
Efficient Full Higher-Order Unification
Petar Vukmirović
Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
p.vukmirovic@vu.nl

https://orcid.org/0000-0001-7049-6847

Alexander Bentkamp
Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
a.bentkamp@vu.nl

https://orcid.org/0000-0002-7158-3595

Visa Nummelin
Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
visa.nummelin@vu.nl

https://orcid.org/0000-0003-0078-790X

Abstract
We developed a procedure to enumerate complete sets of higher-order unifiers based on work by
Jensen and Pietrzykowski. Our procedure removes many redundant unifiers by carefully restrict-
ing the search space and tightly integrating decision procedures for fragments that admit a finite
complete set of unifiers. We identify a new such fragment and describe a procedure for comput-
ing its unifiers. Our unification procedure is implemented in the Zipperposition theorem prover.
Experimental evaluation shows a clear advantage over Jensen and Pietrzykowski’s procedure.

2012 ACM Subject Classification Computing methodologies → Theorem proving algorithms

Keywords and phrases unification, higher-order logic, theorem proving, term rewriting, indexing
data structures

1 Introduction

Unification is concerned with finding a substitution that makes two terms equal, for some no-
tion of equality. Since the invention of Robinson’s first-order unification algorithm [19], it has
become an indispensable tool in many areas of computer science including theorem proving,
logic programming, natural language processing, and programming language compilation.

Many of these applications are based on higher-order formalisms and require higher-order
unification. Due to its undecidability and explosiveness, the higher-order unification problem
is considered one of the main obstacles on the road to efficient higher-order tools.

One of the reasons for higher-order unification’s explosiveness lies in flex-flex pairs, which
consist of two applied variables, e.g., F X ?= G a, where F , G, and X are variables and a is
a constant. Even this seemingly simple problem has infinitely many incomparable unifiers.
One of the first methods designed to combat this explosion is Huet’s preunification [10]. Huet
noticed that some logical calculi would remain complete if flex-flex pairs are not eagerly
solved but postponed as constraints. If only flex-flex constraints remain, we know that a
unifier must exist and we do not need to solve them. Huet’s preunification has been used in
many reasoning tools including Isabelle [17], Leo-III [23], and Satallax [4]. However, recent
developments in higher-order theorem proving [1, 3] require enumeration of unifiers even for
flex-flex problems, which is the focus of this paper.

Jensen and Pietrzykowski’s (JP) procedure [11] is the best known procedure for this
purpose (Section 2). Given two terms to unify, it first identifies a position where the terms

mailto:p.vukmirovic@vu.nl
https://orcid.org/0000-0001-7049-6847
mailto:a.bentkamp@vu.nl
https://orcid.org/0000-0002-7158-3595
mailto:visa.nummelin@vu.nl
https://orcid.org/0000-0003-0078-790X

2 Efficient Full Higher-Order Unification

disagree. Then, in parallel branches of the search tree, it applies suitable substitutions,
involving a variable either at the position of disagreement or above, and repeats this process
on the resulting terms until they are equal or trivially nonunifiable.

Building on the JP procedure, we designed an improved procedure with the same
completeness guarantees (Section 3). It addresses many of the issues that are detrimental to
the performance of the JP procedure. First, the JP procedure does not terminate in many
cases of obvious nonunifiability, e.g., for X ?= f X, where X is a non-functional variable and f
is a function constant. This example also shows that the JP procedure does not generalize
Robinson’s first-order procedure gracefully. To address this issue, our procedure detects
whether a unification problem belongs to a fragment in which unification is decidable and
finite complete sets of unifiers (CSUs) exist. We call algorithms that enumerate elements of
the CSU for such fragments oracles. Noteworthy fragments with oracles are first-order terms,
patterns [16], functions-as-constructors [13], and a new fragment we present in Section 4.
The unification procedures of Isabelle [17] and Leo-III [23] check whether the unification
problem belongs to a decidable fragment, but we take this idea a step further by checking
this more efficiently and for every subproblem arising during unification.

Second, the JP procedure computes many redundant unifiers. Consider the example
F (G a) ?= F b, where JP produces, in addition to the desired unifiers {F 7→ λx.H} and
{G 7→ λx. b}, the redundant unifier {F 7→ λx.H, G 7→ λx. x}. The design of our procedure
avoids computing many redundant unifiers, including this one. Additionally, as oracles
usually return a small CSU, their integration reduces the number of redundant unifiers.

Third, the JP procedure repeatedly traverses the parts of the unification problem that
have already been unified. Consider the problem f100 (G a) ?= f100 (H b), where the exponents
denote repeated application. It is easy to see that this problem can be reduced to G a ?= H b.
However, the JP procedure will wastefully retraverse the common context f100[] after applying
each new substitution. Since the JP procedure must apply substitutions to the variables
occurring in the common context above the disagreement pair, it cannot be easily adapted
to eagerly decompose unification pairs. By contrast, our procedure is designed to decompose
the pairs eagerly, never traversing a common context twice.

Last, efficiently implemented algorithms for first-order [20] and pattern unification [16]
apply substitutions and β-reduce lazily, i.e., only until the heads of the current unification
pair are not mapped by the substitution and the terms are in head normal form. This is
possible because in these algorithms each step is determined by the head symbols of the
current unification pair. Since the JP procedure also needs to consider variables above the
position of disagreement, it is unfit for optimizations of this kind. Our procedure depends
only on the head of a current unification pair, enabling this optimization.

To filter out some of the terms that are not unifiable with a given query term from a
set of terms, we developed a higher-order extension of fingerprint indexing (Section 5). We
implemented our procedure, several oracles, and the fingerprint index in the Zipperposition
prover (Section 6). Since a straightforward implementation of the JP procedure already
existed in Zipperposition, we used it as a baseline to evaluate the performance of our procedure
(Section 7). The results show substantial performance improvements over this baseline.

This paper lays out the main ideas behind our unification procedure. A separate technical
report1 [27] contains details and proofs of all unproved statements in this paper.

1 http://matryoshka.gforge.inria.fr/pubs/hounif_report.pdf

http://matryoshka.gforge.inria.fr/pubs/hounif_report.pdf

P. Vukmirović, A. Bentkamp, V. Nummelin 3

2 Background

Our setting is the simply typed λ-calculus. Types α, β, γ are either base types or functional
types α → β. By convention, when we write α1 → · · · → αn → β, we assume β to be a
base type. Basic terms are free variables (denoted F,G,H, . . .), bound variables (x, y, z),
and constants (f, g, h). Complex terms are applications of one term to another (s t) or λ-
abstractions (λx. s). Following Nipkow [16], we use these syntactic conventions to distinguish
free from bound variables. Bound variables with no enclosing binder, such as x in λy. x, are
called loose bound variables. We say that a term without loose bound variables is closed and
a term without free variables is ground. Iterated λ-abstraction λx1 . . . λxn. s is abbreviated
as λxn. s and iterated application (s t1) . . . tn as s tn, where n ≥ 0. Similarly, we denote a
sequence of terms t1, . . . , tn by tn, omitting its length n ≥ 0 where it can be inferred or is
irrelevant.

We assume the standard notions of α-, β-, η-conversions. A term is in head normal form
(hnf) if it is of the form λx. a t, where a is a free variable, bound variable, or a constant. In this
case, a is called the head of the term. By convention, a and b denote heads. If a is a variable,
we call it a flex head; otherwise, we call it a rigid head. A term is called flex or rigid if its head
is flex or rigid, respectively. By s↓h we denote the term obtained from a term s by repeated
β-reduction of the leftmost outermost redex until it is in hnf. Unless stated otherwise, we
view terms syntactically, as opposed to αβη-equivalence classes. We write s↔∗αβη t if s and
t are αβη-equivalent. Substitutions (σ, %, θ) are functions from free and bound variables to
terms; σt denotes application of σ to t, which α-renames t to avoid variable capture. The
composition %σ of substitutions is defined by (%σ)t = %(σt). A variable F is mapped by σ
if σF 6↔∗αβη F . We write % ⊆ σ if for all variables F mapped by %, %F ↔∗αβη σF .

Deviating from the standard notion of higher-order subterm, we define subterms on
β-reduced terms as follows: a term t is a subterm of t at position ε. If s is a subterm of ui at
position p, then s is a subterm of a un at position i.p. If s is a subterm of t at position p, then
s is a subterm of λx. t at position 1.p. Our definition of subterm is a graceful generalization of
the corresponding first-order notion: a is a subterm of f a b, but f and f a are not subterms of
f a b. A context is a term with zero or more subterms replaced by a hole �. We write C[un]
for the term resulting from filling in the holes of a context C with the terms un from left to
right. The common context C(s, t) of two β-reduced η-long terms s and t of the same type
is defined inductively as follows, assuming that a 6= b: C(λx. s, λy. t) = λx. C(s, {y 7→ x}t);
C(a sm, b tn) = �; C(a sm, a tm) = a C(s1, t1) . . . C(sm, tm).

A unifier for terms s and t is a substitution σ, such that σs↔∗αβη σt. Following JP [11],
a complete set of unifiers (CSU) of terms s and t is defined as a set U of unifiers for s and
t such that for every unifier % of s and t, there exists σ ∈ U and substitution θ such that
% ⊆ θσ. A most general unifier (MGU) is a one-element CSU. We use ⊆ instead of = because
a CSU element σ may introduce auxiliary variables not mapped by %.

3 The Unification Procedure

To unify two terms s and t, our procedure builds a tree as follows. The nodes of the tree have
the form (E, σ), where E is a multiset of unification constraints {(s1

?= t1), . . . , (sn ?= tn)}
and σ is the substitution constructed up to that point. A unification constraint s ?= t is an
unordered pair of two terms of the same type. The root node of the tree is ({s ?= t}, id), where
id is the identity substitution. The tree is then constructed applying the transitions listed
below. The leaves of the tree are either a failure node ⊥ or a substitution σ. Ignoring failure
nodes, the set of all substitutions in the leaves forms a complete set of unifiers for s and t.

4 Efficient Full Higher-Order Unification

The transitions are parametrized by a mapping P that assigns a set of substitutions
to a unification pair. Moreover, the transitions are parametrized by a selection function S
mapping a multiset E of unification constraints to one of those constraints S(E) ∈ E, the
selected constraint in E. The transitions, defined as follows, are only applied if the grayed
constraint is selected.

Succeed (∅, σ) −→ σ

Normalizeαη ({λxm. s ?= λyn. t}] E, σ) −→ ({λxm. s ?= λxm. t
′ xn+1 . . . xm}] E, σ)

where m ≥ n, xm 6= yn, and t′ = {y1 7→ x1, . . . , yn 7→ xn}t
Normalizeβ ({λx. s ?= λx. t}] E, σ) −→ ({λx. s↓h ?= λx. t↓h}] E, σ)

where s or t is not in hnf
Dereference ({λx. F s ?= λx. t}] E, σ) −→ ({λx. (σF) s ?= λx. t}] E, σ)

where none of the previous transitions apply and F is mapped by σ
Fail ({λx. a sm ?= λx. b tn }] E, σ) −→ ⊥

where none of the previous transitions apply, and a and b are different rigid heads
Delete ({s ?= s}] E, σ) −→ (E, σ)

where none of the previous transitions apply
OracleSucc ({s ?= t}] E, σ) −→ (E, %σ)

where none of the previous transitions apply, some oracle found a finite CSU U for
σ(s) ?= σ(t), and % ∈ U ; if multiple oracles found a CSU, only one of them is considered

OracleFail ({s ?= t}] E, σ) −→ ⊥
where none of the previous transitions apply, and some oracle determined σ(s) ?= σ(t)
has no solutions

Decompose ({λx. a sm ?= λx. a tm }] E, σ) −→ ({s1
?= t1, . . . , sm

?= tm}] E, σ)
where none of the transitions Succeed to OracleFail apply

Bind ({s ?= t}] E, σ) −→ ({s ?= t}] E, %σ)
where none of the transitions Succeed to OracleFail apply, and % ∈ P(s ?= t).

The transitions are designed so that only OracleSucc, Decompose, and Bind can introduce
parallel branches in the constructed tree. OracleSucc can introduce branches using different
unifiers of the CSU; Bind can introduce branches using different substitutions in P; and
Decompose can be applied in parallel with Bind.

Our approach is to apply substitutions and αβη-normalize terms lazily. In particular, the
transitions that modify the constructed substitution, OracleSucc and Bind, do not apply that
substitution to the unification pairs directly. Instead, the transitions Normalizeαη, Normalizeβ ,
and Dereference partially normalize and partially apply the constructed substitution just
enough to ensure that the heads are the ones we would get if the substitution was fully
applied and the term was fully normalized. To support lazy dereferencing, OracleSucc and
Bind must maintain the invariant that all substitutions are idempotent.

The OracleSucc and OracleFail transitions invoke oracles, such as pattern unification, to
compute a CSU faster, produce fewer redundant unifiers, and discover nonunifiability earlier.
In some cases, addition of oracles lets the procedure terminate more often.

In the literature, oracles are usually stated under the assumption that their input belongs
to the appropriate fragment. To use oracles efficiently, they must be redesigned to lazily
discover whether the terms belong to their fragment. Often it is sufficient to check if the
terms belong to the fragment only when performing certain operations inside the oracle. For
example, many oracles contain a decomposition operation, which usually does not depend on

P. Vukmirović, A. Bentkamp, V. Nummelin 5

the terms belonging to a certain fragment. This allows us to extend our lazy dereferencing
and normalization approach to the implementation of the oracles.

The core of the procedure lies in the Bind step, parameterized by the mapping P that de-
termines which substitutions (called bindings) to create. The bindings are defined as follows:

Iteration for F Let F be a free variable of the type α1 → · · · → αn → β1 and let some αi
be the type γ1 → · · · → γm → β2, where n > 0 and m ≥ 0. Iteration for F at i is:

F 7→ λxn. H xn (λy. xi (G1 xn y) . . . (Gm xn y))

The free variables H and G1, . . . , Gm are fresh, and y is an arbitrary-length sequence of
bound variables of arbitrary types. All new variables (both free and bound) are of appropriate
type. Due to indeterminacy of y, this step is infinitely branching.
JP-style projection for F Let F be a free variable of type α1 → · · · → αn → β, where some
αi is equal to β and n > 0. Then the JP-style projection binding is

F 7→ λxn. xi

Huet-style projection for F Let F be a free variable of type α1 → · · · → αn → β, where
some αi = γ1 → · · · → γm → β, n > 0 and m ≥ 0. Huet-style projection is as follows:

F 7→ λxn. xi (F1 xn) . . . (Fm xn)

where the fresh free variables Fm and bound variables xn are of appropriate types.
Imitation of g for F Let F be a free variable of type α1 → · · · → αn → β and let g be a
constant of type γ1 → · · · → γm → β where n,m ≥ 0. The imitation binding is given by

F 7→ λxn. g (F1 xn) . . . (Fm xn)

where the fresh free variables Fm and bound variables xn are of appropriate types.
Identification for F and G Let F and G be different free variables. Also, let the type of
F be α1 → · · · → αn → β and the type of G be γ1 → · · · → γm → β, where n,m ≥ 0. Then,
identification binding binds F and G with

F 7→ λxn. H xn (F1 xn) . . . (Fm xn) G 7→ λym. H (G1 ym) . . . (Gn ym) ym

where the fresh free variables H,Fm, Gn and bound variables xn,ym are of appropriate types.
We call fresh variables emerging from this binding in the role of H identification variables.
Elimination for F Let F be a free variable of type α1 → · · · → αn → β, where n > 0. In
addition, let 1 ≤ j1 < · · · < ji ≤ n and i < n. Elimination for the sequence (jk)ik=1 is

F 7→ λxn. G xj1 . . . xji

where the fresh free variable G as well as all xjk are of appropriate type. We call fresh
variables emerging from this binding in the role of G elimination variables.

We define P as follows, given a unification constraint λx. s ?= λx. t:

If the constraint is rigid-rigid, P(λx. s ?= λx. t) = ∅.
If the constraint is flex-rigid, let P(λx. F s ?= λx. a t) be

an imitation of a for F , if a is some constant g, and
all Huet-style projections for F , if F is not an identification variable.

6 Efficient Full Higher-Order Unification

If the constraint is flex-flex and the heads are different, let P(λx. F s ?= λx.G t) be

all identifications and iterations for both F and G, and
all JP-style projections for non-identification variables among F and G.

If the constraint is flex-flex and the heads are identical we consider two cases:

if the head is an elimination variable, P(λx. s ?= λx. t) = ∅;
otherwise, let P(λx. F s ?= λx. F t) be all iterations for F at arguments of functional
type and all eliminations for F .

Comparison with the JP Procedure In contrast to our procedure, the JP procedure
constructs a tree with only one unification constraint per node and does not have a Decompose
rule. Instead, at each node (s ?= t, σ), the JP procedure computes the common context
C of s and t, yielding term pairs (s1, t1), . . . , (sn, tn), called disagreement pairs, such that
s = C[s1, . . . , sn] and t = C[t1, . . . , tn]. The procedure heuristically chooses one of the
disagreement pairs (si, ti) and applies a binding to the heads of si and ti or to a free variable
occurring above the disagreement pair in the common context C. Due to this application of
bindings above the disagreement pair, lazy normalization and dereferencing cannot easily be
integrated into the JP procedure.

Our procedure uses many of the same binding rules as the JP procedure, but it explores
the search space differently. In particular, the JP procedure allows iteration or elimination
to be applied at a free variable in the common context of the unification constraint, even if
bindings were already applied below that free variable. In contrast, we force the eliminations
and iterations to be applied as soon as we observe a flex-flex pair with identical heads. After
applying the Decompose transition, we can apply other bindings below this flex-flex pair, but
we cannot resume applying eliminations or iterations to the flex-flex pair.

The bindings of our procedure contain further optimizations that are missing in the JP
procedure: The JP procedure applies eliminations for only one parameter at a time, yielding
multiple paths to the same unifier. It applies imitations to flex-flex pairs, which we found
to be unnecessary. On flex-rigid pairs, it applies JP-style projections and iterations instead
of the finitely branching Huet-style projections. Moreover, it does not keep track of which
rule introduced which variable, i.e., iterations and eliminations are applied on elimination
variables, and projections are applied on identification variables.

Examples We present some illustrative derivations. The displayed branches of the con-
structed trees are not necessarily exhaustive. We abbreviate JP-style projection as JP Proj,
imitation as Imit, identification as Id, Decompose as Dc, Dereference as Dr, Normalizeβ as
Nβ , and Bind of a binding x as B(x). Transitions of the JP procedure are denoted by =⇒.
For the JP transitions we implicitly apply the generated bindings and fully normalize terms,
which significantly shortens JP derivations.

I Example 1. The JP procedure does not terminate on the problem G
?= f G:

(G ?= f G, id) Imit=⇒ (f G′ ?= f2 G′, σ1) Imit=⇒ (f2 G′′
?= f3 G′′, σ2) Imit=⇒ · · ·

where σ1 = {G 7→ λx. f G′} and σ2 = {G′ 7→ λx. f G′′}σ1. By including any oracle that
supports first-order occurs check, such as the pattern oracle or the fixpoint oracle described
in Section 6, our procedure gracefully generalizes first-order unification:

({G ?= f G}, id) OracleFail−→ ⊥

P. Vukmirović, A. Bentkamp, V. Nummelin 7

I Example 2. The following derivation illustrates the advantage of the Decompose rule.

({h100 (F a) ?= h100 (G b)}, id) Dc100

−→ ({F a ?= G b}, id) B(Id)−→ ({F a ?= G b}, σ1)
Dr+Nβ−→ ({H a (F ′ a) ?= H (G′ b) b}, σ1) Dc−→ ({a ?= G′ b, F ′ a ?= b}, σ1)
B(Imit)−→ ({a ?= G′ b, F ′ a ?= b}, σ2) Dr+Nβ−→ ({a ?= a, F ′ a ?= b}, σ2) Delete−→ ({F ′ a ?= b}, σ2)
B(Imit)−→ ({F ′ a ?= b}, σ3) Dr+Nβ−→ ({b ?= b}, σ3) Delete−→ (∅, σ3) Succeed−→ σ3

where σ1 = {F 7→ λx.H x (F ′ x), G 7→ λy.H (G′ y) y}; σ2 = {G′ 7→ λx. a}σ1; and σ3 =
{F ′ 7→ λx. b}σ2. The JP procedure produces the same intermediate substitutions σ1 to σ3,
but since it does not decompose the terms, it retraverses the common context h100 [] at every
step to identify the contained disagreement pair:

(h100 (F a) ?= h100 (G b), id) Id=⇒ (h100 (H a (F ′ a)) ?= h100 (H (G′ b) b), σ1)
Imit=⇒ (h100 (H a (F ′ a)) ?= h100 (H a b), σ2) Imit=⇒ (h100 (H a b) ?= h100 (H a b), σ3) Succeed=⇒ σ3

I Example 3. The search space restrictions also allow us to avoid returning some redundant
unifiers. Consider the example F (G a) ?= F b, where a and b are of base type. Our procedure
produces only one failing branch and the following two successful branches:

({F (G a) ?= F b}, id) Dc−→ ({G a ?= b}, id) B(Imit)−→ ({G a ?= b}, {G 7→ λx. b})
Dr+Nβ−→ ({b ?= b}, {G 7→ λx. b}) Delete−→ (∅, {G 7→ λx. b}) Succeed−→ {G 7→ λx. b}

({F (G a) ?= F b}, id) B(Elim)−→ ({F (G a) ?= F b}, {F 7→ λx. F ′})
Dr+Nβ−→ ({F ′ ?= F ′}, {F 7→ λx. F ′}) Delete−→ (∅, {F 7→ λx. F ′}) Succeed−→ {F 7→ λx. F ′}

The JP procedure additionally produces the following redundant unifier:

(F (G a) ?= F b, id) JP Proj=⇒ (F a = F b, {G 7→ λx. x})
Elim=⇒ (F ′ = F ′, {G 7→ λx. x, F 7→ λx. F ′}) Succeed=⇒ {G 7→ λx. x, F 7→ λx. F ′}

Moreover, the JP procedure does not terminate because an infinite number of iterations is
applicable at the root. In contrast, our procedure terminates since, in this case, we only
apply iteration binding for non base-type arguments, which F does not have.

Proof of Completeness Our completeness theorem is stated as follows:

I Theorem 4. The procedure described above is complete, meaning that the substitutions on
the leaves of the constructed tree form a CSU. In other words, for any unifier % of a multiset
of constraints E there exists a derivation (E, id) −→∗ σ and a substitution θ such that % ⊆ θσ.

The proof of Theorem 4 is an adaptation of the proof given by JP [11]. Definitions and lemmas
are reused, but they are combined together differently to suit our procedure. The full proof is
given in our technical report [27]. The backbone of the proof is as follows. We incrementally
define states (Ej , σj) and remainder substitutions %j starting with (E0, σ0) = (E, id) and
%0 = %. These will satisfy the invariants that %j unifies Ej and %0 ⊆ %jσj . Intuitively, %j is
what remains to be added to σj to reach a unifier subsuming %0. In each step, %j is used as
a guide to choose the next transition (Ej , σj) −→ (Ej+1, σj+1).

8 Efficient Full Higher-Order Unification

To show that we eventually reach a state with an empty Ej , we employ a well-founded
measure of (Ej , %j) that strictly decreases with each step. It is the lexicographic product of
the syntactic size of %jEj and a measure on %j , which is taken from the JP proof.

Contrary to our procedure, the proof assumes that all terms are in β-reduced η-long form
and that all substitutions are fully applied. These assumptions are justified because replacing
the lazy transitions Normalizeαη, Normalizeβ , and Dereference by eager counterparts only
affects the efficiency but not the overall behavior of our procedure since all bindings depend
only on the head of terms.

Fix a state (Ej , σj). If Ej is empty, then a unifier σj of E is found by Succeed and we
are done because %0 ⊆ %jσj by induction hypothesis. Otherwise, let Ej = {u ?= v}] E′j
where u ?= v is selected. We must find a transition that reduces the measure and preserves
the invariants. Fail and OracleFail cannot be applicable, because %ju = %jv by the induction
hypothesis. If applicable, Delete reduces the size of %jEj by removing a constraint.

OracleSucc has similar effect as Delete, but the remainder changes. Since %j is a unifier of
u

?= v and oracles compute CSUs, the oracle will find a unifier δ such that there exists a %j+1
satisfying %j ⊆ %j+1 δ. Then (Ej+1, σj+1) =

(
δE′j , δ σj

)
is a result of an OracleSucc transition.

Observe that %j+1Ej+1 = %j+1δE
′
j is a proper subset of %jEj . Hence, the measure decreases

and %j+1 unifies Ej+1. The other invariant holds, because %0 ⊆ %j σj ⊆ %j+1 δ σj = %j+1 σj+1.
If none of the previous transitions are applicable, we must find the right Decompose or

Bind transition to apply. The choice is determined by the head a of u, the head b of v, and
their values under %j . If u ?= v is flex-rigid, then either %ja has b as head symbol, enabling
imitation, or %ja has a bound variable as head symbol, enabling Huet-style projection. In
the flex-flex case, if a 6= b, we apply either iteration, identification, or JP-style projection
based on the form of %ja and %jb. Similarly, if a = b, we apply either iteration, elimination,
or Decompose guided by the form of %ja. To show preservation of the induction invariants
for Bind, we determine a binding δ that can be factored out of %j as %j ⊆ %j+1 δ similar to
the OracleSucc case. Here we have %j+1Ej+1 = %jEj ; so we must ensure that the measure
of %j+1 is strictly smaller than that of %j . For Decompose, we set %j+1 = %j and show that
%j+1Ej+1 is smaller than %jEj .

Pragmatic Variant We structured our procedure so that most of the unification machinery
is contained in the Bind step. Modifying P, we can sacrifice completeness and obtain a
pragmatic variant of the procedure that often performs better in practice. Our informal
experiments showed that the following modification of P is a reasonable compromise between
completeness and performance. It removes all iteration bindings to enforce a finitely branching
procedure and replaces JP-style projections by Huet-style projections.

If the constraint is rigid-rigid, P(λx. s ?= λx. t) = ∅.
If the constraint is flex-rigid, let P(λx. F s ?= λx. a t) be

an imitation of a for F , if a is some constant g, and
all Huet-style projections for F if F is not an identification variable.

If the constraint is flex-flex and the heads are different, let P(λx. F s ?= λx.G t) be

an identification binding for F and G, and
all Huet-style projections for F if F is not an identification variable

If the constraint is flex-flex and the heads are identical we consider two cases:

if the head is an elimination variable, P(λx. F s ?= λx. F t) = ∅;
otherwise, P(λx. F s ?= λx. F t) is the set of all eliminations bindings for F .

P. Vukmirović, A. Bentkamp, V. Nummelin 9

Moreover, the pragmatic variant imposes limits on the number of bindings applied,
counting the applications of bindings locally, per constraint. It is useful to distinguish the Huet-
style projection cases where αi is a base type (called simple projection), which always reduces
the problem size, and the cases where αi is a functional type (called functional projection). We
limit applications of the following bindings: functional projections, eliminations, imitations
and identifications. In addition, a limit on the total number of applied bindings can be set.
An elimination binding that removes k arguments counts as k elimination steps. Due to
limits on application of bindings, the pragmatic variant terminates.

To fail as soon as any of the limits is reached, the pragmatic variant employs an additional
oracle. If this oracle determines that the limits are reached and the constraint is of the form
λx. F sm

?= λx.G tn, it returns a trivial unifier – a substitution {F 7→ λxm. H,G 7→ λxn. H},
where H is a fresh variable; if the limits are reached and the constraint is flex-rigid, the
oracle fails; if the limits are not reached, it reports that terms are outside its fragment. The
trivial unifier prevents the procedure from failing on easily unifiable flex-flex pairs.

Careful tuning of each limit optimizes the procedure for a specific class of problems. For
problems coming from higher-order reasoning front-ends, shallow unification depth usually
suffices. However, hard hand-crafted problems often need deeper unification.

4 A New Decidable Fragment

We discovered a new fragment that admits a finite CSU and a simple oracle. The oracle is
based on work by Prehofer and the procedure PT [18], a modification of Huet’s procedure.
PT transforms an initial multiset of constraints E0 by applying bindings %. If there is a
sequence E0 =⇒%1 · · · =⇒%n En such that En has only flex-flex constraints, we say that
PT produces a preunifier σ = %n . . . %1 with constraints En. A sequence fails if En = ⊥.
Unlike previously, in this section we consider all terms to be αβη-equivalence classes with the
β-reduced η-long form as their canonical representative and we view unification constraints
s

?= t as ordered pairs.
The following rules, however, are stated modulo orientation. The PT transition rules,

adapted for our presentation style, are as follows:

Deletion {s ?= s}] E =⇒id E

Decomposition {λx. a sm
?= λx. a tm }] E =⇒id {s1

?= t1, . . . , sm
?= tm}] E

where a is rigid
Failure {λx. a s ?= λx. b t}] E =⇒id ⊥

where a and b are different rigid heads
Solution {λx. F x ?= λx. t}] E =⇒% %(E)

where F does not occur in t, t does not have a flex head, and % = {F 7→ λx. t}
Imitation {λx. F sm

?= λx. f tn }] E =⇒% %({G1 sm
?= t1, . . . , Gn sm

?= tn}] E)
where % = {F 7→ λxm. f (G1 xm) . . . (Gn xm)}, Gn are fresh variables of appropriate types

Projection {λx. F sm
?= λx. a t}] E =⇒% %({si (G1 sm) . . . (Gj sm) ?= a t}] E)

where % = {F 7→ λxm. xi (G1 xm) . . . (Gj xm)}, Gj are fresh variables of appropriate types

The grayed constraints are required to be selected by a given selection function S. We call
S admissible if it prioritizes selection of constraints applicable for Failure and Decomposition,
and of descendant constraints of Projection transitions with j = 0 (i.e., for xi of base type), in
that order of priority. In the remainder of this section we consider only admissible selection
functions, an assumption that Prehofer also makes implicitly in his thesis.

Prehofer showed that PT terminates for some classes of constraints. We call a term linear
if no free variable has repeated occurrences in it. We call a term solid if its free variables are

10 Efficient Full Higher-Order Unification

applied either to bound variables or ground base-type terms. We call it strictly solid if its
free variables are applied either to bound variables or second-order ground base-type terms.
For example, if G, a, and x are of base type, and F , H, g, and y are binary, the terms F G a,
and H (λx. x) a are not solid; λx. F xx is strictly solid; F a (g (λy. y a a) a) is solid, but not
strictly. Prehofer’s thesis states that PT terminates on {s ?= t} if s is linear, s shares no free
variables with t, s is strictly solid, and t is second-order.

We extend this result in Theorem 8 along two axes: we create an oracle for the full
unification problem, and we lift some order constraints by requiring s and t to be solid.
Lemma 5 lifts Prehofer’s preunification result to solid terms:

I Lemma 5. If s and t are solid, s is linear and shares no free variables with t, PT terminates
for the preunification problem {s ?= t}, and all remaining flex-flex constraints are solid.

Enumerating a CSU for a solid flex-flex pair may seem as hard as for any other flex-flex
pair; however, the following two lemmas show that solid pairs admit an MGU:

I Lemma 6. The unification problem {λx. F sm ?= λx. F tm}, where both terms are solid,
has an MGU of the form σ = {F 7→ λxm. G xj1 . . . xjr} where G is a fresh variable, and
1 ≤ j1 < · · · < jr ≤ m are exactly those indices ji for which sji = tji .

I Lemma 7. Let {λx. F sm ?= λx.G tn} be a solid unification problem where F 6= G. Then
there is a finite CSU {σ1

i , . . . , σ
ki
i } of the problem {si ?= Hi tn}, where Hi is a fresh free

variable. Let λyn. s
j
i = λyn. σ

j
i (Hi) yn. Similarly, there is a finite CSU {σ̃1

i , . . . , σ̃
li
i } of the

problem {ti ?= H̃i sm}, where H̃i is a fresh free variable. Let λxm. tji = λxm. σ̃
j
i (H̃i)xm. Let

Z be a fresh free variable. An MGU σ for the given problem is

F 7→ λxm. Z x1 . . . x1︸ ︷︷ ︸
k1 times

. . . xm . . . xm︸ ︷︷ ︸
km times

t11 . . . t
l1
1 . . . t1n . . . t

ln
n

G 7→ λyn. Z s
1
1 . . . s

k1
1 . . . s1

m . . . skmm y1 . . . y1︸ ︷︷ ︸
l1 times

. . . yn . . . yn︸ ︷︷ ︸
ln times

The existence of the finite CSUs above relies on Prehofer’s proof that PT terminates
without producing flex-flex pairs for the matching problem {λxn. F sk ?= λxn. t} where F sk
is strictly solid and t is ground and second-order. This proof is easily generalized to the case
where t is arbitrary order and F sk is solid. Since PT is complete, we conclude that such
problems have finite CSUs.

I Theorem 8. Let s and t be solid terms that share no free variables, and let s be linear.
Then the unification problem {s ?= t} has a finite CSU.

This CSU is straightforward to compute. By Lemma 5, PT terminates on {s ?= t} with a
finite set of preunifiers σ, each associated with a multiset E of solid flex-flex pairs. An MGU
δE of E can be found as follows. Choose a constraint (u ?= v) ∈ E and determine an MGU %

for it using Lemma 6 or 7. Then the set %(E \ {u ?= v}) also contains only solid flex-flex
constraints, and we iterate this process by choosing a constraint from %(E \ {u ?= v}) next
until there are no constraints left, eventually yielding an MGU %′ of %(E \ {u ?= v}). Finally,
let δE = %′%. Then {δEσ | PT produces preunifier σ with constraints E} is a finite CSU.

I Example 9. For example, let {F (f a) ?= g a (G a)} be the unification problem to solve.
Projecting F onto the first argument will lead to a nonunifiable problem, so we perform
imitation of g building a binding σ1 = {F 7→ λx. g (F1 x) (F2 x)}. This yields the problem
{F1 (f a) ?= a, F2 (f a) ?= G a}. Again, we can only imitate a for F1 – building a new binding

P. Vukmirović, A. Bentkamp, V. Nummelin 11

σ2 = {F1 7→ λx. a}. Finally, this yields the problem {F2 (f a) ?= G a}. According to
Lemma 7, we find CSUs for the problems J1 a = f a and I1 (f a) ?= a using PT. The latter
problem has a singleton CSU {I1 7→ λx. a}, whereas the former has a CSU containing
{J1 7→ λx. f x} and {J1 7→ λx. f a}. Combining these solutions, we obtain an MGU σ3 =
{F2 7→ λx.H xx a, G 7→ λx.H (f a) (f x)x} for F2 (f a) ?= G a. Finally, we get the MGU
σ = σ3σ2σ1 = {F 7→ λx. g a (H xx a), G 7→ λx.H (f a) (f x)x} of the original problem.

Small examples that violate conditions of Theorem 8 and admit only infinite CSUs can
be found easily. The problem {λx. F (f x) ?= λx. f (F x)} violates variable distinctness and is
a well-known example of a problem with only infinite CSUs. Similarly, λx. g (F (f x))F ?=
λx. g (f (Gx))G, which violates linearity, reduces to the previous problem. Only ground
arguments to free variables are allowed because {F X ?= G a} has only infinite CSUs. Finally,
it is crucial that functional arguments to free variables are only bound variables: the problem
{λy.X(λx. x) y ?= λy. y} has only infinite CSUs.

5 An Extension of Fingerprint Indexing

A fundamental building block for almost all automated reasoning tools is the operation
of retrieving term pairs that satisfy certain conditions, e.g., unifiable terms, instances or
generalizations. Indexing data structures are used to implement this operation efficiently. If
the data structure retrieves precisely the terms that satisfy the condition it is called perfect;
otherwise, it is called imperfect.

Higher-order indexing has received little attention, compared to its first-order counterpart.
However, recent research in higher-order theorem proving increased the interest in higher-
order indexing [3,14]. A fingerprint index [21,28] is an imperfect index based on the idea that
the skeleton of the term consisting of all non-variable positions is not affected by substitutions.
Therefore, we can easily determine that terms are not unifiable (or matchable) if they disagree
on a fixed set of sample positions.

More formally, when we sample an untyped first-order term t on a sample position p, the
generic fingerprinting function gfpf distinguishes four possibilities:

gfpf(t, p) =

f if t|p has a symbol head f
A if t|p is a variable
B if t|q is a variable for some proper prefix q of p
N otherwise

We define the fingerprinting function fp(t) = (gfpf(t, p1), . . . , gfpf(t, pn)), based on a fixed
tuple of positions pn. Determining whether two terms are compatible for a given retrieval
operation reduces to checking their fingerprints’ componentwise compatibility. The following
matrices determine the compatibility for retrieval operations:

f1 f2 A B N
f1 7 7

A 7

B
N 7 7 7

f1 f2 A B N
f1 7 7 7 7

A 7 7

B
N 7 7 7 7

The left matrix determines unification compatibility, while the right matrix determines
compatibility for matching term s (rows) onto term t (columns). Symbols f1 and f2 stand for
arbitrary distinct constants. Incompatible features are marked with 7. For example, given a

12 Efficient Full Higher-Order Unification

tuple of term positions (1, 1.1.1, 2), and terms f(g(X), b) and f(f(a, a), b), their fingerprints
are (g,B, b) and (f,N, b), respectively. Since the first fingerprint component is incompatible,
terms are not unifiable.

Fingerprints for the terms in the index are stored in a trie data structure. This allows us
to efficiently filter out terms that are not compatible with a given retrieval condition. For the
remaining terms, a unification or matching algorithm must be invoked to determine whether
they satisfy the condition or not.

The fundamental idea of first-order fingerprint indexing carries over to higher-order terms
– application of a substitution does not change the rigid skeleton of a term. However, to extend
fingerprint indexing to higher-order terms, we must address the issues of αβη-normalization
and the fact that we can sample two new kinds of terms – λ-abstractions and bound variables.
To that end, we define a function btc, defined on β-reduced terms in De Bruijn [5] notation:

bF sc = F bxi snc = dbαi (bs1c, . . . , bsnc) bf snc = f(bs1c, . . . , bsnc) bλx. sc = bsc

We let xi be a bound variable of type α with De Bruijn index i, and dbαi be a fresh constant
corresponding to this variable. All dbαi must be different from constants that do not represent
De Bruijn indices. Effectively, b c transforms a β-reduced η-long higher-order term to an
untyped first-order term. Let t↓βη be the β-reduced η-long form of t; the higher-order generic
fingerprinting function gfpfho, which relies on conversion 〈t〉db from named to De Bruijn
representation, is defined as

gfpfho(t, p) = gfpf(b〈t↓βη〉dbc, p)

If we define fpho(t) = fp(b〈t↓βη〉dbc), we can support fingerprint indexing for higher-order
terms with no changes to the compatibility matrices. For example, consider the terms
s = (λxy. x y) g and t = f, where g has the type α→ β and f has the type α→ α→ β. For
the tuple of positions (1, 1.1.1, 2) we get

fpho(s) = fp(b〈s↓βη〉dbc) = fp(g(dbα0)) = (dbα0 ,N,N)
fpho(t) = fp(b〈t↓βη〉dbc) = fp(f(dbα1 , dbα0)) = (dbα1 ,N, dbα0)

Since the first and third fingerprint component are incompatible, the terms are not unifiable.
Other first-order indexing techniques such as feature vector indexing and substitution

trees can probably be extended to higher-order logic using the method described here as well.

6 Implementation

Zipperposition [6,7] is an open-source2 theorem prover written in OCaml. It is a versatile
testbed for prototyping extensions to superposition-based theorem provers. It was initially
designed as a prover for polymorphic first-order logic and then extended to higher-order
logic. The most recent addition is a complete mode for Boolean-free higher-order logic [1],
which depends on a unification procedure that can enumerate a CSU. We implemented our
procedure in Zipperposition.

We used OCaml’s functors to create a modular implementation. The core of our procedure
is implemented in a module which is parametrized by another module providing oracles and
implementing the Bind step. This way we can obtain the full or pragmatic procedure and
seamlessly integrate oracles while reusing as much common code as possible.

2 https://github.com/sneeuwballen/zipperposition

https://github.com/sneeuwballen/zipperposition

P. Vukmirović, A. Bentkamp, V. Nummelin 13

To enumerate all elements of a possibly infinite CSU, we rely on lazy lists whose elements
are subsingletons of unifiers (either one-element set containing a unifier or an empty set). The
search space must be explored in a fair manner, meaning that no branch of the constructed
tree is indefinitely postponed.

Each Bind step will give rise to new a unification problem p1, p2, . . . to be solved. Solutions
to each of those problems are new lazy lists. To avoid postponing some unifier indefinitely, we
first take one subsingleton from p1, then one from each of p1 and p2. We continue with one
subsingleton from p1, p2 and p3, and so on. Empty lazy lists are ignored in the traversal. To
ensure we do not remain stuck waiting for a unifier from a particular lazy list, the procedure
will periodically return an empty set, indicating that the next lazy list should be probed.

The implemented selection function for our procedure prioritizes selection of rigid-rigid
over flex-rigid pairs, and flex-rigid over flex-flex pairs. However, since the constructed substi-
tution σ is not applied eagerly, heads can appear to be flex, even if they become rigid after
dereferencing and normalization. To mitigate this issue to some degree, we dereference the
heads with σ, but do not normalize, and use the resulting heads for prioritization.

We implemented oracles for the pattern, solid, and fixpoint fragment. Fixpoint unifica-
tion [10] is concerned with problems of the form {F ?= t}. If F does not occur in t, {F 7→ t}
is an MGU for the problem. If there is a position p in t such that t|p = F um and for each
prefix q 6= p of p, t|q has a rigid head and either m = 0 or t is not a λ-abstraction, then we
can conclude that F ?= t has no solutions. Otherwise, the fixpoint oracle is not applicable.

7 Evaluation

We evaluated the implementation of our unification procedure in Zipperposition, assessing
a complete variant and a pragmatic variant, the latter with several different combinations
of limits for number of bindings. As part of the implementation of the complete mode for
Boolean-free higher-order logic in Zipperposition [1], Bentkamp implemented a straightforward
version of JP procedure. This version is faithful to the original description, with a check as
to whether a (sub)problem can be solved using a first-order oracle as the only optimization.
Our evaluations were performed on StarExec Miami [24] servers with Intel Xeon E5-2620 v4
CPUs clocked at 2.10GHz with 60 s CPU limit.

Contrary to first-order unification, there is no widely available corpus of benchmarks
dedicated solely to evaluating performance of higher-order unification algorithms. Thus,
we used all 2606 monomorphic higher-order theorems from the TPTP library [26] and 832
monomorphic higher-order Sledgehammer (SH) generated problems [25] as our benchmarks3.
Many TPTP problems require synthesis of complicated unifiers, whereas Sledgehammer
problems are only mildly higher-order – many of them are solved with first-order unifiers.

We used the naive implementation of the JP procedure (old) as a baseline to evaluate the
performance of our procedure. We compare it with the complete variant of our procedure (cv)
and pragmatic variants (pv) with several different configurations of limits for applied bindings.
All other Zipperposition parameters have been fixed. The cv configuration and all of the pv
configurations use only pattern unification as an underlying oracle. To test the effect of oracle
choice, we evaluated the complete variant in 8 combinations: with no oracles (n), with only
fixpoint (f), pattern (p), or solid (s) oracle, and with their combinations: fp, fs, ps, fps.

3 An archive with raw results, scripts for running each configuration, and all used problems is available at
http://matryoshka.gforge.inria.fr/pubs/hounif_data.zip

http://matryoshka.gforge.inria.fr/pubs/hounif_data.zip

14 Efficient Full Higher-Order Unification

old cv pv12
6666 pv6

3333 pv4
2222 pv2

1222 pv2
1121 pv2

1020

TPTP 1551 1717 1722 1732 1732 1715 1712 1719
SH 242 260 253 255 255 254 259 257

Figure 1 Proved problems, per configuration

n f p s fp fs ps fps

TPTP 1658 1717 1717 1720 1719 1724 1720 1723
SH 245 255 260 259 255 254 258 254

Figure 2 Proved problems, per used oracle

Figure 1 compares different variants of the procedure with the naive JP implementation.
Each pv configuration is denoted by pvabcde where a is the limit on the total number of applied
bindings, and b, c, d, and e are the limits of functional projections, eliminations, imitations,
and identifications, respectively. Figure 2 summarizes the effects of using different oracles.

The configuration of our procedure with no oracles outperforms the JP procedure with the
first-order oracle. This suggests that the design of the procedure, in particular lazy normaliza-
tion and lazy application of the substitution, already reduces the effects of the JP procedure’s
main bottlenecks. Raw evaluation data shows that on TPTP benchmarks, complete and prag-
matic configurations differ in the set of problems they solve – cv solves 19 problems not solved
by pv4

2222, whereas pv4
2222 solves 34 problems cv does not solve. Similarly, comparing the

pragmatic configurations with each other, pv6
3333 and pv4

2222 each solve 13 problems that the
other one does not. The overall higher success rate of pv2

1020 compared to pv2
1222 suggests that

solving flex-flex pairs by trivial unifiers often suffices for superposition-based theorem proving.
Counterintuitively, in some cases the success rate does not increase if oracles are combined.

Although oracles yield smaller CSUs, which in turn yield less clauses, these clauses typically
contain many applied free variables, which can harm the performance of Zipperposition.

A subset of TPTP benchmarks is designed to test the efficiency of higher-order unification.
It consists of 11 problems concerning operations on Church numerals [2]. Our procedure
performs exceptionally well on these problems – it solves all of them, usually faster than
other competitive higher-order provers. Most notably, on problem NUM800ˆ1, which can be
solved by finding a unifier that represents Church numeral multiplier, both Leo-III 1.4 and
Satallax 3.4 give no result within a 60 seconds CPU limit, while the cv configuration proves
it in less than 4 s. A full list of these problems is in our technical report [27].

8 Discussion and Related Work

The problem addressed in this paper is that of finding a complete and efficient higher-
order unification procedure. Three main lines of research dominated the research field of
higher-order unification over the last forty years.

The first line of research went in the direction of finding procedures that enumerate CSUs.
The most prominent procedure designed for this purpose is the JP procedure [11]. Snyder and
Gallier [22] also provide such a procedure, but instead of solving flex-flex pairs systematically,
their procedure blindly guesses the head of the necessary binding by considering all constants
in the signature and fresh variables of all possible types. Another approach, based on
higher-order combinators, is given by Dougherty [8]. This approach blindly creates (partially
applied) S-, K-, and I-combinator bindings for applied variables, which results in returning

P. Vukmirović, A. Bentkamp, V. Nummelin 15

many redundant unifiers, as well as in nonterminating behavior even for simple examples
such as X a = a.

The second line of research is concerned with enumerating preunifiers. The most prominent
procedure in this line of research is Huet’s [10]. The Snyder–Gallier procedure restricted
not to solve flex-flex pairs is a version of PT procedure presented in Section 4. It improves
Huet’s procedure by featuring the Solution rule.

The third line of research gives up the expressiveness of the full λ-calculus and focuses
on decidable fragments. Patterns [16] are arguably the most important such fragment in
practice, with implementations in Isabelle [17], Leo-III [23], Satallax [4], λProlog [15], and
other systems. Functions-as-constructors [13] unification subsumes pattern unification but is
significantly more complex to implement. Prehofer [18] lists many other decidable fragments,
not only for unification but also preunification and unifier existence problems. Most of
these algorithms are given for second-order terms with various constraints on their variables.
Finally, one of the first decidability results is the decidability of higher-order unification of
terms with unary function symbols [9].

Our procedure draws inspiration from and contributes to all three lines of research.
Accordingly, its advantages over previously known procedures can be laid out along those
three lines. First, our procedure mitigates many issues of the JP procedure. Second, it
can be modified not to solve flex-flex pairs, and become a version of Huet’s procedure with
important built-in optimizations. Third, our procedure can integrate any oracle for problems
with finite CSUs – including the one we discovered.

9 Conclusion

We presented a procedure for enumerating a complete set of higher-order unifiers that is
designed for efficiency. Due to design that restricts search space and tight integration of
oracles it reduces the number of redundant unifiers returned and gives up early in cases of
nonunifiability. In addition, we presented a new fragment of higher-order terms that admits
finite CSUs. Our implementation shows a clear improvement over previously known procedure.

In future work, we will focus on designing intelligent heuristics that automatically adjust
unification parameters according to the type of the problem. For example, we should usually
choose shallow unification for mostly first-order problems and deeper unification for hard
higher-order problems. We plan to investigate other heuristic choices, such as the order
of bindings and the way in which search space is traversed (breadth- or depth-first). We
are also interested in further improving the termination behavior of the procedure, without
sacrificing completeness. Finally, following the work of Libal [12] and Zaionc [29], we would
like to consider the use of regular grammars to finitely present infinite CSUs. For example,
the grammar X ::= λx. x | λx. f (X x) represents all elements of the CSU for the problem
λx.X (f x) ?= λx. f (X x).

Acknowledgment

We are grateful to the maintainers of StarExec for letting us use their service. We thank Ahmed Bhayat,
Jasmin Blanchette, Daniel El Ouraoui, Mathias Fleury, Pascal Fontaine, Predrag Janičić, Robert Lewis,
Femke van Raamsdonk, Hans-Jörg Schurr, Sophie Tourret, and Dmitriy Traytel for suggesting many
improvements to this text. Vukmirović and Bentkamp’s research has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 713999, Matryoshka). Nummelin has received funding from the Netherlands Organization
for Scientific Research (NWO) under the Vidi program (project No. 016.Vidi.189.037, Lean Forward).

16 Efficient Full Higher-Order Unification

References
1 Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirović, and Uwe

Waldmann. Superposition with lambdas. In Pascal Fontaine, editor, CADE-27, volume
11716 of LNCS, pages 55–73. Springer, 2019.

2 Christoph Benzmüller and Chad E. Brown. A structured set of higher-order problems. In
Joe Hurd and Thomas F. Melham, editors, TPHOLs 2005, volume 3603 of LNCS, pages
66–81. Springer, 2005.

3 Ahmed Bhayat and Giles Reger. Restricted combinatory unification. In Pascal Fontaine,
editor, CADE-27, volume 11716 of LNCS, pages 74–93. Springer, 2019.

4 Chad E. Brown. Satallax: An automatic higher-order prover. In Bernhard Gramlich,
Dale Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 111–117.
Springer, 2012.

5 Nicolaas G. De Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem. J. Symb.
Log., 40(3):470–470, 1975.

6 Simon Cruanes. Extending Superposition with Integer Arithmetic, Structural Induction,
and Beyond. PhD thesis, École polytechnique, 2015.

7 Simon Cruanes. Superposition with structural induction. In Clare Dixon and Marcelo
Finger, editors, FroCoS 2017, volume 10483 of LNCS, pages 172–188. Springer, 2017.

8 Daniel J. Dougherty. Higher-order unification via combinators. Theor. Comput. Sci.,
114(2):273–298, 1993.

9 William M. Farmer. A unification algorithm for second-order monadic terms. Ann. Pure
Appl. Logic, 39(2):131–174, 1988.

10 Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,
1(1):27–57, 1975.

11 Don C. Jensen and Tomasz Pietrzykowski. Mechanizing omega-order type theory through
unification. Theor. Comput. Sci., 3(2):123–171, 1976.

12 Tomer Libal. Regular patterns in second-order unification. In Amy P. Felty and Aart
Middeldorp, editors, CADE-25, volume 9195 of LNCS, pages 557–571. Springer, 2015.

13 Tomer Libal and Dale Miller. Functions-as-constructors higher-order unification. In Delia
Kesner and Brigitte Pientka, editors, FSCD 2016, volume 52 of LIPIcs, pages 26:1–26:17.
Schloss Dagstuhl, 2016.

14 Tomer Libal and Alexander Steen. Towards a substitution tree based index for higher-order
resolution theorem provers. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors,
IJCAR 2016, volume 1635 of CEUR-WS, pages 82–94. CEUR-WS, 2016.

15 Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, 2012.

16 Tobias Nipkow. Functional unification of higher-order patterns. In E. Best, editor, LICS
’93, pages 64–74. IEEE Computer Society, 1993.

17 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

18 Christian Prehofer. Solving higher order equations: from logic to programming. PhD thesis,
Technical University Munich, Germany, 1995.

19 John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, 1965.

20 Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.
21 Stephan Schulz. Fingerprint indexing for paramodulation and rewriting. In Bernhard

Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages
477–483. Springer, 2012.

P. Vukmirović, A. Bentkamp, V. Nummelin 17

22 Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete sets of
transformations. J. Symb. Comput., 8(1/2):101–140, 1989.

23 Alexander Steen and Christoph Benzmüller. The higher-order prover Leo-III. In Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of
LNCS, pages 108–116. Springer, 2018.

24 Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-community infras-
tructure for logic solving. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach,
editors, IJCAR 2014, volume 8562 of LNCS, pages 367–373. Springer, 2014.

25 Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson. LEO-II and Satallax
on the Sledgehammer test bench. J. Applied Logic, 11(1):91–102, 2013.

26 Geoff Sutcliffe. The TPTP problem library and associated infrastructure - from CNF to
TH0, TPTP v6.4.0. J. Autom. Reasoning, 59(4):483–502, 2017.

27 Petar Vukmirović, Alexander Bentkamp, and Visa Nummelin. Efficient full higher-order
unification (technical report). 2020.

28 Petar Vukmirovic, Jasmin Christian Blanchette, Simon Cruanes, and Stephan Schulz. Ex-
tending a brainiac prover to lambda-free higher-order logic. In Tomás Vojnar and Lijun
Zhang, editors, TACAS 2019, volume 11427 of LNCS, pages 192–210. Springer, 2019.

29 Marek Zaionc. The set of unifiers in typed lambda-calculus as regular expression. In
Jean-Pierre Jouannaud, editor, RTA-85, volume 202 of LNCS, pages 430–440. Springer,
1985.

	Introduction
	Background
	The Unification Procedure
	A New Decidable Fragment
	An Extension of Fingerprint Indexing
	Implementation
	Evaluation
	Discussion and Related Work
	Conclusion

