow any statement, not just lemma statements. Thus, any of the
proofs by Mi could be replaced with a suitable proof block.

Because of Isar’s structured approach, Isar proofs are generally preferred over apply-
style scripts. But apply-style scripts still have their merits. During proof development,
apply-style scripts help quickly explore the proof space. And in finished proofs, we
found that apply-style scripts can be useful to formalize trivial arguments over large
proof terms that we do not want to repeat textually.

5.5.3 Proof automation

The simple proofs of the previous section relied on explicit rule applications, which is
a very specific and low-level approach to theorem proving. Isabelle/HOL has power-
ful support for proof automation that makes writing proofs much easier. The central
methods are simp, auto, blast and metis [BBN11]:

• The simplifier simp interprets equations t = t’ (for terms t and t’) as rewrite rules
t → t’, and performs conditional, contextual rewriting on proof terms (with some
additional tricks). Because rules are oriented from left to right, one should always
write the ‘simpler’ term of an equation on the right-hand side.

• The auto tool interleaves simplification with a small amount of proof search. This
helps clear obstructions for the simplifier, greatly increasing its effectiveness. The
auto tool also splits up goals into subgoals, which simp does not do. Relatedly, auto
works on all subgoals of a proof state, rather than only the first one.

• The blast tool is a tableau prover directly written in ML. It is very fast, since it
bypasses the Isabelle kernel for proof search. This poses no threat to soundness,
however, since any proof it finds is replayed through the Isabelle kernel. The blast
tool does not perform any form of simplification.

• The metis tool is a superposition-based theorem prover. Similar to blast, it bypasses
the Isabelle kernel for proof search, but replays any proofs it finds in the Isabelle
kernel for increased trustworthiness.

metis is very powerful, but relative to the other methods, it is not user-friendly. The
reason for this is that simp, auto and blast are all configured to have an implicit knowl-
edge of lemmas in the database, while metis knows only about pure logic. Thus, any
metis method call needs to be supplemented explicitly with relevant lemmas. For this
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reason, metis is typically not invoked by hand. However, metis is still very useful, since
Sledgehammer (discussed in the next subsection) often returns metis proofs.

The set of lemmas that simp, auto and blast implicitly know about can be globally
extended by annotating lemmas with lemma attributes. These attributes include simp,
intro (introduction), elim (elimination), and dest (destruction):

• Giving attribute simp to a lemma P1 =⇒ . . . =⇒ Pn =⇒ t = t’ (for n > 0) adds
the corresponding conditional rewrite rule to the simplifier.

• Giving attribute intro to a lemma of the form P0 =⇒ . . . =⇒ Pm (for m > 1)
informs classical reasoners (which include auto and blast) that they may prove a
goal of the form Pm by attempting proofs for P0, . . ., Pm−1.

• Giving attribute elim to a lemma of the form P =⇒ (P’ =⇒ Q) =⇒ Q informs
classical reasoners that they may prove a goal Q by replacing a hypothesis P with
P’ (P is eliminated).

• Giving attribute dest to a lemma of the form P =⇒ Q informs classical reasoners
that they may deduce Q from P.

Attributes can be used locally. For instance,

by (auto simp add: X elim: Y)

invokes auto, with rule X added to the simplifier and rule Y added as an elim rule.

5.5.4 Sledgehammer and Nitpick

Sledgehammer and Nitpick are tools that aide in the proof development process [BBN11].
Sledgehammer aides in the construction of proofs. When trying to prove some con-

jecture, the user can invoke it by writing sledgehammer. Based on properties of the
conjecture (such as which constants occur in it), Sledgehammer heuristically selects a
few hundred facts that may be relevant for proving the conjecture. It then translates
the conjecture and these facts into first-order logic, and delegates the result to a host of
external resolution and SMT provers. From the output of these provers, an attempt is
made to reconstruct an Isabelle proof (which might fail).

By contrast, Nitpick attempts to disprove conjectures using model finding techniques,
and is invoked by writing nitpick. Why attempt to disprove a conjecture? Because it can
be easy to make typos or logical errors when stating lemmas or defining concepts, and
identifying such problems without tool support can be challenging.

Due to their nature, no sledgehammer and nitpick commands remain in the finished
artifact. We found these tools extremely useful during the proof development process,
however. This is especially true for Sledgehammer, which we frequently relied on for
connecting the dots of tedious arguments, and for pointing us towards relevant lemmas
from the vast amount of library material.
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5.6 Isabelle/jEdit

Isabelle/jEdit is a dedicated editor for developing Isabelle theories [Wen12, Wen18b].
Its many useful features include building Isabelle sessions, keeping track of theory de-
pendencies and changes, syntax highlighting, syntactic sugar for mathematical symbols
(including subscript and superscript notations), asynchronous proof checking, sledge-
hammer integration (allowing the user to insert found proofs with a single click) and a
search functionality for library theories.
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Chapter 6
The formalization

With the exception of the results in Sections 3.1 and 3.2 (which discuss the program
expression definition and the (fork) side condition, respectively), all of the concepts and
results of this thesis have been formalized in Isabelle/HOL (version Isabelle2017). The
formalization takes the form of a session composed of seven theory files: Data (Sec-
tion 6.1), Occurrences (Section 6.2), Renaming (Section 6.3), Substitution (Section 6.4),
OperationalSemantics (Section 6.5), Executions (Section 6.6) and Determinacy (Section
6.7). The dependencies between these theories are linear: theory Data imports Main,
which is a session that aggregates the most common Isabelle/HOL libraries (see Nip-
kow [Nip18] for a quick overview), and every other theory imports only the theory that
directly precedes it in the given enumeration. The total lines of Isabelle/HOL code is a
little over 3000.

This chapter gives an overview of the formalization and documents important design
decisions. Its outline mirrors the structure of the formalization. We do not mean to be
exhaustive, and we will frequently drop type annotations and proofs.

6.1 Data

Theory Data defines some of the general function notations (Section 6.1.1), the elemen-
tary data types (values, expressions and contexts) (Section 6.1.2), every result related
to plugging and decomposition (Section 6.1.3), and the definitions of stores and states
(Section 6.1.4).

6.1.1 Function notations

Most of the general function notations from Section 2.2 already have a representation in
Isabelle/HOL. Since functions must be total in Isabelle/HOL, we use the type constructor
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map (defined in theory Map) to model partial functions. The map type is based on option
types (defined in the HOL theory Option), familiar from a programming language like
Haskell:

datatype ’a option = None | Some ’a

A map is a function into some option type:

type_synonym (’a, ’b) "map" = "’a ⇒ ’b option" (infixr "⇀" 0)

Thus, we will write ’a ⇀ ’b for a partial function from ’a to ’b, and f x = None for
f x = ⊥. Theory Map also defines dom and ran to denote respectively the domain and
range of a partial function. An update of a total function is denoted by f(x := y), and for
maps f, Map introduces the notation f(x 7→ y) for f(x := Some y). The function inverse
f−1 can be denoted by inv f, which is defined in the HOL theory Fun. For a partial
function constraint fJx := yK we will introduce no special notation: we will simply add
f x = y as an assumption on f.

That leaves the notations for the empty function ε and the combination (f::g). We
define these concepts ourselves in the section FunctionNotations of the Data theory:

abbreviation ε :: "’a ⇀ ’b" where

"ε ≡ λx. None"

fun combine :: "(’a ⇀ ’b) ⇒ (’a ⇀ ’b) ⇒ (’a ⇀ ’b)" ("_;;_" 20) where

"(f ;; g) x = (if g x = None then f x else g x)"

We use the notation f;;g for combinations, rather than f::g, to avoid clashing with type
constraints.

The section also contains an elementary result about combinations that has thus far
been assumed:

lemma dom_combination_dom_union:

"dom (τ;;τ ′) = dom τ ∪ dom τ ′"

This is the kind of lemma that we will frequently gloss over in this chapter.

6.1.2 Values, expressions and contexts

Section ValExprCntxt contains the definitions of the elementary data types of the revision
calculus: constants (const), values ((’r,’l,’v) val), expressions ((’r,’l,’v) expr) and
contexts ((’r,’l,’v) cntxt). The three type parameters ’r, ’l and ’v denote respectively
the types of revision identifiers, location identifiers and variables. The name cntxt is used
since context is a reserved keyword.

The definitions are all rather straightforward datatype declarations. Values and ex-
pressions, for instance, are defined by the following mutually recursive declaration:

datatype (RIDV: ’r, LIDV: ’l,’v) val =

CV const
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| Var ’v

| Loc ’l

| Rid ’r

| Lambda ’v "(’r,’l,’v) expr"

and (RIDE: ’r, LIDE: ’l,’v) expr =

VE "(’r,’l,’v) val"

| Apply "(’r,’l,’v) expr" "(’r,’l,’v) expr"

| Ite "(’r,’l,’v) expr" "(’r,’l,’v) expr" "(’r,’l,’v) expr"

| Ref "(’r,’l,’v) expr"

| Read "(’r,’l,’v) expr"

| Assign "(’r,’l,’v) expr" "(’r,’l,’v) expr"

| Rfork "(’r,’l,’v) expr"

| Rjoin "(’r,’l,’v) expr"

The constructor VE (‘value-expression’) coerces a datum of type (’r,’l,’v) val to type
(’r,’l,’v) expr.

The function RIDV has type (’r,’l,’v) val ⇒ ’r set and implements the revision
identifier collector function RID for values v, etc. (The set type constructor is defined in
the HOL theory Set.) We have similarly defined RIDC and LIDC for contexts. The datatype
command also automatically proves all sorts of useful lemmas involving these functions.

6.1.3 Plugging and decomposing

The subsection PluggingAndDecomposing contains all definitions and results related to
plugging and decomposing. The plug function is defined as follows:

fun plug :: "(’r,’l,’v) cntxt ⇒ (’r,’l,’v) expr ⇒
(’r,’l,’v) expr" (infix "C" 60)

where

"� C e = e"

| "ApplyLE E e1 C e = Apply (E C e) e1"

| "ApplyRE val E C e = Apply (VE val) (E C e)"

| "IteE E e1 e2 C e = Ite (E C e) e1 e2"

| "RefE E C e = Ref (E C e)"

| "ReadE E C e = Read (E C e)"

| "AssignLE E e1 C e = Assign (E C e) e1"

| "AssignRE l E C e = Assign (VE (Loc l)) (E C e)"

| "RjoinE E C e = Rjoin (E C e)"

for which we introduce the mixfix notation:

translations

"E[x]" 
 "E C x"

allowing us to write E[x] for plug E x. The inductive predicate redex defines the re-
dexes, and the inductive predicate decompose defines the decomposition rules. The state-
ments
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inductive_simps redex_simps [simp]: "redex e"

inductive_cases redexE [elim]: "redex e"

inductive_cases decomposeE [elim]: "decompose e E r"

automatically generate simplification and elimination rules for these two predicates,
where redex_simps, redexE and decomposE denote the names of these rules.

The most important lemma of section PluggingAndDecomposing is

lemma completion_eq [simp]:

assumes

red_e: "redex r" and

red_e’: "redex r’"

shows "(E[r] = E’[r’]) = (E = E’ ∧ r = r’)"

formalizing Lemma 7. The simplifier can rewrite propositions E[r] = E’[r’] to E = E’

∧ r = r’ (provided r and r’ are redexes), and auto can eliminate this proposition to E

= E’ and r = r’.

6.1.4 Stores and states

The closing section StoresAndStates defines the types of stores, local states and global
states:

type_synonym (’r,’l,’v) store = "’l ⇀ (’r,’l,’v) val"

type_synonym (’r,’l,’v) local_state =

"(’r,’l,’v) store × (’r,’l,’v) store × (’r,’l,’v) expr"

type_synonym (’r,’l,’v) global_state = "’r ⇀ (’r,’l,’v) local_state"

A type ’a × ’b is a product type, which is predefined in the HOL theory Product_Type.
The × operator is right-associative. Thus, the type local_state is interpreted as the set
containing tuples of the form (σ, (τ, e)), with σ and τ stores, and e an expression. Unlike
in Figure 2.5, we do not introduce type names for snapshots and local stores. This is
because we will always want to prove results about stores generally.

The remainder of the Isabelle section introduces the straightforward definitions doms

ls, lsσ, lsτ and lse for local states ls.

6.2 Occurrences

Theory Occurrences defines the RID and LID notations for all types containing revision
and location identifiers (Section 6.2.1), and proves a number of inference rules that help
automate reasoning about occurrences (Section 6.2.2).
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6.2.1 Definitions

The RID and LID functions were already generated or values, expression and contexts
(Section 6.1.2). The RID definitions for the remaining structures (i.e., stores, local states
and global states) are as follows:

definition RIDS :: "(’r,’l,’v) store ⇒ ’r set" where

"RIDS σ ≡
⋃

(RIDV ‘ ran σ)"

definition RIDL :: "(’r,’l,’v) local_state ⇒ ’r set" where

"RIDL s ≡ case s of (σ, τ, e) ⇒ RIDS σ ∪ RIDS τ ∪ RIDE e"

definition RIDG :: "(’r,’l,’v) global_state ⇒ ’r set" where

"RIDG s ≡ dom s ∪
⋃

(RIDL ‘ ran s)"

Here, f ‘ S denotes S under the image of f, the same as our definition given in Section
2.2. The LID definitions are analogous to the RID definitions:

definition LIDS :: "(’r,’l,’v) store ⇒ ’l set" where

"LIDS σ ≡ dom σ ∪
⋃

(LIDV ‘ ran σ)"

definition LIDL :: "(’r,’l,’v) local_state ⇒ ’l set" where

"LIDL s ≡ case s of (σ, τ, e) ⇒ LIDS σ ∪ LIDS τ ∪ LIDE e"

definition LIDG :: "(’r,’l,’v) global_state ⇒ ’l set" where

"LIDG s ≡
⋃

(LIDL ‘ ran s)"

6.2.2 Inference rules

In Chapters 3 and 4, we have reasoned implicitly about occurrences. For instance, given
r ′′ ∈ RID v, r 6= r ′ and

s ′ = s(r 7→ 〈σ, τ(l 7→ v), e〉, r ′ 7→ 〈σ ′, τ ′, e ′〉)

it is immediately evident that r ′′ ∈ RID s ′.
A more detailed chain of inferences underlying this conclusion would be:

r ′′ ∈ RID v

=⇒ r ′′ ∈ RID (τ(l 7→ v))
=⇒ r ′′ ∈ RID 〈σ, τ(l 7→ v), e〉
=⇒ r ′′ ∈ RID (s(r 7→ 〈σ, τ(l 7→ v), e〉))
=⇒ r ′′ ∈ s ′ (since r 6= r ′)

which depends on trivial supporting lemmas such as

v ∈ ran (τ(l 7→ v)).
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To always make this type of argument explicit would be tedious, and it would ob-
fuscate the proofs that we are actually interested in. For this reason we prove a number
of lemmas that serve as inference rules for proof automation. Most of these lemmas
were not formulated a priori: rather, they were introduced as automation got stuck on
reasoning about occurrences.

We distinguish two main classes of inference rules. The first class contains pairs of
introduction and elimination rules for each of the RID and LID definitions (subsection
IntroAndElimRules). The purpose of these is mostly to eliminate the need to reason about
some of the higher-order constructs (such as

⋃
) up or down the RID and LID definition

hierarchies. For instance:

lemma RIDGI [intro]:

"s r = Some v =⇒ r ∈ RIDG s"

"s r’ = Some ls =⇒ r ∈ RIDL ls =⇒ r ∈ RIDG s"

apply (simp add: RIDG_def domI)

by (metis (no_types, lifting) RIDG_def UN_I UnI2 ranI)

allows us to henceforth prove r ∈ RID s with auto by showing that s maps r to some
local state, or by providing some local state L such that r ∈ RID L and s r ′ = L (for some
r ′).

The second class revolves around proving distribution laws for the RID definitions
(subsection Distribution). Consider for instance the following three lemmas:

lemma ID_distr_store [simp]:

"RIDS (τ(l 7→ v)) = RIDS (τ(l := None)) ∪ RIDV v"

lemma ID_distr_local [simp]:

"RIDL (σ,τ,e) = RIDS σ ∪ RIDS τ ∪ RIDE e"

lemma ID_distr_global [simp]:

"RIDG (s(r 7→ ls)) = insert r (RIDG (s(r := None)) ∪ RIDL ls)"

Here, a term f(x := None) should be interpreted as a restriction of f (x is removed from
f’s domain), and a term insert x S is a simplified way of writing {x} ∪ S. In each of the
three lemmas, the set of revision identifiers of some complex structure is reformulated
as the union of the sets of revision identifiers of its components. For instance, invoking
simp on the proposition

r” ∈ RIDG (s(r 7→ (σ, τ(l 7→ v), e)))

simplifies it to

r” = r ∨ r” ∈ RIDG (s(r := None)) ∨ r” ∈ RIDS σ ∨ r” ∈ RIDS (τ(l := None)) ∨

r” ∈ RIDV v ∨ r” ∈ RIDE e
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and auto takes it apart even further, transforming disjunctions p ∨ q into (p =⇒ False)

=⇒ q.
What about a term containing multiple updates, such as

r” ∈ RIDG (s(r 7→ ls, r’ 7→ ls’))

with r 6= r’? It is simplified to

r” = r’ ∨ r” ∈ RIDG (s(r := Some ls, r’ := None)) ∨ r” ∈ RIDL ls’.

The desired deconstruction does not take place fully, since the restriction on the out-
side of the subterm RIDG (s(r := Some ls, r’ := None)) blocks further applications of
the ID_distr_global simplification rule. To solve this, we have also added the (clearly
terminating) simplification lemma

lemma restrictions_inwards [simp]:

"x 6= x’ =⇒ f(x := Some y, x’ := None) = (f(x’ := None, x := Some y))"

which pushes all restrictions to the left of all proper updates, allowing the simplification
rule ID_distr_global to fully take apart sequences of updates.

The closing subsection Misc contains a couple of miscellaneous lemmas related to
occurrences. For instance, the lemma

lemma ID_distr_global_conditional:

"s r = Some ls =⇒ RIDG s = insert r (RIDG (s(r := None)) ∪ RIDG ls)"

"s r = Some ls =⇒ LIDG s = LIDG (s(r := None)) ∪ LIDL ls"

is useful in situations where a global state is not stated in some update form f(x 7→ y),
while we do have some knowledge about what it maps to (in the form of a condition). It
also contains a number of inference rules related to combinations, for which we have no
simplification laws.

6.3 Renaming

Theory Renaming introduces the renaming definitions (Section 6.3.1) and formalizes the
notion of renaming-equivalence (Section 6.3.2). It also proves distributive laws (Section
6.3.3) and lemmas about a special class of permutations that we call swaps (Section 6.3.4),
both of which aid in automation.

6.3.1 Definitions

For any parameterized type
(α1, . . ., αn) κ

introduced through the datatype command, a function

map_κ :: (α1 ⇒ α ′1) ⇒ . . .⇒ (αn ⇒ α ′n) ⇒ (α1, . . ., αn) κ ⇒ (α ′1, . . ., α ′n) κ
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is generated. The term map_κ f1 . . . fn x denotes the term x with every element y at an
αi position in x replaced by fi y. We reuse this function to implement αβ-renaming for
the three elementary data types:

abbreviation rename_val ::

"(’r ⇒ ’r) ⇒ (’l ⇒ ’l) ⇒ (’r,’l,’v) val ⇒ (’r,’l,’v) val" ("RV")

where "RV α β v ≡ map_val α β id v"

abbreviation rename_expr ::

"(’r ⇒ ’r) ⇒ (’l ⇒ ’l) ⇒ (’r,’l,’v) expr ⇒ (’r,’l,’v) expr" ("RE")

where "RE α β e ≡ map_expr α β id e"

abbreviation rename_cntxt ::

"(’r ⇒ ’r) ⇒ (’l ⇒ ’l) ⇒ (’r,’l,’v) cntxt ⇒ (’r,’l,’v) cntxt" ("RC")

where "RC α β E ≡ map_cntxt α β id E"

Let σ ′ be an αβ-renaming of some store σ. How should σ ′ behave? If σ l = ⊥, then
we should have σ ′ (β l) = ⊥, and if σ l = v, then we should have σ ′ (β l) = v ′, with v ′

the αβ-renaming of v. This requirement is captured by the following definition:

definition is_store_renaming where

"is_store_renaming α β σ σ’ ≡ ∀l. case σ l of

None ⇒ σ’ (β l) = None | Some v ⇒ σ’ (β l) = Some (RV α β v)"

We do not use this relational definition directly to capture renamings, however, since we
found that it led to tedious proofs. We use the following equational definition instead,
relying on the monadic bind operator »=, familiar from a programming language like
Haskell:1

notation Option.bind (infixl "»=" 80)

fun RS :: "(’r ⇒ ’r) ⇒ (’l ⇒ ’l) ⇒ (’r,’l,’v) store ⇒ (’r,’l,’v) store"

where "RS α β σ l = σ (inv β l) »= (λv. Some (RV α β v))"

The definition assumes that the permutation β has an inverse. Since we assume that β is
a permutation, it is bijective (Section 2.2.3), and therefore has an inverse in all of our use
cases. Where needed, the bijectivity assumption needs to be made explicit throughout
the formalization, such as in the following lemma:

lemma RS_implements_renaming: "bij β =⇒ is_store_renaming α β σ (RS α β σ)"

which is meant to convince us that the definition RS is sound. The predicate bij is
defined in theory Fun.

The renaming of a local state is obtained by renaming each of its components:

fun RL ::

"(’r ⇒ ’r) ⇒ (’l ⇒ ’l) ⇒ (’r,’l,’v) local_state ⇒ (’r,’l,’v) local_state"

where "RL α β (σ,τ,e) = (RS α β σ, RS α β τ, RE α β e)"

1The bind operator »= satisfies the monad laws (None »= f) = f and (Some v »= f) = f v.
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and the renaming of a global state, finally, is analogous to the renaming of a store:

fun RG ::

"(’r ⇒ ’r) ⇒ (’l ⇒ ’l) ⇒ (’r,’l,’v) global_state ⇒ (’r,’l,’v) global_state"

where "RG α β s r = s (inv α r) »= (λls. Some (RL α β ls))"

We also experimented with similar renaming definitions where the α and β were
decoupled. However, we found that this did not really simplify proofs, while it did lead
to a lot of lemma duplicates. For this reason we simply choose to write, e.g., RG α id s

when we only wish to apply a renaming α to the revision identifiers in some global state
s.

6.3.2 Renaming-equivalence

Section RenamingEquivalence defines the notion of renaming-equivalence ≈:

definition eq_states :: ("_ ≈ _" [100, 100]) where

"s ≈ s’ ≡ ∃α β. bij α ∧ bij β ∧ RG α β s = s’"

Several identity, composition and inverse laws for renamings are proven to establish that
≈ is in fact an equivalence, culminating with the lemmas:

lemma αβ_refl: "s ≈ s"

lemma αβ_trans: "s ≈ s’ =⇒ s’ ≈ s” =⇒ s ≈ s”"

lemma αβ_sym: "s ≈ s’ =⇒ s’ ≈ s"

The proof of equivalence relies on the following facts (for bijective α and β):

• id (id s) = s for proving reflexivity.

• α (β s) = s ′ =⇒ α ′ (β ′ s ′) = s ′′ =⇒ (α ′ ◦ α) ((β ′ ◦ β) s) = s ′′ for proving
transitivity, where f ◦ g denotes the composition of f and g (‘f after g’).

• α (β s) = s ′ =⇒ α−1 (β−1 s ′) = s for proving symmetry.

6.3.3 Distributive laws

We usually want to push renamings all the way down to the variables of a term. For
instance

RG α β (s(r 7→ (σ(l 7→ v), τ;;τ ′, E[e])))

should simplify to

RG α β s(α r 7→ (RS α β σ(β l 7→ RV α β v), RS α β τ;;RS α β τ ′,
RC α β E[RE α β e]))
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This allows renamed global states to match the source states of the rules of the opera-
tional semantics, and it helps in proving two global states are renaming-equivalent (see
the next subsection).

We have proven distributive simplification laws for completions (renaming_distr_
completion), combinations (renaming_distr_combination), store updates (renaming_distr_
store) and global updates (renaming_distr_global): the example above illustrates their
necessity. The definition for the renaming of a local state is itself a distributive simplifi-
cation law: we need not prove a separate one.

6.3.4 Swaps

We call a permutation of the form id(x := x ′, x ′ := x) a swap. It is easy to see that swaps
are bijective (lemma swap_bij proves it).

Let α be revision identifier swap id(r := r ′, r ′ := r) and x some structure containing
revision identifiers. If r /∈ RID x and r ′ /∈ RID x, then clearly, α x = x. Section Swaps

proves such laws for both location and revision identifier permutations, and for all struc-
tures containing identifiers. For instance, for revision identifier permutations applied to
stores we have the rule

lemma eliminate_swap_store_rid [simp, intro]:

"r /∈ RIDS σ =⇒ r’ /∈ RIDS σ =⇒ RS (id(r := r’, r’ := r)) id σ = σ"

We illustrate the purpose of these laws by reconsidering the (new) case for the proof
of local determinism (Lemma 9). In this case, the source state s1 with

s1 r = 〈σ, τ,E[ref v]〉

has two target states:
s2 = s1(r 7→ 〈σ, τ(l 7→ v),E[l]〉)

and
s ′2 = s1(r 7→ 〈σ, τ(l ′ 7→ v),E[l ′]〉)

with l /∈ LID s1 and l ′ /∈ LID s1. The goal is to show s2 ≈ s ′2. Our claim was that
for the revision identifier permutation α = id and the location identifier permutation
β = id(l := l ′, l ′ := l), α (β s2) = s

′
2.

This can be automatically derived using auto as follows. First, from the simplifying
distributive laws for renamings auto derives that

α (β s2)) = α (β s1)(α r 7→ 〈α (β σ),α (β τ)(β l 7→ α (β v)),α (β E)[β l]〉).

Second, from l /∈ LID s1, l ′ /∈ LID s1 and s1 r = 〈σ, τ,E[ref v]〉, auto derives that l and
l ′ do not occur in σ, τ, E and v, using the simplifying distributive laws for identifiers
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(together with lemma ID_distr_global_conditional). Finally, using the swap laws and
the definitions of α and β,

α (β s1)(α r 7→ 〈α (β σ),α (β τ)(β l 7→ α (β v)),α (β E)[β l]〉)

can be further simplified to

s1(r 7→ 〈σ, τ(l ′ 7→ v),E[l ′]〉)

which is the definition of s ′2, completing the proof.
From a logical perspective, it would be nicer to generalize the swap laws (e.g., α x = x

if ∀r ∈ RID x. α r = r). However, the current formulation is sufficient for our purposes,
and works better with pattern matching.

6.4 Substitution

The (apply) rule of the operational semantics assumes the existence of a substitution func-
tion over expressions. Theory Substitution introduces the constant subst (representing
substitution) by means of a locale (Section 6.4.1). It also defines two models for the locale,
demonstrating that its assumptions are satisfiable (Section 6.4.2).

6.4.1 Locale substitution

Our motivation for using a locale to introduce the subst function is covered by Section
5.4. The locale is defined as follows:

locale substitution =

fixes subst :: "(’r,’l,’v) expr ⇒ ’v ⇒ (’r,’l,’v) expr

⇒ (’r,’l,’v) expr"

assumes

renaming_distr_subst:

"RE α β (subst e x e’) = subst (RE α β e) x (RE α β e’)"

and

subst_introduces_no_rids:

"RIDE (subst e x e’) ⊆ RIDE e ∪ RIDE e’"

and

subst_introduces_no_lids:

"LIDE (subst e x e’) ⊆ LIDE e ∪ LIDE e’"

The three locale assumptions were not specified a priori: rather, they were added
whenever they were required in the formalization process. The first assumption is re-
quired to prove that steps can be mimicked by renaming-equivalent states. The relevance
of the second assumption is more easily evident: we need it to show that an (apply) step
s1 →r s2 and a (fork) step s1 →r ′ s ′2 (forking some r ′′) commute (i.e., ∃s3. s2 →r ′ s3 ←r s ′2),
since we will have to prove that r ′′ is still fresh in s2. The need for the third assumption
is analogous to the second.
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6.4.2 Models for substitution

As explained in Section 5.4, it is good practice to demonstrate that the assumptions of
locale substitution are satisfiable. The remainder of theory Substitution provides two
models.

The first model is a function constant_function that always maps to unit:

fun constant_function where

"constant_function e x e’ = VE (CV Unit)"

It is very easy to show that it is a model:

lemma constant_function_models_substitution:

"substitution constant_function"

by (auto simp add: substitution_def)

This model is of some interest, since it demonstrates that the substitution function plays
no interesting role in the proof of determinacy.

The second model is a more faithful implementation of a deterministic substitution
function. We give a substitution definition for the pure lambda calculus that best illus-
trates the approach. Let V(t) denote the set of variables (free and bound) occurring in
some lambda-term t, and let tx 7→y denote the term t in which every variable occurrence
x has been renamed to y. Moreover, assume that natural numbers are used for variables.
The substitution definition [t/x]t ′ (‘t for x in t ′’) is defined as follows:

[t/x]x = t

[t/x]y = y (if x 6= y)
[t/x](t ′ t ′′) = ([t/x]t ′) ([t/x]t ′′)
[t/x](λx. t ′) = λx. t ′

[t/x](λy. t ′) = λz. [t/x](t ′y7→z) (if x 6= y and z = max(V(t),V(t ′)) + 1)

The last case ensures capture-avoidance, since z’s definition implies that it cannot occur
free in t.

The approach to renaming is quite aggressive. First, if y is not free in t, then the
renaming is not required, but for our purposes there is no point in adding an extra case
distinction. Second, it would suffice to rename only free occurrences of y to z in t ′, rather
than all occurrences. We nonetheless chose to rename all occurrences, since it allows us
to reuse the generated function map_expr (described in Section 6.3.1) for renamings: the
abbreviation

abbreviation rename_vars_expr ("RVE") where

"RVE ζ ≡ map_expr id id ζ"

allows us to write RVE (id(x := y)) t for tx 7→y. By contrast, we found that renaming
free variables using the substitution notion itself complicated proofs.
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The function nat_substE implements the analogous substitution definition for revi-
sion calculus expressions. It is defined through mutual recursion:

function

nat_substV and

nat_substE
where
...

| "nat_substV e x (Lambda y e’) = VE (

if x = y then

Lambda y e’

else

let z = Suc (Max (VE e’ ∪ VE e)) in

Lambda z (nat_substE e x (RVE (id(y := z)) e’)))"
...

The command function is used since the termination proof attempted by fun fails (Sec-
tion 5.3.5). The problem lies in the case included in the snippet above: the size of the
third argument (the number of Val and Expr constructors) is strictly decreasing in the
recursive function call, but this it is not automatically inferred. To remedy this, we prove
the general lemma:

lemma var_renaming_preserves_size:

"size (map_val α β ζ v) = size v"

"size (map_expr α β ζ e) = size e"

which states that renamings do not change the size of a term.
Two mutually recursive functions are internally represented as a single sum type

function. The termination proof

termination

apply (relation "measure (λx. case x of Inl (e,x,v) ⇒ size v |

Inr (e,x,e’) ⇒ size e’)")

by (auto simp add: var_renaming_preserves_size(2))

states that the recursive calls are decreasing in the third argument of whichever option
of the sum type is defined. It then automatically solves the subsequent goal by auto,
strengthened with size (map_expr α β ζ e) = size e as a simp law.

The remainder of the Substitution theory proves that nat_substE is a model, culmi-
nating in the lemma

lemma nat_substE_models_substitution: "substitution nat_substE"
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6.5 Operational semantics

The operational semantics of the revision calculus is defined by the following inductive
predicate contained in theory OperationalSemantics:

inductive revision_step ::

"’r ⇒ (’r,’l,’v) global_state ⇒ (’r,’l,’v) global_state ⇒ bool"

where

app: "s r = Some (σ, τ, E[Apply (VE (Lambda x e)) (VE v)]) =⇒
revision_step r s (s(r 7→ (σ, τ, E[subst e x (VE v)])))"

| ifTrue: "s r = Some (σ, τ, E[Ite (VE (CV T)) e1 e2]) =⇒
revision_step r s (s(r 7→ (σ, τ, E[e1])))"

| ifFalse: "s r = Some (σ, τ, E[Ite (VE (CV F)) e1 e2]) =⇒
revision_step r s (s(r 7→ (σ, τ, E[e2])))"

| alloc: "s r = Some (σ, τ, E[Ref (VE v)]) =⇒ l /∈ LIDG s =⇒
revision_step r s (s(r 7→ (σ, τ(l 7→ v), E[VE (Loc l)])))"

| get: "s r = Some (σ, τ, E[Read (VE (Loc l))]) =⇒ l ∈ dom (σ;;τ) =⇒
revision_step r s (s(r 7→ (σ, τ, E[VE (the ((σ;;τ) l))])))"

| set: "s r = Some (σ, τ, E[Assign (VE (Loc l)) (VE v)]) =⇒
l ∈ dom (σ;;τ) =⇒ revision_step r s (s(r 7→ (σ, τ(l 7→ v), E[VE (CV Unit)])))"

| fork: "s r = Some (σ, τ, E[Rfork e]) =⇒ r’ /∈ RIDG s =⇒
revision_step r s (s(r 7→ (σ, τ, E[VE (Rid r’)]), r’ 7→ (σ;;τ, ε, e)))"

| join: "s r = Some (σ, τ, E[Rjoin (VE (Rid r’))]) =⇒
s r’ = Some (σ’, τ’, VE v) =⇒
revision_step r s (s(r := Some (σ, (τ;;τ’), E[VE (CV Unit)]), r’ := None))"

| joinε: "s r = Some (σ, τ, E[Rjoin (VE (Rid r’))]) =⇒ s r’ = None =⇒
revision_step r s ε"

The formulations of the side conditions on (new) (i.e., l /∈ LIDG s) and (fork) (i.e., r’ /∈
RIDG s) are as strict as possible, and the side conditions on (get) and (set) are explicit.

The declaration is followed by

inductive_cases revision_stepE [elim, consumes 1, case_names app ifTrue ifFalse

alloc get set fork join joinε]: "revision_step r s s’"

which generates an elimination rule of the form

J revision_step ?r ?s ?s’ ;

(
∧
σ τ E x e v. ?s’ = ?s(?r 7→ (σ, τ, E [subst (VE v) x e])) =⇒

?s ?r = Some (σ, τ, E [Apply (VE (Lambda x e)) (VE v)]) =⇒ ?P) ;

. . . ;

(
∧
σ τ E r’. ?s’ = ε =⇒ ?s ?r = Some (σ, τ, E [Rjoin (VE (Rid r’))]) =⇒

?s r’ = None =⇒ ?P) K
=⇒ ?P

where the ‘. . .’ denotes the seven intermediate cases of the operational semantics. The
command consumes 1 in the inductive_cases declaration signifies that the first premiss
revision_step ?r ?s ?s’ is the target of elimination, and case_names provides names
to all of the following cases. This allows one to write the readable Isar case analyses
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of revision steps that are used throughout the formalization. The readability could be
further enhanced by also giving names to the case hypotheses and conclusions.

The remainder of OperationalSemantics is largely dedicated to the proof of Lemma
1 (including introducing any additional required notions for it). The lemma name is
step_preserves_SG_and_AG. The proof is faithful to the proof given in Section 3. Transi-
tive chains of reasoning, such as

e1 ⊆ e2
⊆ e3
...
⊆ en

for proving e1 ⊆ en, are represented in Isar by writing

have "e1 ⊆ e2"

also have ". . . ⊆ e3"
...

also have ". . . ⊆ en"

finally have "e1 ⊆ en"

and are used throughout the proof (here, ‘. . .’ is part of the Isar syntax).
The theory closes with the inductive predicate revision_step_relaxed. It is the same

predicate as revision_step, except that the (new) side condition is now l /∈
⋃

{ doms ls

| ls. ls ∈ ran s }, and the side conditions on (get) and (set) are removed.
We cannot yet show that revision_step and revision_step_relaxed define the same

transition system: for that we first need to formalize notions related to executions, which
is the subject of the next section.

6.6 Executions

Theory Executions introduces the required concepts for reasoning about executions. To
avoid overloading the symbol for logical implication →, the set of steps is defined as a
relation [;]:

definition steps :: "(’r,’l,’v) global_state rel" ("[;]") where

"steps = { (s,s’) | s s’. ∃r. revision_step r s s’ }"

where the type ’a rel is a type synonym for (’a × ’a) set. We also introduce an infix
notation s ; s ′ for (s, s ′) ∈ [;], and infix notations ;∗ and ;= for respectively the
reflexive transitive closure and reflexive closure of ;. The closure operations are defined
using definitions from the HOL theory Transitive_Closure.

The notions from Section 2.2.2 are faithfully defined:

abbreviation program_expr where

"program_expr e ≡ LIDE e = {} ∧ RIDE e = {}"
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abbreviation initializes where

"initializes s e ≡ ∃r. s = (ε(r 7→ (ε,ε,e))) ∧ program_expr e"

abbreviation initial_state where

"initial_state s ≡ ∃e. initializes s e"

definition execution where

"execution e s s’ ≡ initializes s e ∧ s ;∗ s’"

definition maximal_execution where

"maximal_execution e s s’ ≡ execution e s s’ ∧ (@s”. s’ ; s”)"

definition terminates_in where

"e ↓ s’ ≡ ∃s. maximal_execution e s s’"

definition reachable where

"reachable s ≡ ∃e s’. execution e s’ s"

We also define the notion of an inductive invariant:

definition inductive_invariant :: "((’r,’l,’v) global_state ⇒ bool) ⇒ bool"

where "inductive_invariant P ≡ (∀s. initial_state s =⇒ P s) ∧

(∀s s’. s ; s’ =⇒ P s =⇒ P s’)"

for which we prove:

lemma inductive_invariant_is_execution_invariant:

"reachable s =⇒ inductive_invariant P =⇒ P s"

Inductive invariance is used to establish two facts. First, it is used to prove that the
two revisions step definitions revision_step and revision_step_relaxed define the same
transition relation on reachable states (Corollary 2):

lemma transition_relations_equivalent:

"reachable s =⇒ revision_step r s s’ = revision_step_relaxed r s s’"

We use the revision_step predicate as the default in the remainder of the formalization,
since it makes more information explicit. Second, it is used to establish that reachable
states contain finitely many revision and location identifiers (Lemma 10):

lemma reachable_imp_identifiers_finite:

assumes reach: "reachable s"

shows

"finite (RIDG s)"

"finite (LIDG s)"
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This lemma is used to show that revisions can always allocate some revision or location
identifier:

lemma reachable_imp_identifiers_available:

assumes

"reachable (s :: (’r,’l,’v) global_state)"

shows

"infinite (UNIV :: ’r set) =⇒ ∃r. r /∈ RIDG s"

"infinite (UNIV :: ’l set) =⇒ ∃l. l /∈ LIDG s"

The predicates finite and infinite are defined in Finite_Set, and the set UNIV denotes
the universal set of some type.

Finally, we show that reachability is closed under execution:

lemma reachability_closed_under_execution:

"reachable s =⇒ s ;∗ s’ =⇒ reachable s’"

In proofs, this allows us to extend a reachability assumption on s to any of its successor
states s ′.

6.7 Determinacy

The last theory of our formalization is theory Determinacy. This theory contains the
proofs for rule determinism, local determinacy, strong local confluence, confluence mod-
ulo renaming-equivalence and, finally, determinacy.

6.7.1 Rule determinism

Rule determinism is represented by nine lemmas: one for each rule of the operational
semantics. The rule for (apply), for instance, is

lemma app_deterministic [simp]:

assumes

s_r: "s r = Some (σ, τ, E [Apply (VE (Lambda x e)) (VE v)])"

shows

"(revision_step r s s’) =

(s’ = (s(r 7→ (σ, τ, E [subst (VE v) x e]))))"

The rule determinism lemmas are all stated as simplification laws. These laws are useful
when reasoning about peaks s2 ←r s1 →r ′ s ′2. Performing a case distinction on, e.g., the
left step s2 ←r s1 generates some hypothesis s1 r = L. Any deducible information about
the target state s ′2 of the right step s1 →r ′ s ′2 is then immediately derived: we need not
first perform a case distinction on the right step, and then eliminate all the nonsensical
cases.
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The information also includes the required information on side conditions, if appli-
cable:

lemma new_pseudodeterministic [simp]:

assumes

s_r: "s r = Some (σ, τ, E [Ref (VE v)])"

shows

"(revision_step r s s’) = (∃l. l /∈ LIDG s ∧ s’ =

(s(r 7→ (σ, τ(l 7→ v), E [VE (Loc l)]))))"

6.7.2 Strong local confluence

Strong local confluence is represented by the following theorem:

theorem strong_local_confluence:

assumes

l: "revision_step r s1 s2" and

r: "revision_step r’ s1 s2’" and

reach: "reachable (s1 :: (’r,’l,’v) global_state)" and

lid_inf: "infinite (UNIV :: ’l set)" and

rid_inf: "infinite (UNIV :: ’r set)"

shows

"∃s3 s3’. s3 ≈ s3’ ∧ (revision_step r’ s2 s3 ∨ s2 = s3) ∧

(revision_step r s2’ s3’ ∨ s2’ = s3’)"

proof (cases "r = r’")

case True

thus ?thesis by (metis l local_determinism r)

next

case neq: False

thus ?thesis by (cases rule: revision_stepE[OF l]) (auto simp add:

assms SLC_app SLC_ifTrue SLC_ifFalse SLC_new SLC_get SLC_set

SLC_fork SLC_join SLC_joinε)

qed

Like in the paper proof, a case distinction is made on r = r ′, where the r = r ′ case is the
local determinism lemma:

lemma local_determinism:

assumes

left: "revision_step r s1 s2" and

right: "revision_step r s1 s2’"

shows "s2 ≈ s2’"

The automation aspects of the proof to lemma local_determinism are explained in Sec-
tion 6.3.4, and also help in understanding the other Isabelle proofs for strong local con-
fluence.
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For the r 6= r ′ case, each case of the case distinction on the left step s1 →r s2 is
represented by a dedicated lemma SLC_x, with x the name of the case. This was done to
make the large proof more manageable and more readable. The order of these lemmas
is the same as in the proof to Lemma 11. The proofs contain more explicit tedious
detail regarding, e.g., freshness of identifiers and swaps. This is especially true in case
SLC_fork.

For proving each of the nine individual cases, we prove two general principles SLC_

sym and SLC_commute:

lemma SLC_sym:

"∃s3’ s3. s3’ ≈ s3 ∧ (revision_step r’ s2 s3’ ∨ s2 = s3’) ∧

(revision_step r s2’ s3 ∨ s2’ = s3) =⇒
∃s3 s3’. s3 ≈ s3’ ∧ (revision_step r s2’ s3 ∨ s2’ = s3) ∧

(revision_step r’ s2 s3’ ∨ s2 = s3’)"

lemma SLC_commute:

"J s3 = s3’; revision_step r’ s2 s3; revision_step r s2’ s3’ K =⇒
s3 ≈ s3’ ∧ (revision_step r’ s2 s3 ∨ s2 = s3) ∧

(revision_step r s2’ s3’ ∨ s2’ = s3’)"

Lemma SLC_sym is used for solving the symmetric cases that were omitted in the proof
to Lemma 11. When applied in a case (rule1) vs. (rule2), it transforms the conclusion into
its symmetric version, effectively reducing the case to (rule2) vs. (rule1), which at that
point already has a proof.

Lemma SLC_commute is a general proof principle that is used in many cases in which
the diverging steps commute. By applying the rule, the proof obligation is made more
specific, which helps both in guiding proof automation and in writing understandable
Isar proofs. The lemmas join_and_local_commute, local_steps_commute and local_and_

rfork_commute have similar roles, refining the proof obligation even further for the com-
muting pairs (join) vs. (local), (local) vs. (local) and (local) vs. (fork), respectively.

6.7.3 Confluence and determinacy

The remainder of theory Determinacy revolves around proving the diagram tiling proofs
of Section 4.3, culminating in the proof of confluence modulo renaming-equivalence:

lemma confluence_modulo_equivalence:

assumes

s1s2: "s1 ;∗ s2" and

s1s2’: "s1’ ;∗ s2’" and

equiv: "s1 ≈ s1’" and

reach: "reachable (s1 :: (’r,’l,’v) global_state)" and

lid_inf: "infinite (UNIV :: ’l set)" and

rid_inf: "infinite (UNIV :: ’r set)"

shows "∃s3 s3’. s3 ≈ s3’ ∧ s2 ;∗ s3 ∧ s2’ ;∗ s3’"
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and finally, determinacy:

theorem determinacy:

assumes

prog_expr: "program_expr e" and

e_terminates_in_s: "e ↓ s" and

e_terminates_in_s’: "e ↓ s’" and

lid_inf: "infinite (UNIV :: ’l set)" and

rid_inf: "infinite (UNIV :: ’r set)"

shows "s ≈ s’"

All formal diagram proofs are faithful to the paper proofs. The only proof that required
considerable extra work is the proof for the mimicking diagram. Namely, the claims

r /∈ RID s⇐⇒ α r /∈ RID (α (β s))

and
l /∈ LID s⇐⇒ β l /∈ LID (α (β s)),

assumed in Lemma 13, had to be proven formally. This required us to show similar prop-
erties for all the lower concepts in the hierarchy of types containing identifiers (values,
expressions, stores and local states).
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Chapter 7
Discussion

The formalization lead to the identification of a number of ambiguities in the specifica-
tion of the formal semantics, and their resolution lead to changes in the side conditions of
the operational semantics. The formalization also showed that the proof of determinacy
could be simplified.

What is the significance of these findings? We may interpret this question pragmati-
cally, and ask what the implications are for existing implementations. We may also take
more of a conceptual approach, by taking the semantics at face value, and asking what
sorts of issues the formalization exposed.

Let us first of all address the pragmatic interpretation: we do not think that our find-
ings map to bugs in the C# and Haskell implementations. The short explanation for this
is that the logic related to revision and location identifiers—which caused trouble in the
formal semantics—is handled by the solid runtimes of these programming languages.
For a more detailed explanation, consider the scenario described in Section 3.2, in which
a revision r is about to join a deleted revision r ′, and indeterminacy results from the fact
that the identifier r ′ may or may not be reallocated by a concurrent fork operation. Based
on the C# fragments and explanations contained in Burckhardt and Leijen’s original pa-
per [BBL10], it seems like a ‘revision identifier’ is simply a reference to an object instance
of a Revision class. Thus, as long as a revision references such an object, C#’s garbage
collector will not remove it, and a concurrent fork cannot replace it. Experimentation
within an official online environment1 corroborates this conjecture: a Revision object’s
hash code (accessed through the method .GetHashCode()) is unaffected by a join oper-
ation, and a second join attempt even returns a special exception stating that revisions
cannot be joined twice. The Haskell implementation, discussed in a paper by Leijen
[LFB11], seems to have similar characteristics, and the associated publication explicitly
describes replacing a revision’s data with an exception when it is subject to a join. We

1See https://rise4fun.com/Revisions/.
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think this discrepancy between the semantics and the implementations is unfortunate,
since it seems like determinacy is not preserved in the implementation setting when two
revisions race to join a third. Presumably, however, the intent for the semantics was to
prove determinacy assuming that revisions are not joined twice, meaning that rule (joinε)
was merely added as a simplifying assumption for proofs.

Let us now take the semantics at face value. What sort of value can a formalization
add? The result that the condition on (fork) has to be strengthened (Section 3.2) essentially
exposes a bug that breaks an important desired safety property: the merit of this result is
self-evident. The results that show that the side condition on (new) can be weakened, and
the side conditions on (get) and (set) removed (Section 3.3), by contrast, do not expose
any incorrect behaviour. Rather, they show that any faithful implementations of the
transition rules could be aggressively optimized. Without the assurance provided by the
rather involved proof to Lemma 1 and its mechanical verification, such optimizations
may be deemed too risky to actually apply in a hypothetical system implementation.
These two classes of advantages are also stressed and amply illustrated by Newcombe et
al. [NRZ+15], who describe the use of formal methods at Amazon Web Services.

Another advantage of the formalization is that it made us highly aware of design
decisions. This shows not only in the major results, but also in some of the minor
observations that we have made throughout the thesis. One may consider, for instance,
the ‘curious asymmetry’ discussed in the remark in Section 3.2, which could lead to a
subtle change in the definition of execution contexts; and the observation that extending
the calculus with custom merge functions may as not be as trivial as Burckhardt and
Leijen seem to suggest (Section 2.2.4).

Our simplification of the proof of determinacy, finally, is probably not very conse-
quential, even though it may be appreciated for theoretical reasons. However, if someone
ever decides to extend the calculus, resulting in more complex diagram tiling proofs, it
may help make those proofs more manageable. It also makes clear that such extensions
should take care to preserve the validity of the mimicking diagram.

Since the thesis was intended as a general case study of the formalization of a con-
currency model, we would like to dedicate a few words to our personal experience of
the overall formalization process, and the use of Isabelle/HOL in particular.

In general, we were positively surprised by just how much the relatively simple act
of specification alone uncovered. The insights of Chapter 3, for instance, were largely a
consequence of having to specify the formal semantics. Nonetheless, it was the more la-
borious act of verification that helped us get the details right on multiple occasions. For
instance, it was the act of verification that helped us formulate the right inductive invari-
ant for the proof to Lemma 1, and which lead us to the realization that the mimicking
diagram (Lemma 13) was required. Moreover, the confidence provided by a mechanical
verification cannot be underestimated.

Our overall experience of Isabelle/HOL in particular has been very positive. Our
frame of reference is limited to the interactive theorem prover Coq [BC13], the model
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checker for the mCRL2 specfication language [GMR+07], and both the model checker
(TLC) and theorem prover (TLAPS) for the TLA+ specification language [Lam02]. While
we are no expert on any of these tools, it seems to us that the extent of tool support
(e.g., Isabelle/jEdit has many useful features), automation support and proof language
expressiveness for Isabelle/HOL is unrivalled. In some ways, this does translate to a rel-
atively steep learning curve. In particular, since most automation methods (such as auto)
exhibit black box behavior to an average user (and understandably so), it really is expe-
rience that helps one work effectively with these tools. Moreover, it sometimes proved
challenging to find a solution to a problem, since the documentation on Isabelle/HOL is
distributed over a large number of publications.

We see at least three ways in which future work could meaningfully extend the work
presented in this thesis. First, the other results in Burckhardt and Leijen’s original pa-
per [BL11] could also be formalized. In particular, we think that the theorem stating
that there exists a closest common ancestor for every pair of states in revision diagram
be would interesting to formalize, since the property is important, and its paper proof
relatively involved. Second, rule (join) could be generalized to support custom merge
functions, as discussed in the original paper and in Section 2.2.4. Since the use of custom
merge functions is a defining feature of concurrent revisions, it would be useful to clarify
which general constraints such functions should satisfy exactly. Third, the calculus could
be extended with features that are part of the concurrent revisions project, but are not yet
formulated in any formal semantics, such as support for exceptions [LFB11] and (more
substantially) incremental computation [BLS+11].

We think all of these potential extensions can leverage our formalization in two ways.
First, all of the elementary definitions and the associated results can be directly reused,
such as the completion equivalence lemma (Lemma 7), the result that ≈ is indeed an
equivalence (Section 6.3), and all of the necessary (but uninteresting) lemmas required for
reasoning about occurrences (Section 6.2) and renamings (Section 6.3). This eliminates
a lot of tedium from future formalization efforts. Second, since most of our proofs are
written using the structured Isar proof language, it should be quite easy to modify these
proofs when, for instance, additional rules are introduced to the calculus: any newly
generated cases can be straightforwardly integrated into the existing proofs. We consider
this high degree of maintainability another great benefit of using Isabelle/HOL.
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