
Lifting congruence closure with free variables to

λ-free higher-order logic via SAT encoding
(work in progress)

Sophie Tourret1, Pascal Fontaine2,3, Daniel El Ouraoui2, Haniel Barbosa4 ∗†

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France

3 Université de Liège, Liège, Belgium
4 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

Recent work in extending SMT solvers to higher-order logic (HOL) has not explored
lifting quantifier instantiation algorithms to perform higher-order unification. As a con-
sequence, widely used instantiation techniques, such as trigger- and particularly conflict-
based, can only be applied in a limited manner. Congruence closure with free variables
(CCFV) is a decision procedure for the E-ground (dis-)unification problem, which is at
the heart of these instantiation techniques. Here, as a first step towards fully supporting
trigger- and conflict-based instantiation in HOL, we define the E-ground (dis-)unification
problem in λ-free higher-order logic (λfHOL), an extension of first-order logic where func-
tion symbols may be partially applied and functional variables may occur, and extend
CCFV to solve it. To improve scalability in the context of handling higher-order vari-
ables, we rely on an encoding of the CCFV search as a propositional formula. We present
a solution reconstruction procedure so that models for the propositional formula lead to
solutions for the E-ground (dis-)unification problem. This is instrumental to port trigger-
and conflict-based instantiation to be fully applied in λfHOL.

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-world appli-
cations. In particular, it is widely used in proof assistants to provide trustworthy, formal, and
machine-checkable proofs of theorems. A major challenge in this setting is to automate proofs
as much as possible, thereby making the proof assistants easier to use. A successful approach
to this automation challenge is hammering [10]. It consists in encoding proof obligations into
first-order (FO) logic and use first-order provers to discharge them. A similar layered approach
is also used by HO theorem provers such as Leo-III [21] and Satallax [12], which regularly invoke
FO provers to discharge intermediate goals that depend solely on FO reasoning.

Such approaches have well-known performance, soundness, or completeness issues due to the
black-box integration between FO and HO reasoning [8, 16, 23]. To mitigate these problems,
recent work [4, 6, 7, 9, 23] has focused on extending FO provers, based on the superposition
calculus [1,17] or on SMT solving [5], to natively support HOL, so that the integration between
the highly efficient FO component and the new HO one is graceful, i.e. the prover behaves
mostly as its first-order counterpart on FO problems and also handles HO problems natively.
The HO extension of SMT solvers [4] has not explored lifting quantifier instantiation algorithms

∗The order of authors is inverse alphabetic.
†The work has received funding from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka).

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

to perform higher-order unification. As a consequence, widely used instantiation techniques,
such as trigger-based [13, 14], conflict-based [3, 19], model-based [15, 20], and enumerative [18]
instantiation, can only be applied in a limited manner. Moreover, even in a limited application,
the efficient implementation of these techniques depends on specific term indices that have to be
adapted to handle equalities between functions and a curried representation of terms [4, Section
3.4].

Congruence closure with free variables (CCFV) [3] is a framework for casting instantiation
techniques in SMT. It is based on solving the E-ground (dis)unification problem, i.e. given a
conjunctive set of ground equality literals E and a conjunctive set of (possibly non-ground)
equality literals L, it finds substitutions σ such that E |= Lσ holds. These substitutions lead
to instantiations following the instantiation technique being used. By extending CCFV to
perform HO unification effectively we can in one fell swoop remove the limitations for HOL of
all the instantiation techniques supported by the framework. This can be specially helpful for
techniques that heavily depend on unification (as opposed to matching), such as conflict-based
instantiation, which has been shown to be particularly effective for proof obligations originating
from proof assistants [19].

Given the complexity of the task at hand, we follow previous approaches by proceeding in a
stepwise manner [7,23], first extending CCFV to λ-free HOL (λfHOL), a fragment of HOL with
partial applications and functional variables. In this effort we quickly realized that extending
CCFV as a tableaux-like calculus, as it was originally presented [3], posed a strong limitation
on our ability to add new features to the framework. Moreover, the added complications of
handling functional variables and a curried representation of terms, let alone lambda terms in
the future, indicated that to have a scalable implementation we should handle the combina-
torial nature of the search more efficiently than via regular backtracking. We thus present a
lifting of CCFV to λfHOL via an encoding into an equisatisfiable SAT problem (Section 4).
The encoding is based on fully reducing the search for substitutions to SAT based on the en-
tailment conditions of literals in L (Section 4.1), after they have been preprocessed (Section 3),
while taking into account the dependencies between variables due to cycles (Section 4.2) and
congruence (Section 4.3). We present a solution reconstruction procedure (Section 5) so that
satisfiable assignments lead to substitutions solving the original problem.

2 Preliminaries and problem statement

We work in λ-free higher-order logic (λfHOL) with Henkin semantics, following Bentkamp et
al. [7]. We introduce here the relevant notions of this logic.

We use a monomorphic type system equipped with a set of atomic types S and a binary
function → such that given two types τ , ν, the type τ → ν is the type of functions from τ to
ν. The sets Σ and V respectively contain the function symbols (a, b, f , g...) and variables (w,
x, y, z) upon which terms are built. Each symbol and variable is annotated with a type, e.g.
f : τ → τ , but the types will be omitted when irrelevant or obvious, i.e. almost all the time
except in the following definition. Terms are defined as: u = a | x | (u1 : τ → ν) (u2 : τ) where
a ∈ Σ, x ∈ V and u1, u2 are terms. Note that this entails a curried representation of terms. A
term is ground if it does not contain variables. We always denote terms using u plus various
sub- and superscripts and ground terms using t instead. Subterms of u are u, u1, u2 and all
subterms of u1 and u2 (if they occur). Strict subterms are all subterms excluding u itself. The
notations u[u′] and u[u′]s respectively denote that u′ is a subterm or a strict subterm of u.

Literals are equalities (u1 ' u2) and disequalities (u1 6' u2) of terms, respectively denoted
positive and negative literals. It is possible to handle predicate literals, e.g. Q and ¬Q, implicitly

2

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

as equations and disequations, e.g. Q ' > and Q 6' >, by defining a binary type for Booleans
and an interpreted symbol > of this type. This is used in practice to apply the techniques
presented here to predicates but it does not impact the theory so we do not mention it further
in this paper. Sets of literals are denoted by L, L′, etc., and sets of ground literals by E. The
set of all terms, subterms included, that occur in a set of literals L is denoted by T(L). The
set of all ground terms in L is denoted by Tg(L).

Substitutions, denoted σ, are functions that map variables to terms such that only finitely
many of them are not mapped to themselves. They are extended as usual to apply on terms and
sets of terms, written in postfix notation. The domain of σ is dom(σ) = {x | x ∈ V and xσ 6= x}
and its range is ran(σ) = {xσ | x ∈ dom(σ)}. A substitution is ground if its range is a set of
ground terms. It is acyclic if each variable x never occurs as a subterm of xσn for any n > 0.
The fixpoint of an acyclic substitution always exists and is denoted σ?.

An interpretation I assigns: 1. to each atomic type τ a non-empty set I(τ); 2. to each type
τ → ν a subset I(τ → ν) of the function space from I(τ) to I(ν); 3. to each function or variable
u : τ in Σ ∪ V an element I(u) in I(τ). I naturally extends to an interpretation I(u) for each
term u. An equation u1 ' u2 is entailed by an interpretation I if and only if I(u1) = I(u2),
and a disequation u1 6' u2 is entailed by I if and only if I(u1) 6= I(u2). An interpretation I is
a model of a set of literals L if it entails all of them. This is denoted by I |= L. By extension,
we write E |= L when every model of E is also a model of L.1

Given a set of ground literals E, the congruence closure of E is the partition into classes of
all ground terms such that two ground terms t1 and t2 belong to the same class if and only if
E |= t1 ' t2. Given additionally a set of literals L, the restriction of the congruence closure to
Tg(E ∪L) is denoted Ecc. The notation [t] denotes the E-congruence class in which t occurs.2

The representative of [t] is a chosen element in the class. The notation [t] ∈ Ecc denotes that
E |= t ' t′ for some ground term t′ ∈ Tg(E ∪ L). Notice that, if [t] ∈ Ecc, then [t′] ∈ Ecc for
any subterm t′ of t. We abuse this notation by writing [u] ∈ Ecc and u ∈ [t] for non-ground
terms u to indicate that we want u, or rather uσ for some grounding substitution σ, to belong
to an E-equivalence class that exists in Ecc or to a particular class [t] ∈ Ecc respectively.
We denote by [[t]] the set of signatures in [t], that is, all the pairs of classes [t1][t2] such that
[t1 t2] = [t].

Example 1. Let E = {a ' f a, g ' f, g b ' h c} and L = {x ' y d}, then

Ecc = {{a, f a}, {f, g}, {g b, h c}, {b}, {c}, {d}, {h}}.

In the full congruence closure of E, the class [a] is infinite since it includes all terms of the form
fn a and gn a for n ≥ 0, among others. Entailment also goes beyond Ecc, e.g. E |= f b ' h c
and E |= a ' f (g a). Moreover [[a]] = {[f][a]}, [[g b]] = {[f][b], [h][c]} and the other signatures
are empty.

Following Barbosa et al. [3], we present below the definition of the E-ground (dis)unification
problem in λfHOL and the theorem characterizing its set of solutions. Although both statements
coincide with their first-order logic (FOL) counterparts, in λfHOL the problem and its solutions,
if they exist, may include functional variables, which are now part of the set of terms over which
substitutions range. Nevertheless, the lifting to λfHOL is straightforward since it can be directly
encoded into FOL (e.g. by means of an applicative encoding).

1This is a simplification of the actual formalism by Bentkamp et al. [7].
2Note that [t] alone refers to the class of t, while u[t] refers to a term u with a subterm t.

3

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

Definition 2 (E-ground (dis)unification). Given two finite sets of equational literals E and
L, where E is ground, the E-ground (dis)unification problem is that of finding substitutions σ
such that E |= Lσ.

Theorem 3. Given an E-ground (dis)unification problem, if a substitution σ exists such that
E |= Lσ, then there is an acyclic substitution σ′ such that ran(σ′) ⊆ T(E ∪ L), σ′? is ground,
and E |= Lσ′?.

Proof. Let app denote the encoding of terms from λfHOL to FOL.3 Let us assume that there
exists a σ such that E |= Lσ. Then app(E) |= app(Lσ) = app(L)app(σ). The theorem we want
to prove holds in first-order logic (see Theorem 1 in [3]) thus there exists an acyclic substitution
σ′ such than ran(σ′) ⊆ Tapp(app(E)∪ app(L)), σ′? is ground, and app(E) |= app(L)σ′?. Then
the substitution σ′′, where app(σ′′) = σ′ is also acyclic and such that ran(σ′′) ⊆ T(E ∪L) and
E |= Lσ′′?.

3 Preprocessing

To ease the SAT encoding (Section 4) we assume that a series of standard preprocessing tech-
niques, shown below, have been applied to L so that it comprises only literals of the form x 6' y,
x 6' t or u0 ' u1 u2, where at least one of u1 and u2 is a variable.

Normalizing. A set of literals is E-normalized, abbreviated as normalized because E is
always clear from the context, if every ground term it contains is the representative of its
congruence class modulo E. A set of literals can be normalized by replacing all occurrences of
ground terms by their representative.

Example 4. Given the problem:

E = {(f a) b ' (f b) a, g b ' g c, h1 ' h2, g ' f a}
L = {h1 x ' b, x ' (f a) y, h1 ((f x) b) ' a, g b ' (f x) y, (f a) a ' g b}

The non-singleton classes in Ecc are:

[g] = {ggg, f a}
[(f a) b] = {g b, g cg cg c, (f a) b, (f b) a}

[h1] = {h1, h2h2h2}

where bold font ttt identifies the representative term in a class [t]. The normalized L is thus:

Lnorm = {h2h2h2 x ' b, x ' ggg y, h2h2h2 ((f x) b) ' a, g cg cg c ' (f x) y, ggg a ' g cg cg c}.

Removing ground literals. Eliminating ground literals from L amounts to replace them
by > if they are entailed by E and by ⊥ otherwise, followed by removing all occurrences of
> from L. If there is any occurrence of ⊥ then L itself becomes {⊥} since the E-ground
(dis)unification problem is then unsatisfiable.

Example 5. Consider E and L as in the previous example. Removing ground literals from
Lnorm produces Lnon-ground = {⊥} because its last equation is not entailed by E. If we consider
instead L′ = L\{(f a) a ' g b} then L′norm = Lnorm\{g a ' g c} and finally L′non-ground = L′norm.

3WiP note: The applicative encoding allows to encode λfHOL with Henkin semantics to FOL with standard
semantics. In future work, we plan to replace this proof with one that does not rely on the applicative encoding,
we only give a minimal description of it in Appendix A. It is also described, e.g., by Barbosa et al. [4].

4

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

Flattening. A set of literals is flattened if each of its literals is of the form x ' t, x ' y,
x 6' t, x 6' y, or u0 ' u1u2 where x and y are variables, t is a ground term, and u0, u1, u2 are
either variables or ground terms with at least u1 or u2 being a variable. Any set of literals can
be flattened by introducing new variables.

Example 6. Consider L′ as in the previous example. The flattened version of L′non-ground is:

L′flat = {b ' h2 x, x ' g y, a ' h2 z1, z1 ' z2 b, z2 ' f x, g c ' z2 y}.

Trivial assignments. A set of literals L has trivial assignments if it contains literals of the
following form:

• x ' t, where x is a variable and t is ground;
• x ' y, where x, y are variables;
• x ' u, where variable x does not occur elsewhere in L including in u, and u is any term

(not containing x).

As long as there is a trivial assignment x ' u′ in L it is possible to consider the equivalent
problem where L is replaced by L′ = (L \ {x ' u′})σ instead, where σ = {x 7→ u′}. In the
third case, this simply amounts to removing the x ' u equation from L.

Since L′ may contain new ground literals and trivial assignments, as well as ground terms
that are not in normal form, it is necessary to iterate on normalization, ground literals simplifica-
tion and trivial assignments instantiation until all such literals have been removed. Eliminating
trivial assignments might render a literal ground, but otherwise flattening is not impacted by
this transformation. Indeed, none of the three cases of trivial assigments will ever lead to the
replacement of a variable inside a literal by an applied non-ground term. This process termi-
nates since each step eliminates one variable from L among finitely many. Sect. 5 provides a
way to build a solution for L from a solution for L′.

Example 7. L′flat from the previous example contains no trivial assignments.

Example 8. Let L = {x ' f a, y ' x b, z ' y z}. Assume that L is already normalized for
a given E. Note that L is also flattened and without ground literals. However, it contains the
trivial assignment x ' f a since f a is ground. Applying the previously described procedure
yields L′ = {y ' (f a) b, z ' y z}. This new set is still flattened and without ground literals but
it contains a new trivial assignment, namely y ' (f a) b. Assume (f a) b is normalized. After
another iteration of the procedure, the remaining problem is L′′ = {z ' ((f a) b) z}.

Example 9. Let L = {y ' x a, z ' x, z ' f x, g ' x c}. As in the previous example, L
is flattened and without ground literals and we assume it is normalized for a given E. Both
literals y ' x a and z ' x are trivial assignments and are to be eliminated. The preprocessing
chain yields L′ = {x ' f x, g ' x c}.

A flattened normalized set of literals without trivial assignments and ground literals is called
a preprocessed set of literals.

4 Encoding CCFV as a SAT problem

Every solution of the E-ground (dis)unification problem is a substitution: it maps variables to
terms. Thanks to Theorem 3 we know that if a generic solution exists, then a ground one can

5

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

always be found. Thus it is enough to search for ground solutions to answer the general problem.
Such a ground solution associates each variable to a ground term belonging to a particular E-
congruence class, in or out of Ecc. By considering all classes from Ecc and merging all
the classes outside of Ecc together, the association between variables and classes turns into a
combinatorial problem with finitely many possibilities. Barbosa et al. [3] presented CCFV, a
decision procedure for E-ground (dis)unification, as a tableaux-like procedure that decomposes
L in a top-down manner so that the possibilities for mapping variables are increasingly reduced.
The decompositions are based on the entailment conditions for the literals in L, according to
their structure. However, considering the entailment conditions in the presence of functional
variables and a curried representation of terms, particularly when we move beyond λfHOL and
need to take higher-order unification into account, opens up more possibilities that cannot be
handled in such a high-level procedure without a severe loss of efficiency or an extremely intricate
design. As an alternative solution aiming for greater flexibility and better performance, here
we tackle the combinatorial problem by, from the get-go, fully decomposing each literal in L as
a propositional disjunction over all the conditions for its entailment, relying on a SAT solver
to determine an assignment that respects all conditions (Section 4.1). Moreover, by reducing
the problem to SAT we also need to encode properties that were handled silently at the first-
order level by term indexing and by the underlying ground congruence closure component,
namely cyclic dependencies between variables (Section 4.2) and variables assigned by derived
congruence reasoning (Section 4.3).

4.1 Encoding’s core

We assume L is preprocessed. The set L thus only contains literals of the form x 6' u and
u0 ' u1u2 where x is a variable and u, u0, u1, u2 are variables or ground terms, at least one
of u1 and u2 being a variable. The problem is encoded into a set C of formulas, which is the
union of all C` for ` ∈ L.

Cx 6'u :
∨

[t1],[t2]∈Ecc,E|=t1 6't2(x ∈ [t1] ∧ u ∈ [t2])

Cu0'u1u2 : [u0] 6∈ Ecc ∨
∨

[t0]∈Ecc, [t1][t2]∈[[t0]](u0 ∈ [t0] ∧ u1 ∈ [t1] ∧ u2 ∈ [t2])

The intuition behind this encoding is as follows. Assume there exists a solution σ to the E-
ground (dis)unification problem. For negative literals, E |= (x 6' u)σ holds only if there exist
t1, t2 such that E |= t1 6' t2 and xσ ∈ [t1], uσ ∈ [t2]. Moreover, for E |= t1 6' t2 to hold it
must be the case that [t1], [t2] ∈ Ecc. For positive literals, E |= (u0 ' u1 u2)σ holds if u0σ
and (u1 u2)σ are in the same congruence class. If [u0σ] ∈ Ecc, we know exactly which kind of
applied term can belong to this class: any term t1 t2 such that [t1][t2] ∈ [[u0σ]]. Thus in that
case it is enough to consider all possible signatures of the class that u0 is assigned to.4

All membership tests where u or ui is not a variable are simplified in the above formulas
(to true or false). In the literals that remain, u and ui are always variables and literals are of
the form x ∈ [t] or [x] /∈ Ecc for some variable x and some class [t] ∈ Ecc. A new propositional
variable Px,[t] is introduced for each literal x ∈ [t] occurring in any C`. Another propositional
variable Qx is introduced for each literal x /∈ Ecc occurring in any C`.

Note that since a variable cannot be mapped to two distinct classes at the same time, we
also encode that the Px,[t] that occur in the encoding are mutually exclusive between themselves
and with Qx, for each x ∈ V.

4 WiP note: These informal statements will be formalized as a lifting to λfHOL of Theorem 4.4 in [2], which
captures the conditions in FOL for solving the E-ground (dis)unification problem for a given literal in L based
on its structure.

6

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

As illustrated by the following example, the above encoding is not enough to represent the
problem in the general case.

Example 10. Let E = {a ' f b, a ' b, f 6' f ′, k ' h f} and L = {x ' y x, z ' g y, z '
v f, y 6' y′} where x, y, y′, z, and v are variables. The only non-singleton classes in Ecc

are [a] = {a, b, f b} and [k] = {k, h f}. The non-empty signatures are [[a]] = {[f][a]} and
[[k]] = {[h][f]} The set L is already preprocessed. Then:

Cx'y x = Qx ∨ (Px,[a] ∧ Py,[f])

Cz'g y = Qz

Cz'v f = Qz ∨ (Pz,[k] ∧ Pv,[h])

Cy 6'y′ = (Py,[f] ∧ Py′,[f ′]) ∨ (Py,[f ′] ∧ Py′,[f])

and the relevant mutual exclusion constraints are

¬Py,[f] ∨ ¬Py,[f ′]

¬Py′,[f] ∨ ¬Py′,[f ′]

¬Qx ∨ ¬Px,[a]

¬Qz ∨ ¬Pz,[k]

Note that in Cx'y x the disjunct Px,[k]∧Py,[h]∧Px,[f] does not occur, because it assigns x to two
distinct classes. Since this trivially contradicts the mutual exclusion constraints, this disjunct
can never be true.5 Another noteworthy point is that Cz'v f is redundant to Cz'g y. This could
also be detected during the encoding and simplified. It would prevent the addition of the useless
mutual exclusion constraint on z-related literals.

Note that one model of the obtained formula is {Qx, Qz, Py,[f], Py′,[f ′]}, which implies in
particular that [x] 6∈ Ecc. However, all the solutions to the current problem must map x to
[a] ∈ Ecc because it is the only class that contain both a term and its image by f .

In fact, this issue happens for a whole family of variables, that we denote as cyclic variables.
An extra constraint is required to handle them separately.

4.2 Cycle-based constraints

Formally, a variable is cyclic in a set of terms L if L |= x ' u[x]. The cycle can be directly
apparent in an equation in L as in the previous example, but it can also be less obvious,
as in L = {x ' y a, y ' g x} where both x and y are cyclic. Cyclic variables in an E-
ground (dis)unification problem must all be mapped to terms in Ecc. This is a consequence of
Lemma 11. Its proof is available in Appendix B.

Lemma 11. Let E be a set of ground equational terms. Let t and t′[t]s be ground terms. If
E |= t ' t′[t]s then [t] ∈ Ecc.

Corollary 12. Given an E-ground (dis)unification problem, if x has a cyclic definition in L
then [x] ∈ Ecc.

Proof. If L |= x ' u[x]s and E |= Lσ for some ground σ then E |= xσ ' (u[x]s)σ. By Lemma
11, [xσ] ∈ Ecc.

5Even if this was not the case, there would still be a typing incompatibility in allowing x to be mapped to
[a] and to [f] in different disjuncts since a and f must have distinct types.

7

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

x y z v y′

Figure 1: Dependency graph of L from Example 10

Example 13. In Example 10, only x is cyclic. It is thus enough to add the unit clause ¬Qx
to the encoding to restrict models to those that map x to a class in Ecc.

The dependency between variables can be encoded as a directed graph where a vertice
represents a variable and an edge from the vertex x to the vertex y indicates the presence of
an equation x ' u1 u2 in L where y is either of u1 and u2. Figure 4.2 represents this graph for
the set of literals L from Example 10.

Thus it is possible to use any algorithm that enumerates the cycles in a graph to find all
cyclic variables in L. For our prototype implementation, we used a naive algorithm described
in Appendix C but linear algorithms are known, e.g. Tarjan’s strongly connected components
algorithm [22]. Once the cycles are detected, the additional constraints ¬Qi must be added to
the encoding for each cyclic variable as well as for all variables reachable from cyclic variables
in the dependency graph.6 The later is required because all subterms of a term in Ecc must
also be in Ecc.

The core encoding and the cycle-based constraints ensure that all the variables that must
be mapped to terms in Ecc indeed are. However, the variables that can be mapped outside of
Ecc may also have extra constraints that are not captured by what has been described so far.

Example 14. Consider Example 10, with the addition of ¬Qx to the encoding. A model of the
resulting formula is {Px,[a], Py,[f], Py′,[f ′], Qz}. This does not tell us anything about v, which
means that this variable could be mapped to any (type-compatible) class. However, mapping v
to [h] does not lead to a valid solution. This would force z to be equal both to g f and to h f ,
although [g f] 6= [h f], which is impossible.

Further constraints are required on the variables that can be mapped outside of Ecc. We
denote those variables as floaters.

4.3 Floater-based constraints

For a variable x, being a floater means it occurs on the left-hand side of an equation in L and
that [x] 6∈ Ecc. It follows from the latter that any equation x ' u1 u2 ∈ L where x is a floater
must either be a tautology or hold by congruence. In both cases, it means that if another
equation of the same form x ' u′1 u

′
2 also occurs in L, necessarily [u1] = [u′1] and [u2] = [u′2].

Of course, before running the SAT solver, we don’t know exactly which variables are floaters,
so we have to encode these constraints conditionally. If there are n equalities x ' u1j u2j in
L where j ∈ {1..n}, x is not cyclic nor occurs in a disequation, and if n > 1, the previously
described constraints can be expressed as:

Qx ⇒ (Qu11
≡ · · · ≡ Qu1n

) and Qx ⇒ (Qu21
≡ · · · ≡ Qu2n

);

for [t] ∈ Ecc, Qx ⇒ (Pu11,[t] ≡ · · · ≡ Pu1n,[t]) and Qx ⇒ (Pu21,[t] ≡ · · · ≡ Pu2n,[t]).

Note that as soon as one of the uij is ground for i ∈ {1, 2} and j ∈ {1..n}, the corresponding
Quij

is false and the truth values of the Puij ,[t]s are also known beforehand for all [t] ∈ Ecc,
which simplifies and significantly narrows the constraints.

6Alternatively, all occurrences of Qi for relevant is are set to false and the formula is simplified accordingly.

8

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

Example 15. Consider again Example 10, the only floater-based constraints to add originate
from the two equations involving z: z ' g y and z ' v f . In their simplified form, because f
and g are ground, they are:

Qz ⇒ ¬Qv, Qz ⇒ Pv,[g], Qz ⇒ ¬Pv,[h],

Qz ⇒ ¬Qy, Qz ⇒ Py,[f], Qz ⇒ ¬Py,[f ′]

Thanks to the addition of these constraints, the only model of the encoding is now M =
{Px,[a], Py,[f], Py′,[f ′], Qz, Pv,[g]}. The substitution σ = {x 7→ a, y 7→ f, y′ 7→ f ′, z 7→ g f, v 7→ g}
is a solution of the problem. It satisfies all the constraints in M.

We conjecture that our encoding is sound and complete. The proof of this central result is
still work in progress.

Conjecture 16. Given two sets of equational literals E and L such that E is ground, the
E-ground (dis)unification problem has a solution if and only if the encoding of this problem is
satisfiable.

5 Reconstruction of a solution from a SAT model

Let E and L form an E-ground (dis)unification problem. Let Lpre be a preprocessed version of
L and Ltriv be the set of trivial assignments that were removed from L during the preprocessing.
Assume that the encoding of the problem is satisfiable and let M be a model of this encoding.
Let tr denote the representative of [t].

To build a ground substitution σ such that E |= Lσ, we proceed iteratively, starting with
the variables in Ecc and those that do not depend on any other variables, then going backward
through the variable dependency graph of Lpre∪Ltriv, until all variables are mapped to ground
terms.

In more details:

• σ0 = {x 7→ tr | M |= Px,[t]}, where x occurs in Lpre.
• σ1 = σ0 ◦ σ′ such that, for any variable x not grounded by σ0 and that only occurs on

the right-hand side of equations in Lpre ∪ Ltriv, σ′ maps x : τ to tτ
r where tτ denotes a

default term of the appropriate type.
• The mapping of all other variables must be built iteratively. For i > 1 let Ii = {(x, t) |
x ' t ∈ (Lpre ∪ Ltriv)σi−1} and let σi = σi−1 ◦ {x 7→ tr | (x, t) ∈ Ii}. The process
terminates as soon as all variables have been assigned and the final result is σ.

Example 17. For the problem in Example 10, considering the modelM given in Example 15,
σ0 = {x 7→ a, y 7→ f, y′ 7→ f ′, v 7→ g} is determined looking at all the Px,[t] inM. Then σ1 = σ0

because there are no variables matching the criterion. Finally, one iteration of the last step is
enough to obtain σ = σ0 ◦ {z 7→ f g} that is a ground substitution such that E |= Lσ.

Note that the solution obtained may not satisfy all the [x] 6∈ Ecc constraints. They will only
be satisfied if the variables mapped in the second step are assigned default values outside Ecc.
In practice, in the context of SMT, we may want to do the exact inverse and map as many of
these variables as possible inside of Ecc.

Another noteworthy point concerning this second step is that there must be only one unique
default value for each type, or at least one default class. To illustrate this, consider a problem
where x ' f y, x ' f z ∈ Lpre, but neither of the three variables occur anywhere else. If y and

9

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

z are mapped to two terms that do not belong to the same E-congruence class, the resulting
substitution will not be a solution of the problem.

Conjecture 18. Let E and L form an E-ground (dis)unification problem that admits a so-
lution. Then the substitution σ constructed following the reconstruction method described in
this section is a ground solution of the problem.

6 Ongoing and future work

A first-order version of CCFV with support for λfHO terms encoded with the applicative
encoding [4] is already implemented in the λfHOL extension of the lightweight SMT solver
veriT [11]. It has a term-indexing issue because terms are indexed by the symbol at their head
and the applicative symbol occurs at the head of all functional symbols. Thus, contrarily to
what happens in FOL where the head symbol significantly restricts the mapping possibilities,
here only types can be exploited to retrieve suitable terms, which can lead to many more terms
being retrieved at once in comparison with the first-order case. The present approach does not
have this problem because it does not rely on the applicative encoding at all.

A prototype is under development in veriT. However, model reconstruction is not yet opera-
tional. As soon as it is, we will be able to compare our approach with the applicative version of
CCFV. Given that the later, used by trigger- and conflict-based instantiation, currently takes
around 40% of the overall SMT computation time in the benchmarks used by Barbosa et al. [4],
we expect that any improvement on the efficiency of CCFV will lead to an important speedup in
the SMT process, but it remains to be observed in practice if this is the case for our approach.

Experiments notwithstanding, there is much that can be improved in our prototype regard-
ing the data-structures as well as the algorithms for the preprocessing and the encoding phases.
In particular, cycle detection is currently implemented with a naive algorithm in O(n3). It will
eventually be replaced by Tarjan’s linear algorithm. Furthermore, the encoding itself could be
improved. Each constraint Cx 6'u and Cu0'u1u2 imposes that variables belong to some classes
among all, and indirectly that they do not belong to the remaining classes. This information
could be propagated to other constraints and lead to further narrowing of the set of possible
classes for some variables. By starting with the most restrictive constraints, one might be able
to significantly restrict the size of the constraints, the number of propositional variables, and
also the number of necessary mutual exclusion constraints. An incremental encoding to SAT,
as well as a heuristic to guide the SAT solver so that it starts its search on the most restricted
variables are also on our list of ideas to be investigated.

7 Acknowledgments

We are grateful to Jasmin Blanchette for many discussions throughout the development of this
work, for providing funding for research visits and for suggesting many improvements. Experi-
ments were carried out using the Grid’5000 testbed (https://www.grid5000.fr/), supported
by a scientific interest group hosted by Inria and including CNRS, RENATER, and several
universities as well as other organizations.

References

[1] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

10

https://www.grid5000.fr/

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

[2] H. Barbosa. New techniques for instantiation and proof production in SMT solving. PhD thesis,
Université de Lorraine, Universidade Federal do Rio Grande do Norte, 2017.

[3] H. Barbosa, P. Fontaine, and A. Reynolds. Congruence closure with free variables. In A. Legay and
T. Margaria, editors, Tools and Algorithms for Construction and Analysis of Systems (TACAS),
Part II, volume 10206 of Lecture Notes in Computer Science, pages 214–230, 2017.

[4] H. Barbosa, A. Reynolds, D. E. Ouraoui, C. Tinelli, and C. W. Barrett. Extending SMT solvers
to higher-order logic. In P. Fontaine, editor, Proc. Conference on Automated Deduction (CADE),
volume 11716 of Lecture Notes in Computer Science, pages 35–54. Springer, 2019.

[5] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere,
M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of
FAIA, chapter 26, pages 825–885. IOS Press, 2009.

[6] A. Bentkamp, J. Blanchette, S. Tourret, P. Vukmirović, , and U. Waldmann. Superposition with
lambdas. In P. Fontaine, editor, Proc. Conference on Automated Deduction (CADE), Lecture
Notes in Computer Science. (Accepted for publication). Springer, 2019.

[7] A. Bentkamp, J. C. Blanchette, S. Cruanes, and U. Waldmann. Superposition for lambda-free
higher-order logic. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, Int. Joint Conference
on Automated Reasoning (IJCAR), volume 10900 of Lecture Notes in Computer Science, pages
28–46. Springer, 2018.

[8] A. Bhayat and G. Reger. Set of support for higher-order reasoning. In B. Konev, J. Urban, and
P. Rümmer, editors, Practical Aspects of Automated Reasoning (PAAR), volume 2162 of CEUR
Workshop Proceedings, pages 2–16. CEUR-WS.org, 2018.

[9] A. Bhayat and G. Reger. Restricted combinatory unification. In P. Fontaine, editor, Proc. Con-
ference on Automated Deduction (CADE), volume 11716 of Lecture Notes in Computer Science,
pages 74–93. Springer, 2019.

[10] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. J.
Formalized Reasoning, 9(1):101–148, 2016.

[11] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and
efficient SMT-solver. In R. A. Schmidt, editor, CADE–22, volume 5663 of LNCS, pages 151–156.
Springer, 2009.

[12] C. E. Brown. Satallax: an automatic higher-order prover. In B. Gramlich, D. Miller, and U. Sattler,
editors, Int. Joint Conference on Automated Reasoning (IJCAR), volume 7364 of LNCS, pages
111–117. Springer, 2012.

[13] L. de Moura and N. Bjørner. Efficient e-matching for SMT solvers. In F. Pfenning, editor, CADE–
21, volume 4603 of LNCS, pages 183–198. Springer, 2007.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J. ACM,
52:365–473, 2005.

[15] Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In A. Bouajjani and O. Maler, editors, CAV 2009, volume 5643 of LNCS, pages 306–320.
Springer, 2009.

[16] J. Meng and L. C. Paulson. Translating higher-order clauses to first-order clauses. Journal of
Automated Reasoning, 40(1):35–60, 2008.

[17] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of automated reasoning, volume 1, pages 371–443. Elsevier Science,
2001.

[18] A. Reynolds, H. Barbosa, and P. Fontaine. Revisiting enumerative instantiation. In D. Beyer and
M. Huisman, editors, Tools and Algorithms for Construction and Analysis of Systems (TACAS),
Part II, volume 10806 of Lecture Notes in Computer Science, pages 112–131. Springer, 2018.

[19] A. Reynolds, C. Tinelli, and L. de Moura. Finding conflicting instances of quantified formulas in
SMT. In FMCAD 2014, pages 195–202. IEEE, 2014.

11

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

[20] A. Reynolds, C. Tinelli, A. Goel, S. Krstić, M. Deters, and C. Barrett. Quantifier instantiation
techniques for finite model finding in SMT. In M. P. Bonacina, editor, CADE–24, volume 7898 of
LNCS, pages 377–391. Springer, 2013.

[21] A. Steen and C. Benzmüller. The higher-order prover Leo-III. In D. Galmiche, S. Schulz, and
R. Sebastiani, editors, Int. Joint Conference on Automated Reasoning (IJCAR), volume 10900 of
LNCS, pages 108–116. Springer, 2018.

[22] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

[23] P. Vukmirovic, J. C. Blanchette, S. Cruanes, and S. Schulz. Extending a brainiac prover to lambda-
free higher-order logic. In T. Vojnar and L. Zhang, editors, Tools and Algorithms for Construction
and Analysis of Systems (TACAS), Part I, volume 11427 of Lecture Notes in Computer Science,
pages 192–210. Springer, 2019.

A Applicative encoding

The applicative encoding turns every symbol in λfHOL of a non-atomic type τ1 → τ2 into a
symbol of the atomic type ττ1→τ2 in non-curried FOL. It also introduces a family of function
symbols @ : ττ1→τ2×τ1 7→ τ2 such that app(u1 u2) = @(u1, u2). For example app(h1 ((f x) b)) =
@(h1,@(@(f, x), b)).

B Proof of the cycle-based narrowing lemma

Lemma. Let E be a set of ground equational terms. Let t and t′[t]s be ground terms. If
E |= t ' t′[t] then [t] ∈ Ecc.

Proof. The congruence graph induced by E on a set of terms is the smallest undirected graph
such that:

• for each equality u ' v in E, there is an edge between u and v.
• if there is a path from u1 to v1 and from u2 to v2, there is an edge from u1u2 to v1v2; the

edges are said to be congruence edges.

Consider all possible terms in a given language and their partition induced by E: two terms
are in the same class if and only if there is a path in the congruence graph from one to the
other. We now consider the interpretation I such that:

• the domain is the set of partitions;
• each constant is interpreted as the partition it belongs to;
• the application of two elements is interpreted as the partition containing the application

of members in the respective partitions.

This interpretation I is a model of E, and assigns two terms in different classes to different
elements in the domain. Hence, E |= u ' v only if u and v belong to the same class.

Within each class [u] = [v] such that [u] /∈ Ecc, all edges between two distinct members
u, v of the class are congruence edges (all other edges being between elements of Ecc), which
imposes that u is of the form u1u2 and v is of the form v1v2 with u1 in the same class as v1

and u2 in the same class as v2.
Notice that, if E |= t ' t′[t]s, then E |= t ' t′[t′[t]s]s. This can be used to build a term of

arbitrary depth t′′[t]s equal to t according to E. In particular there exists a term t′′[t]s such

12

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

that t occurs in t′′[t]s at a depth larger than the depth of t. Since [t] /∈ Ecc, no subterm of
t′′[t]s that contains t belong to Ecc either.

Now let us consider for a start u = t and v = t′′[t]s. We have already shown that E |= u ' v
and [v] /∈ Ecc. Then u = u1u2, and v = v1v2, one vi containing t. Then E |= ui ' vi and
[vi] /∈ Ecc for i ∈ {1, 2}. Similarly, we can continue decomposing ui, until we obtain a constant
after finitely many decompositions (t being a finite term). We reach a contradiction, because
this constant is equal to an application term, and both terms are equal through congruence.

C A naive cycle-detection algorithm

Given a preprocessed set of literals L, let us denote as defining equations the equations of the
form x ' u1u2 occurring in L, where x is a variable and u1, u2 are any term. Variables occurring
on the left-hand side of defining equation are called defined variables and variables occurring
on the right-hand side of a defining equation are called the used variables.

Let D be the set of all variables occurring in L that are both defined and used. For example,
for L1 = {x ' y z, x ' f z, y ' g x} where x, y, z are variables, we obtain D1 = {x, y}, and
for L2 = {x ' y z, y ' g x, z ' f y, g ' w c} where x, y, z, w are variables, we obtain
D2 = {x, y, z}. If D = 0 then there are no cyclic variables in L. Otherwise, the following
procedure identifies the cyclic variables in L:

• Build an n × n matrix M0, where n = |D|. Each row i of this matrix and its successors
represents a defined variable xi in D and each column j a used variable xj in D. Initialize
the cells of M0 as:

M0[i, j] =

 1 if xj occurs in a defining equation xi = u1 u2,
i.e. xj = u1 or xj = u2;

0 otherwise.

• Iterate the following operations until the matrix is stable, i.e. until Mk =Mk+1. For all
lines i of Mk, let Ji = {j | Mk[i, j] = 1} and have:

Mk+1[i] =Mk[i] ∨
∨
j∈Ji

Mk[j]

where the disjunctions are bit-wise operators.
• LetM be the stable result obtained in the previous step. The used variables that belong

to cycles are all the i ∈ {0, ..n− 1} such that M[i, i] = 1.

Example 19. Let us consider L2 = {x ' y z, y ' g x, z ' f y, g ' w c} as before. Then
D2 = {x, y, z} and:

M0 =

0 1 1
1 0 0
0 1 0

 , M1 =

1 1 1
1 1 1
1 1 0

 , M2 =

1 1 1
1 1 1
1 1 1

 , M3 =M2,

thus x, y and z are cyclic but not w.

Note that if the matrix is completely filled with 1’s, it is not necessary to perform an extra
iteration of the procedure to conclude that it is stable.

13

Lifting CCFV to λfHOL via SAT encoding (wip) Tourret, Fontaine, El Ouraoui and Barbosa

Example 20. Let us now consider L3 = {x ' y z, y ' g w, z ' f x}, where x, y, z, w are
variables. Then D = {x, y, z} and:

M0 =

0 1 1
0 0 0
1 0 0

 , M1 =

1 1 1
0 0 0
1 1 1

 , M2 =M1,

showing that here only x and y are cyclic. Note that if a line of the matrix contains only zero’s,
it is possible to remove it completely from the problem, so here it is possible to compute only:

M0 =

[
0 1
1 0

]
, M1 =

[
1 1
1 1

]
, M2 =M1.

Note that it is also possible to consider all variables when building M0, not only those in
D. This will only create more lines filled with 0’s that need to be discarded.

Moreover, Note that not all lines in the matrices end up filled with only 1’s or only 0’s, as
illustrated in the following extension of the previous example.

Example 21. Let L4 = {x ' y z, y ' f w, z ' f x,w ' fw}, where x, y, z, w are variables.
Then D = {x, y, z, w} and:

M0 =


0 1 1 0
0 0 0 1
1 0 0 0
0 0 0 1

 , M1 =


1 1 1 1
0 0 0 1
1 1 1 0
0 0 0 1

 , M2 =


1 1 1 1
0 0 0 1
1 1 1 1
0 0 0 1

 , M3 =M2.

It is not possible to use this algorithm to detect cycles before the flattening because it
applies only on variables and it is possible to have a cycle on an applied term before flattening.
For example in the non-flattened L = {g x ' (k w) (f x), f x ' h (g x)}, both g x and f x
are involved in a cycle but they are terms, not variables. The only variables x and w are
not involved in cycles, hence our algorithm will not find any cyclic variable. After flattening,
Lflat = {y1 ' g x, z ' k w, y2 ' f x, y1 ' z y2 y2 ' h y1} and the variables y1 and y2 represent
the terms involved in cycles. This can now be detected by the algorithm presented above.

14

	Introduction
	Preliminaries and problem statement
	Preprocessing
	Encoding CCFV as a SAT problem
	Encoding's core
	Cycle-based constraints
	Floater-based constraints

	Reconstruction of a solution from a SAT model
	Ongoing and future work
	Acknowledgments
	Applicative encoding
	Proof of the cycle-based narrowing lemma
	A naive cycle-detection algorithm

