
Vrije Universiteit Amsterdam

Bachelor Thesis

New clause selection function
elements for the E theorem

prover

Author: Niels Galjaard (2518100)

supervisor: Jasmin Blanchette
2nd reader: Petar Vukmirovic

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

July 29, 2019

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Problem statement . 3
1.3 Hypothesis . 3
1.4 Contributions . 3

2 Background 4
2.1 First-order Logic . 4
2.2 automated theorem proving . 4
2.3 Superposition calculus . 5
2.4 The E prover . 5

2.4.1 Heuristic types of E . 5

3 Machine learning 6
3.1 data generation . 6
3.2 Proposed algorithms . 7

3.2.1 Support vector Machine 7
3.2.2 Linear Regression . 7
3.2.3 Logistic Regression . 7
3.2.4 Neural networks . 7
3.2.5 Degenerate Trees (logistic) 8

4 Evaluations 8
4.1 Experimental setup . 8
4.2 Preliminary testing . 9
4.3 Testing Results . 11
4.4 Analysis . 13

5 Related work 14
5.1 E prover . 14
5.2 tableaux . 14
5.3 probabilistic sat solving . 14

6 Conclusion 14

References 16

7 Appendix 17
7.1 code . 17
7.2 tables . 19

2

1 Introduction

1.1 Motivation

There is a large variety of research and implementation of automated theorem
proving [1] with academic and commercial use, from proving mathematical the-
orems to proving the correctness of circuits. At times automated provers even
find proofs for not yet proven theorems[9], hence there is clear benefit to im-
proving the speed of these provers. Because the work of building provers has
already been done, I have decided not to reinvent the wheel and simply go by an
existing implementation. Moreover I have decided to use various machine learn-
ing algorithms to attempt to achieve this, since the ability to use the required
computational resources is far more accessible today, when compared to the
time at which these provers were build. Additionally related problems can be
efficiently solved using machine-learning as shown by Stanford researchers[12].
Proof search heuristics are therefore a promising subject of research.

1.2 Problem statement

The main point of interest for this paper is the speed of provers. Since most
provers are already proven to be refutationally complete, what remains is the
speed at which these proofs can be found, as is usually the case in computer
Science there are two metrics of speed for algorithms, the speed in seconds, and
the speed in steps of the program. Because of the degree of inconsistency when
measuring speed in seconds, I am for the purpose of this paper focused on the
number of steps of the program. Another metric is the number of proofs, since
there is a possibility of improving the number of proofs found, by not considering
unproductive clauses.

1.3 Hypothesis

This paper concerns with the ability to improve the speed of a prover, we are
interested in whether or not adapting several existing heuristics with machine
learned heuristics increases the speed of a prover, where speed is the number of
steps, in this case that is the number of clauses processed by the prover. And
whether or not this change in speed results in more proofs found.

1.4 Contributions

Similar to almost all theorem provers[1] the E prover is implemented in C, the
main bulk of the code of this paper including the code to train models is also
in C, because of this a package of C code for training models is included, this
ended up not part of the modified E code, however it is used to train several
models. see models.c for specifics

3

https://drive.google.com/drive/folders/1TEIi2N-Ex6unXR39W62dVjA-kRAu9QNn?usp=sharing

E extensions For this paper several additions and modifications have been
made to the Eprover, these are somewhat inelegant, given the issue with file
I/O that is currently prohibiting some features on windows Linux subsystem.
on many of the Machine learning models this means that the original model
file has not been used and the weights learned have been hard coded into C
functions. Moreover the bash scripts also contain some strange constructs as a
result of file issues, however several manual checks applied afterwards do show
the data and measurements to be correct.

One of the two main sections of this paper is the classification models for
priority functions, these are partially trained using the training module of C
included in the paper and partially trained on sklearn[?] or Keras[?] models.
In both cases due to file i/o issues they cannot be made to work directly with
fopen in C, therefore I have in both cases simply printed the weights and copy
pasted the weights into a piece of C code and recompiled.

Despite the issues in training and somewhat strange implementation, the
Neural networks and regression models are correct and can with little effort be
included into the E prover for testing or further work.

Training Code and scripts Another section of the paper restricted due to
the file i/o is the printing of clause features. The current version of bash some
times discards fprintf calls, and often is incapable of piping to files whenever
files exceed a 0.5GB limit. However the way the features are printed to std.out
in the current implementation, they can be extracted using grep.

Piping these output files into a larger file I have used very basic pandas[?] to
organize them into a larger CSV file, which is ultimately used by the training
module of C, Keras and sklearn. Once these have been trained the last file is
used to evaluate the results of the learned networks.

2 Background

2.1 First-order Logic

First-order logic can be seen as an extension of propositional logic, introducing
predicates and quantifiers. Predicates are functions which map domain vari-
ables to truth values. This allows for predication of objects, which have no
truth value, hence a formula like P (x), is a well formed formula in first order
logic. Quantifiers bind variables. Which describe the value of their respective
variables, hence a formula like ∃x, P (x) is a sentence in first order logic with a
fixed truth value. As a result we can use all sentences as propositions in rules.

2.2 automated theorem proving

Depending on the definition of the Predicates and functions, several statements
in mathematics can be proven using first-order logic[10]. Most of the time this
is done through a proof of refutation, given a set of axioms {A1, A2, ...An} and

4

a hypothesis {H} assume {¬H,A1, A2...An} and try to show the unsatisfiability
of this set. Since this set of statements is rewritten to CNF. If it’s possible to
derive ∅ from any of the clauses, this shows that the set of axioms is unsatisfiable
and proves ¬¬H

2.3 Superposition calculus

Any of the previous FOL literals from the CNF can be rewritten to equations,
for example P (x) becomes P (x) ' > and ¬P (x) becomes P (x) 6' >. From
these types equations it’s possible to use paramodulation, for example given
C1 C2. it’s possible to derive C3 like this
C1 : G[x] ' y ∨ C ′1 C2 : f(a) ' x ∨ C ′2

C3 : G[f(a)] ' y ∨ C ′1 ∨ C
′

2

The E prover uses a restricted form of paramodulation, which uses an order-
ing �, to constrain the possible from and into clauses. This would make the
previous derivation subject to three extra constraints, with more constraints
introduced for negative superposition.

C1 : G[x] ' y ∨ C ′1 C2 : f(a) ' x ∨ C ′2
C3 : G[f(a)] ' y ∨ C ′1 ∨ C

′

2

where x � f(a)
G[x] � y

f(a) ' x � L ∈ C
′
1

Another important feature of the super position calculus is the use of rewrite
rules, which alter or remove clauses from the current set. These rules[11] unlike
the paramodulation consume their premise.

C C
′

1 ∨ t 6' t
C
′

1

The rule on the left simply removes clause C from the current set. This
rule is used to remove tautologies, which are unproductive when trying to show
that the sets are unsatisfiable. The other rules is used to removed contradictory
literals, Since C

′

1 ∨ ⊥ ≡ C
′

1

2.4 The E prover

2.4.1 Heuristic types of E

E by default has three different types of interdependent heuristics, which are
considered in the following order, priority functions, generic weight functions
and literal selection strategies.

Priority functions Priority functions split the data set into two categories,
those with high and normal priority. The prover considers the clauses for selec-
tion in this order, by adding them to priority queues. Higher priority is always
considered first. Therefore prioritizing bad clauses severely impacts the prover’s
performance.

5

In the E implementation these priority functions are based on features that
are based on clause properties, hence the E prover contains priority functions
like ”PreferGoal”.

generic weight functions Generic weights functions assign a weight to clauses.
In the original implementation of E these are based on symbols and their type
in clauses. And are linear combinations of their features. These weights are
considered from lowest to highest, they are used to sort the priority queues
from the priority functions.

Literal selection strategies This heuristic is a function which marks liter-
als for paramodulation, resulting from these markings the prover will perform
generating inferences on those literals.

3 Machine learning

3.1 data generation

The following algorithms have been used to fit models to data, where the binary
classifications are made using the clause features, with the class being if the
clause was in the proof. For the use of generic weight functions, I have split the
data into Goal and nonGoal as a result we train two models on these datasets,
moreover we obviously need to innovate some response variable, I have chosen
to use a hyper parameter ζ 1, which is a term that is added to the original
clauseweight assigned by E, where the clause was not in the proof. The hyper
parameter is subtracted if the clause was in the proof. This modified clause
weight data will be used for regression fitting. This returns a model, which
should assign a higher score to clauses not in the proof, thereby improving on
the original weight.

Since the E prover already provides several methods for heuristics, which
assign multiplicative scores to certain types of features, i.e. ”Refinedweight”
and ”Literalweight” [2] it is possible to use these functions to extract features,
by setting all but one multiplier to 0 and the remaining multiplier to 1. This
extracts the feature for that one multiplier, thereby creating 2multipliers features
to use. In addition to these I have also included whether or not the clause is
a goal clause as a feature. This means that the heuristics created from these
features can only leverage that information, which is also available to the code
that computes the default heuristic.

Creating the data is done though running the E prover on ALG tptp problems[13]
for which it can rapidly find the proofs.2 then piping out, the clause features

1in my case ζ = 5 and ζ = 20
2 in our case ALG006-1.p ALG007-1.p ALG011-1.p ALG014+1.p ALG017+1.p

ALG018+1.p ALG019+1.p ALG029+1.p ALG030+1.p ALG036+1.p ALG039+1.p
ALG040+1.p ALG041+1.p ALG069+1.p ALG070+1.p ALG171+1.p ALG172+1.p
ALG173+1.p ALG174+1.p ALG175+1.p ALG176+1.p ALG177+1.p ALG178+1.p

6

to be considered, the heuristic clause evaluation assigned, as well as the proof
object, into an intermediate file. Consequently the remaining dataset is split
and merged into two CSV files, the clauses in the proof and those not in the
proof. These datasets are once again split into train and validation data, these
two datasets have been used to fit the algorithms. The partitioning is done to
prevent overfitting on the training problems.

3.2 Proposed algorithms

3.2.1 Support vector Machine

The Support vector machine is a model, which creates a maximum margin
decision boundary between N classes, since we use only two classes those in and
not in the proof we can use this model as a classifier, however a slight adaptation
can change it to a ranking classifier. Therefore in addition to classification it is
also an appropriate model to compute a generic clause weight function.

3.2.2 Linear Regression

There are several versions of linear regression, since this is a known reliable
method we will include it’s most standard variants here. We will use the least
squares estimate by using the ordinary least squares regression, as well as the
constrained version of non negative regression. So we are looking for a y

′
=

~w · ~x+ b has minimal L
L = 1

N

∑N
i=1 (yi − ~w · ~xi))2 and L = 1

N

∑N
i=1 (yi − ~w · ~xi))2, where, ~w ∈ Rn

+

3.2.3 Logistic Regression

A logistic regression is applicable to binary classification and there is no obvious
extension to modeling clause-weights. We will use this prediction model only
for determining clause-priorities. For the content of this paper we will use only
the logistic regression with b = e or , 1

1+e~w·~x this has little to no effect on
performance, but simply allows us to take advantage of faster computation by
the standard implementations of exp() in C.

Some adaptations can be made in testing the model, where the minimal score
for proper classification; using raw output vs strict predictions, meaning that
we can use the logistic regression model, however slightly changing the decision
boundary. To better fit validation data.

3.2.4 Neural networks

A neural network can, depending on it’s architecture, be equivalent to vari-
ous other functions[3]. For example a net with no hidden layer and a sigmoid
activated output, has the following structure. 1

1+e~w·~x . As can be seen from

ALG179+1.p ALG194+1.p ALG198+1.p ALG200+1.p ALG201+1.p ALG202+1.p
ALG203+1.p ALG211+1.p ALG235-1.p ALG340-1.p ALG350-1.p ALG371-1.p ALG372-1.p
ALG397-1.p

7

the previous section this is an equivalent function to a logistic regression. Ex-
cept here the method of determining weights differs, hence assuming that both
weight assignment algorithms do converge to the same hidden distribution, we
can view neural networks as a super set of the other methods used in this pa-
per. Because of this fact I have decided to devote most training and testing to
neural-networks.

To determine the exact architecture the training data is used to fit the model,
where evaluations on the validation data is used to determine it’s architecture.
A set of conjectured options and combinations are fit on the validation data
and these will ultimately be exported to E. This approach can be extended by
recreating the data several times after it has been generated by neural network
heuristics, however on the current version of Linux subsystem bash this is not
feasible 3.

3.2.5 Degenerate Trees (logistic)

A degenerate tree is a decision tree where all decisions have are in a single
direction, hence it is effectively a linked list of decision nodes, where every leaf
node except the deepest is a negative result. For this ensemble it is critical to
achieve as high a recall as possible, while minimizing false positives. from the
preceding four models only the logistic regression has an easy extension to this
type of behaviour

Using the logit output of the logistic regression that we can change it’s
threshold line to effectively create 1.0 recall or a close approximation of it, it’s
possible to use many logistic models, with different true negatives, to ensemble a
powerful classifier. This type of ensemble is an adaptation from the well known
Viola Jones algorithm. [15]

4 Evaluations

for raw data see the appendix

4.1 Experimental setup

Technical details :
lenovo y570k 80WK005QMH
OS windows 10 / Linux subsystem / gcc
(modified)Eprover 2.3 Gielle
powershell / bash
memory allocation: 6GB

3currently bash has problem releasing file locks in many cases, as does the rest of the Linux
subsystem for Windows, hence any looping and re-selecting of files and models is extremely
difficult

8

Feature selection There are several linear models, SVMs and linear regres-
sion, which have not been included in this paper but have simply been used as
dummies to detect useful features. The data gathered for this purpose is not
from the ALG or any other group of problems used to evaluate the algorithms.
It is very much inline with what E does by default. The features that are deemed
most useful from this preliminary testing are those which the E prover uses by
default. The use of maximal terms, positive terms, etc. Hence the features are
simply those elements of a clause which, are subject to multipliers, not subject
to multipliers and clause types. Therefore we have features of the type, ”count
of non-positive non-maximal function symbols”. and ”clause is goal”. Meaning
that the original heuristic of Refined weight is simply a weighted sum of the
elements of our features vector.

Data gathering The data is gathered using the default settings of the E
prover, this is done so that we can see this data as the original policy π. We
cannot start from the usual case where we simply take random steps. Because
a simple random policy π′ does not produce enough data, as it rarely ever finds
a proof. From the outputs of the E prover on the ALG set, only those for
which the default setting of the prover finds, a proof or a satisfiable set, are
included in the dataset. This is done to determine which parts of the proof are
productive and which are not. Considering a clause which is not in the proof
is unproductive and something the heuristic should seek to avoid. Hence after
selecting a subset of files the data is split into two large CSV files it is then
labeled with class 0, in the proof object and derivation, and class 1, outside of
the proof object. This is then further split into training and testing data, where
the training data is split further into training data and validation data.

4.2 Preliminary testing

Control group Preliminary testing does show that all random models have
extraordinarily poor performance. These control models achieve almost no
proofs, hence we can already conclude that at least a relation is learned by
all those algorithms which pass this sanity check.

Support vector machines While the SVM for classification performs fine,
the ranking SVM based on this is incapable of achieving any results, even when
tested on problems in it’s original dataset. More detailed testing of this particu-
lar model shows that the SVM has negative weights for some of it’s features, this
results in a situation where the clause set of the prover can contain clauses like
f(y) ' x and C

′ ∨ φ(x), which can produce something of the type C
′ ∨ φ(f(y))

, which in turn can be combined with y ' g(x) to produce C
′ ∨ φ(f(g(x)).

4 Given that our model assigned negative weights to the maximal literal of a

4 Depending on the ordering this may or may not eventually terminate. As the ordering
determines which clause is maximal And restricts the paramodulation.

9

clause, it simply generated clauses, with ever larger maximal literals. Ending
with larger clauses and a timeout or out of memory crash.

Logistic Regression This method performs really well in terms of the val-
idation set, achieving 95% + accuracy on both training and validation data.
attempting to change the level of recall and or accuracy by changing the cutoff
does not improve performance, hence we set it to 0.5.

Linear Regression Like the SVM the oridnary linear regressions get stuck
trying to minimize negative features, however there exists a special extension
to this type of regressions, where we ensure the results are always positive.
Because this forces a positive intercept and coefficients the result can not de-
crease whenever the features increase. This prevents the crashing behaviour
that undermines the normal regression.

Degenerate trees None of the trees of logistic regressions seem to really im-
prove on the original, achieving only below 90% validation accuracy. Recall only
improves when accuracy decreases. And the maximal performance is achieved
using only a single logistic regression, hence I have removed the degenerate tree
from the results. As it is literally equivalent to a logistic regression.

Neural networks Many architectures of neural networks are used to simulate
some of the other algorithms in this paper, logistic and linear regression, however
these provide inferior results and have been dropped accordingly. Based on these
attempts a large set of possible options has been determined. All networks are a
combination the following options,L1 regularization, L2 regularization, dropout,
Relu, TanH, Sigmoid, Hingeloss, Cross entopy loss, mean squared error loss and
absolute error loss. Using these in addition to several architecture sizes, the only
well performing classification networks use Cross entropy, with no regularization
other than drop out and a (16,16,1) or (16,1) size, Relu for the hidden layers
and sigmoid as last activation.

The performance of these classifiers in preliminary testing was inline with
expectations except for some rare cases, This seems to be due to similar reasons
for the failure of the ranking SVM, the neural networks develop negative weights
thereby becoming stuck and crash due to memory errors. Because of this the
previous process has been repeated in Keras, because it allows for constraints on
the weights. When, all weights are non negative, and the activation functions
are monotonic and have a Range [0,∞), it follows that the neural-network
will have monotonic-like properties, whereby for a function f : Rn → R given
(x1, x2, .., xn) and (x

′

1, x2, ..., xn) and x1 < x1
′ it follows that f(x1, x2, .., xn) ≤

f(x
′

1, x2, .., xn) this is also true for all x ∈ (x1, x2, .., xn) . This monotonic-like
property should avoid such behaviour.

Other changes have also been tested with the Keras module, the introduction
of a diagonal matrix M , whose elements are 1

max for their respective features, as
explained above the smallest case is 0 for all features, hence the normalizations

10

xi−mini

maxi−mini
are equal to xi · 1

maxi
. Prepending this M to the model does not

positively affect it’s performance in either validation or any intermediate test.
Likewise prepending M as a learnable layer has no increase in accuracy or
recall. Even when all models are tested using different learning rates across
special layers etc, there is no significant improvement.

The above architectures have also been considered on the regression net-
works, The (16,16,1) architecture with relu activation, mean squared error and
dropout performs best. I have also attempted a recurrent Network, but in pre-
liminary testing this network fails due to assigning negative weights, it also fails
when constraint to strictly positive weights. Moreover an attempt has been
made to use the learned regression as the starting point of the data gathering,
this is ”Regression network v2” in the table.

4.3 Testing Results

The following test have been performed on several combinations of these new
priority functions and clause weight functions, which also include the default
settings of the E prover. When testing several of these combinations, it seems
like the (3,1,1)5 split is determined by testing on the training set of problems.
The results obtained are from this exact command: 6.

./eprover -D"ex1=Refinedweight(<custom prio function>,2,1,1.5,1.1,1)

ex2=Refinedweight(PreferNonGoals,2,1,1.5,1.1,1.1)

ex3=Refinedweight(PreferGoals, 2,1,1.5,1.1,1)" --cpu-limit=20

--output-level=0 -H"new=(3*ex1,1*ex2,1*ex3)" -x new $f

Where for all classifiers the Clause weight is Refinedweight7, and for all clause
weight functions the following command is used.

./eprover -D"ex1=<custom clause weight>(PreferNonGoals)

ex2=<custom clause weight>(PreferGoals)" --cpu-limit=20

--output-level=0 -H"new=(3*ex1,1*ex2)" -x new $f

The previous command gives us the following result, where clauses are de-
termined running a separate command with higher ”–output-level”, the total
clauses in the table are the sum of their respective intersections, clauses under
ALG classifier are the result of the intersection of all proven ALG problems,
likewise ALG regression, etc.

5the 3 can be made slightly larger but this won’t improve the performance much
6these might have to be modified given the binary ”eprover” location and /or operating

system / bash version
7the default E function

11

ALG test set BOO COM
classifier clauses proofs clauses 8 proofs clauses proofs
default 1958649 94 12017 55 37706 24

classifier SVM 1746017 98 11450 53 15265 25
Logistic Classifier 1755604 94 15754 44 15694 24

(16,16,1) NN 1728466 98 12022 55 15338 24
(16,1) NN 1728239 98 12020 55 15502 24

(16,16,1) constrained NN 1728462 98 12020 55 15492 24
(16,1) constrained NN 1729340 98 12020 55 15492 24

regression
default 696102 94 8668 55 3896 24

Ranking SVM None None None None None None
Linear Regression None None None None None None

RNN None None None None None None
NonNeg Linear Regression 239719 104 11445 52 7950 24

Regression network 5 epochs 274566 99 504496 39 25843 24
Regression network v2 283375 93 413596 41 26296 24

Table 1: summary table 1

This section is the comparison of proofs to default, where faster, means less
clauses processed, equal the exact same, and slower more clauses processed.

SVM logistic NN1 NN2 NN3 NN4 noneg reg ntwrk
ALG
faster 56 53 51 51 53 53 52 51
equal 16 6 8 6 6 7 20 17
slower 19 32 34 34 31 31 6 10
BOO
faster 15 12 0 0 0 0 9 6
equal 5 2 38 39 39 39 5 4
slower 21 27 3 2 2 2 25 29
COM
faster 14 14 12 15 15 15 10 10
equal 3 2 5 6 7 7 3 2
slower 7 8 7 3 2 2 7 8

Table 2: summary table 2

12

4.4 Analysis

The raw steps tables, which include the entire intersection for ALG, are too
large and have been included in the appendix. However the above provide a
good summary. In other tests, preliminary tests and features selections etc, the
behaviour of the classifiers roughly follows that of the COM data set, except for
the one case of the BOO dataset which is a unique example, where the neural
networks almost perfectly follow the default settings of E. I have yet to uncover
a problem set where the classification neural net policies underperform when
compared to the default policy. Though these probably exist.

Moreover over a Chi-square test on the BOO results, between NNets, SVM
and default cannot reject the null that these are homogeneous populations9,
with respect to the policy strategy. Therefore it is impossible to state that in
any case the new provers take more steps or find fewer proofs when given a
random sample. Likewise a T test for the classification Heuristics only ever
displays a reduction in steps or no rejection of the null, when comparing these
proof sets, however it should be noted that none of the problem sets follow a
normal distribution, thereby they violate the assumptions of the T test.

Several of the generic weight functions computed are completely dysfunc-
tional and should be discarded. Given expert knowledge for constraints and
changes to, class weight, and loss, they can be modified to create desirable be-
haviour, the problem of negative weights are a good example, but more tests to
get at the details of this have to be done.

Moreover the regression models do actually underperform in many cases,
when they are evaluated on problem sets, which are not of the same type as the
training data.

9see appendix for the table

13

5 Related work

5.1 E prover

There is a history of machine learning optimizations for the Eprover, however the
most used techniques in those papers are store and recall [5]. The closest paper
to this one is the use of the LIBLINEAR[6] library SVM,by [8], to construct a
prediction function, which also adds the length in symbols to the same weight.
I have used this idea in prelimenary testing aswell, but it is not very applicable
in my case.10

5.2 tableaux

There is also research on introducing new machine learned proof search for
different calculi, such as connection tableaux [14], however these leverage proof
state descriptions that don’t exist in the E prover.

5.3 probabilistic sat solving

Recently Stanford University published paper on sat solving using a neural
network to predict it’s satisfiability [12] ”When it guesses sat, we can almost
always decode the satisfying assignment it has found from its activations.” [4],
within polynomial time. It is a closely related subject, however it critically
differs in that it is not focused on proving. Other neural net based approaches
do exist for various provers[7], however these lack some of the specifications
required to re-implement and compare them.

6 Conclusion

summary It is clear from the results that we can improve the search heuristic
in steps, real time and scope at the same time, however this improvement seems
to mostly generalize to other problems within the same set. Moreover despite
the fact that the adding and subtracting of the hyper-parameter to the existing
heuristic makes this heuristics a nonlinear function, with respect to it’s features,
the linear regression that fits on the least squares estimate is still the best
performing heuristic. Moreover there is a sampling bias that might have crept
into the prover as it loses performance on very small proofs, but offsets this by
gains made in performance on the larger proofs. This happens in the training
set(see ALG194+1.p ALG200+1.p) as well as the test set.

10It is both fundamentally different from what I do here, and I am unable to find the exact
library used, since they reference a library that has implemented L2-SVM after the publishing
date of the paper.

14

future work This paper can be summarized as finding a policy π
′

from π,
which is the basis of reinforcement learning algorithms. Given that it is possible
to automate all steps of this paper, we can setup the following program:

Train, Test, Validation = Shuffle_and_split(tptp_problems)

for(training_length):

sample <- Sample(train)

for(problem in sample):

features.append(proof(problem))

test_policy <- learn(policy,features)

if(check(test_policy,Validation)):

policy <- test_policy

logg(features)

features <- empty;

done

Since the original update of the policy increases the amount of proofs found and
reduces the number of steps of the program, without any clear cost. I would
expect this program to create an incrementally better prover every iteration,
up to some maximum. This could however require a major modification of the
E prover, such as merging the clause picking heuristics into a single function
mapping clauses, as well as requiring an extremely large amount of time and
computational resources, several moths of running time is a conservative esti-
mate of the requirements. Given that every update can take well up to a day
to complete.

Another very interesting topic would be the retraining of a small network
combined with L1 regularization, this results into a sparse graph, where it would
be possible to understand the underlying logic of the decision procedure.

15

References

[1] https://theoremprover-museum.github.io/. 2019-06-09.

[2] E 2.3 User Manual preliminary version.

[3] Balázs Csanád Csáji. Approximation with artificial neural networks. Fac-
ulty of Sciences, Etvs Lornd University, Hungary, 24:48, 2001.

[4] et.al. Daniel Selsam, Stanford University. Neuro Sat, February 2018.

[5] Jörg Denzinger, Matthias Fuchs, Christoph Goller, and Stephan Schulz.
Learning from previous proof experience: A survey. 1999.

[6] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-
Jen Lin. Liblinear: A library for large linear classification. Journal of
machine learning research, 9(Aug):1871–1874, 2008.

[7] Christoph Goller. A connectionist control component for the theorem
prover setheo. In In ECAI-94 Workshop on Combining Symbolic and Con-
nectionist Processing, page pages, 1994.

[8] Jan Jakubv and Josef Urban. Enigma: efficient learning-based inference
guiding machine. In International Conference on Intelligent Computer
Mathematics, pages 292–302. Springer, 2017.

[9] William McCune. Solution of the robbins problem. Journal of Automated
Reasoning, 19(3):263–276, 1997.

[10] Alan =Robinson and Andrei Voronkov. handbook of, automated reasoning,
volume I. elsevier, 2006.

[11] Stephan Schulz. E–a brainiac theorem prover. Ai Communications, 15(2,
3):111–126, 2002.

[12] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo
de Moura, and David L. Dill. Learning a SAT solver from single-bit super-
vision. CoRR, abs/1802.03685, 2018.

[13] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure.
From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning,
59(4):483–502, 2017.

[14] Josef Urban, Jǐŕı Vyskočil, and Petr Štěpánek. Malecop machine learning
connection prover. In International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, pages 263–277. Springer, 2011.

[15] Paul Viola and Michael Jones. Robust real-time object detection. In In-
ternational Journal of Computer Vision, 2001.

16

https://theoremprover-museum.github.io/

7 Appendix

7.1 code

The start of this loop is identical to the one that prints the clause features,
the numbers that mutliply fmmp,fmmn etc are the weights learned(in this case
sklearn non negative linear regression), they cannot be implemented by having
the custom Heuristic accept a file description as the current bash version might
insert a ”\r” character which will make it fail to load.

double nnl_goal(void* data ,Clause_p clause){
Eqn_p handle;
CustomParam_p local = data;
ClauseCondMarkMaximalTerms(local ->ocb , clause);
double fmmp = 0;
double fmmn = 0;
double fmnp = 0;
double fmnn = 0;
double fnmp = 0;
double fnmn = 0;
double fnnp = 0;
double fnnn = 0;

double vmmp = 0;
double vmmn = 0;
double vmnp = 0;
double vmnn = 0;
double vnmp = 0;
double vnmn = 0;
double vnnp = 0;
double vnnn = 0;

for(handle = clause ->literals;handle;handle=handle ->next){
//res += LiteralWeight(handle , max_term_multiplier , max_literal_multiplier , pos_multiplier , vweight , fweight , 1, false);
// m m p v f
fmmp += LiteralWeight(handle , 1, 1, 1, 0, 1, 1, false);
fmmn += LiteralWeight(handle , 1, 1, 0, 0, 1, 1, false);
fmnp += LiteralWeight(handle , 1, 0, 1, 0, 1, 1, false);
fmnn += LiteralWeight(handle , 1, 0, 0, 0, 1, 1, false);
fnmp += LiteralWeight(handle , 0, 1, 1, 0, 1, 1, false);
fnmn += LiteralWeight(handle , 0, 1, 0, 0, 1, 1, false);
fnnp += LiteralWeight(handle , 0, 0, 1, 0, 1, 1, false);
fnnn += LiteralWeight(handle , 0, 0, 0, 0, 1, 1, false);

vmmp += LiteralWeight(handle , 1, 1, 1, 1, 0, 1, false);
vmmn += LiteralWeight(handle , 1, 1, 0, 1, 0, 1, false);
vmnp += LiteralWeight(handle , 1, 0, 1, 1, 0, 1, false);
vmnn += LiteralWeight(handle , 1, 0, 0, 1, 0, 1, false);
vnmp += LiteralWeight(handle , 0, 1, 1, 1, 0, 1, false);
vnmn += LiteralWeight(handle , 0, 1, 0, 1, 0, 1, false);
vnnp += LiteralWeight(handle , 0, 0, 1, 1, 0, 1, false);
vnnn += LiteralWeight(handle , 0, 0, 0, 1, 0, 1, false);

}
return fmmp * 7.552057 + fmmn * 0.000000 + fmnp* 4.691503 + fmnn * 0.000000 +

fnmp * 7.972812 + fnmn * 0.000000 + fnnp * 2.291421 + fnnn * 0.000000 +
vmmp * 6.258440 + vmmn * 0.000000 + vmnp * 1.012416 + vmnn * 0.000000 +
vnmp * 2.633825 + vnmn * 0.000000 + vnnp * 0.000000 + vnnn * 9.338033 + 166.5520588210747;

}

17

The following section is the implementation of some neural network func-
tionality, it is copied from the training file, and is part of models.h. It simply
defined the necessary functions from the training module. functions like ”Back-
wardPass” and or ”train” are not part of the E modifications and thereby not
part of the E code. the blunt use of ”NN* network1();” is due to previously
mentioned issue with file i/o.

#ifndef NN_MODELS
#define NN_MODELS

typedef float (*act) (float x);
typedef float (*dist) (float x, float y);
typedef struct l
{

float *inputs; //store this layers input for dynamic computation of gradients
float *output; //store the output to allow for dynamic computation of gradients
float *weights; //store the weights of a network
float *bias; //store the bias of the layer
float *error; // store this layers error of gradient descent
float *delta; // store this layers derivative on it’s output
int in; //in size for weight retrieval
int out; //out size for weight retrieval
act S; // activation function
act SD; // dynamic activation
struct l *next; // nextlayer NULL --> this layer is the output layer
struct l *prev; // prevlayer NULL --> this layer is the input layer

} layer;

typedef struct NetN
{

layer *initial; // inputlayer of the network
float alpha; // learning rate
float epsilon; // dropout rate --increase in later versions --
float lambda; // weight decay rate/ lambda in loss function
dist loss; //loss function
dist lossDeriv; //loss function derivative
dist acc; // accuracy function
float (* regfunc)(struct NetN* network);

} NN;

float Relu (float x);
float Sigmoid (float x);
float* getWeight(int i, int j, layer * l);
void pred (float *in, layer * l);
float forward (float *in , NN* network);

NN* network1 ();
NN* network2 ();
NN* network3 ();
NN* network4 ();
NN* network5 ();
NN* network6 ();
NN* network7 ();
NN* network8 ();
NN* network9 ();
NN* network10 ();
#endif

18

7.2 tables

ALG problem default SVM logistic NN1 NN2 NN3 NN4
ALG002-1 3352 11705 12780 5100 5100 5095 5095
ALG007-1 448 441 998 448 448 448 448
ALG011-1 44 33 33 33 35 33 33
ALG012-1 3724 17236 6106 6106 6110 6106 6106
ALG014+1 20 20 32 32 32 32 32
ALG016+1 3115 4115 4130 4098 4098 4098 4098
ALG017+1 25 24 37 37 37 37 37
ALG018+1 32 24 24 24 28 24 24
ALG019+1 32 24 24 24 28 24 24
ALG020+1 302 279 283 267 267 267 267
ALG021+1 424 424 424 425 425 425 425
ALG022+1 483 480 480 481 481 481 481
ALG023+1 337098 230003 229596 230305 230288 230250 230266
ALG025+1 1904 925 600 595 595 595 595
ALG026+1 37902 54101 53123 53198 53198 53198 53198
ALG028+1 13583 3780 1390 1390 1390 1390 1390
ALG029+1 64 58 58 58 58 58 58
ALG030+1 64 58 58 58 58 58 58
ALG031+1 847 720 720 684 684 684 684
ALG032+1 802 802 802 802 802 802 802
ALG033+1 815 815 829 815 815 815 815
ALG036+1 20 18 18 18 18 18 18
ALG037+1 17530 16684 16689 16694 16694 16694 16694
ALG038+1 481166 479853 479823 479818 479818 479822 479824
ALG039+1 20 20 24 24 24 24 24
ALG040+1 32 24 24 24 28 24 24
ALG041+1 32 24 24 24 28 24 24
ALG042+1 302 279 283 267 267 267 267
ALG043+1 1016 1016 1019 1019 1019 1019 1019
ALG044+1 1075 1072 1075 1079 1079 1075 1075
ALG045+1 9038 10888 10889 10889 10889 10889 10889
ALG054+1 147 152 162 163 163 163 163
ALG055+1 38667 13847 15422 13839 13839 13839 13839
ALG058+1 8027 6008 7506 6004 6004 6004 6004
ALG062+1 719 1267 1267 1267 1267 1267 1267
ALG063+1 1765 1563 1762 1572 1572 1568 1569
ALG067+1 1145 1482 972 1484 1484 1482 1484
ALG069+1 36 21 21 21 21 21 21
ALG070+1 48 43 46 43 43 43 43
ALG071+1 5068 16217 10631 8185 8185 8185 8185
ALG073+1 306 606 137 313 313 313 313
ALG075+1 487 421 431 406 406 406 406

19

ALG problem default SVM logistic NN1 NN2 NN3 NN4
ALG076+1 503 437 447 422 422 422 422
ALG077+1 502 436 446 421 421 421 421
ALG078+1 506 440 450 425 425 425 425
ALG079+1 519 453 463 438 438 438 438
ALG080+1 825 759 769 744 744 744 744
ALG081+1 489 423 433 408 408 408 408
ALG082+1 490 424 434 409 409 409 409
ALG083+1 501 435 445 420 420 420 420
ALG084+1 546 480 490 465 465 465 465
ALG085+1 489 423 433 408 408 408 408
ALG086+1 491 425 435 410 410 410 410
ALG087+1 486 420 430 405 405 405 405
ALG088+1 485 419 429 404 404 404 404
ALG089+1 490 424 434 409 409 409 409
ALG090+1 1039 1039 1040 1064 1064 1040 1040
ALG091+1 1156 1156 1163 1161 1161 1161 1161
ALG092+1 1029 1029 1030 1054 1054 1030 1034
ALG093+1 1798 1798 1873 1803 1803 1803 1803
ALG094+1 1017 1017 1022 1046 1046 1022 1025
ALG095+1 1017 1016 1021 1046 1046 1021 1021
ALG105+1 39404 40676 40947 40515 40515 40515 40515
ALG107+1 191635 167768 168172 167721 167747 168135 168205
ALG110+1 12995 17145 17130 17181 17181 17181 17181
ALG111+1 2648 1019 1039 1033 1033 1033 1033
ALG113+1 1213 787 760 778 778 779 779
ALG114+1 1423 62062 62093 62073 62073 62062 62062
ALG115+1 7093 6436 6837 6870 6905 6888 6888
ALG117+1 1442 51363 50926 51747 51747 50914 50914
ALG118+1 19265 18519 18789 18948 18940 18971 18977
ALG121+1 1101 1093 1184 1112 1112 1112 1112
ALG123+1 5859 5179 5122 5056 5056 5044 5054
ALG125+1 92400 91177 91384 91487 91487 91482 91482
ALG138+1 274 133 137 137 137 137 137
ALG166+1 40477 37844 38994 38044 38044 38409 38643
ALG167+1 349293 211041 222874 210594 209589 210329 210844
ALG168+1 1346 1700 1706 1728 1728 1727 1727
ALG169+1 1307 1659 1688 1699 1699 1699 1699
ALG170+1 17861 17487 17894 17384 17384 17484 17484
ALG171+1 42 144 144 144 144 144 144
ALG172+1 57 171 171 171 171 171 171
ALG173+1 40 109 109 109 109 109 109
ALG174+1 67 179 179 179 179 179 179
ALG175+1 58 160 163 163 163 163 163
ALG176+1 84 112 66 67 67 67 67
ALG177+1 80 62 62 62 62 62 62

20

ALG problem default SVM logistic NN1 NN2 NN3 NN4
ALG178+1 128 122 122 122 122 122 122
ALG179+1 128 122 122 122 122 122 122
ALG180+1 468 395 404 379 379 379 379
ALG181+1 417 351 361 336 336 336 336
ALG182+1 417 351 361 336 336 336 336
ALG183+1 417 351 361 336 336 336 336
ALG184+1 417 351 361 336 336 336 336
ALG185+1 1623 1487 1487 1462 1462 1462 1462
ALG186+1 1010 1000 1007 1034 1034 1006 1006
ALG187+1 1010 1001 1008 1035 1035 1007 1007
ALG188+1 978 978 980 1001 1001 980 980
ALG189+1 978 978 980 1001 1001 980 980
ALG192+1 24127 19651 19663 19663 19663 19663 19663
ALG193+1 163826 113007 113054 113069 113084 113089 113054
ALG194+1 3108 932 932 932 932 932 932
ALG198+1 32 18 28 28 28 28 28
ALG199+1 112 2662 2676 2676 2676 2676 2676
ALG200+1 1776 410 405 405 405 405 405
ALG201+1 16 13 13 13 13 13 13
ALG202+1 28 26 26 26 26 26 26
ALG203+1 48 43 45 45 45 45 45
ALG204+1 930 724 731 682 682 682 682
ALG205+1 3077 2864 2870 2821 2821 2821 2821
ALG206+1 1391 1185 1195 1143 1143 1143 1143
ALG207+1 3690 3691 3719 3723 3723 3697 3697
ALG208+1 3679 3679 3713 3729 3729 3684 3684
ALG209+1 3690 3690 3718 3701 3701 3701 3701
ALG210+2 74 109 129 66 66 66 66
ALG211+1 28 20 20 20 20 20 20
ALG227+1 1506 1338 1338 1328 1333 1338 1338
ALG235-1 38 38 43 38 38 38 38
ALG236-1 186 185 510 186 186 186 186
ALG299-1 3 3 3 3 3 3 3
ALG300-1 3 3 3 3 3 3 3
ALG302-1 2 2 2 2 2 2 2
ALG350-1 136 64 330 149 145 145 145
ALG371-1 886 1296 2880 1213 1192 1267 1267
ALG397-1 240 236 236 121 121 233 233

Table 3: classifiers: steps per ALG problem

ALG problem default nonneg NNreg
ALG006-1 296 3012 36587
ALG007-1 448 1553 23394

21

ALG problem default nonneg NNreg
ALG011-1 44 31 31
ALG014+1 20 30 30
ALG016+1 3115 3097 3999
ALG017+1 25 35 35
ALG018+1 32 44 36
ALG019+1 32 36 36
ALG020+1 302 241 226
ALG021+1 424 424 424
ALG022+1 483 480 480
ALG025+1 1904 1904 1904
ALG026+1 37902 14051 7560
ALG028+1 13583 8948 8788
ALG029+1 64 56 64
ALG030+1 64 56 64
ALG031+1 847 626 551
ALG032+1 802 802 802
ALG033+1 815 815 815
ALG036+1 20 20 20
ALG037+1 17530 16406 16371
ALG039+1 20 20 20
ALG040+1 32 44 36
ALG041+1 32 36 36
ALG042+1 302 241 226
ALG043+1 1016 1016 1016
ALG044+1 1075 1072 1072
ALG045+1 9038 3558 3033
ALG054+1 147 133 133
ALG055+1 38667 1727 1738
ALG058+1 8027 2441 2877
ALG062+1 719 427 474
ALG063+1 1765 1101 1078
ALG067+1 1145 733 803
ALG069+1 36 32 32
ALG070+1 48 40 40
ALG075+1 487 348 330
ALG076+1 503 365 346
ALG077+1 502 363 345
ALG078+1 506 365 349
ALG079+1 519 381 362
ALG080+1 825 688 662
ALG081+1 489 352 332
ALG082+1 490 354 333
ALG083+1 501 356 344
ALG084+1 546 408 389
ALG085+1 489 352 332

22

ALG problem default nonneg NNreg
ALG086+1 491 351 334
ALG087+1 486 349 329
ALG088+1 485 347 328
ALG089+1 490 349 333
ALG090+1 1039 1039 1039
ALG091+1 1156 1156 1156
ALG092+1 1029 1034 1034
ALG093+1 1798 1798 1821
ALG094+1 1017 1017 1017
ALG095+1 1017 1017 1017
ALG105+1 39404 22700 19193
ALG107+1 191445 7386 2397
ALG110+1 12995 8617 8511
ALG111+1 2648 2362 2375
ALG113+1 1213 1155 1127
ALG114+1 1423 17382 18103
ALG115+1 7093 5158 5093
ALG117+1 1442 14430 15265
ALG121+1 1101 1120 1173
ALG138+1 274 523 523
ALG166+1 40477 35949 33309
ALG168+1 1346 1290 1270
ALG169+1 1307 1278 1290
ALG170+1 17861 11391 9395
ALG171+1 42 35 35
ALG172+1 57 49 49
ALG173+1 40 40 40
ALG174+1 67 59 59
ALG175+1 58 58 58
ALG176+1 84 40 40
ALG177+1 80 40 40
ALG178+1 128 112 100
ALG179+1 128 112 100
ALG180+1 468 333 313
ALG181+1 417 284 260
ALG182+1 417 284 260
ALG183+1 417 284 260
ALG184+1 417 284 260
ALG185+1 1623 1443 1416
ALG186+1 1010 1010 1010
ALG187+1 1010 1010 1010
ALG188+1 978 978 978
ALG189+1 978 978 978
ALG194+1 3108 1356 1356
ALG198+1 32 32 32

23

ALG problem default nonneg NNreg
ALG199+1 112 113 113
ALG200+1 1776 1296 1332
ALG201+1 16 16 16
ALG202+1 28 28 28
ALG203+1 48 48 52
ALG204+1 930 512 478
ALG205+1 3077 2811 2302
ALG206+1 1391 971 904
ALG207+1 3690 3690 3717
ALG208+1 3679 3679 3725
ALG209+1 3690 3690 3690
ALG211+1 28 24 28
ALG227+1 1506 689 481
ALG235-1 38 115 420
ALG299-1 3 3 3
ALG300-1 3 3 3
ALG302-1 2 2 2
ALG340-1 544 2504 334
ALG341-1 186505 320 328
ALG350-1 136 93 60
ALG371-1 886 779 1008
ALG372-1 298 475 339
ALG397-1 240 219 162
Table 4: regressor steps per ALG problem

BOO problem default SVM Logistic NN1 NN2 NN3 NN4
BOO001-1 13 20 15 13 13 13 13
BOO002-1 132 254 44 132 132 132 132
BOO002-2 131 254 44 131 131 131 131
BOO003-2 69 50 104 69 69 69 69
BOO003-4 69 40 24 69 69 69 69
BOO004-2 17 36 97 18 18 18 18
BOO004-4 18 25 55 18 18 18 18
BOO005-2 19 28 130 19 19 19 19
BOO005-4 19 27 31 19 19 19 19
BOO006-2 70 47 131 70 70 70 70
BOO006-4 70 41 26 70 70 70 70
BOO007-4 1332 2177 6564 1332 1332 1332 1332
BOO009-2 71 47 127 71 71 71 71
BOO009-4 71 42 47 71 71 71 71
BOO010-2 70 80 144 70 70 70 70
BOO010-4 70 50 60 70 70 70 70
BOO011-1 17 17 17 19 17 17 17

24

BOO problem default SVM Logistic NN1 NN2 NN3 NN4
BOO011-2 6 6 9 6 6 6 6
BOO011-4 7 10 11 7 7 7 7
BOO012-2 126 37 125 126 126 126 126
BOO012-4 126 72 54 126 126 126 126
BOO013-2 245 118 161 245 245 245 245
BOO013-4 185 71 334 185 185 185 185
BOO014-2 2170 800 4345 2170 2170 2170 2170
BOO016-2 68 94 131 68 68 68 68
BOO017-2 72 65 145 72 72 72 72
BOO018-4 11 15 15 11 11 11 11
BOO021-1 78 29 89 78 78 78 78
BOO026-1 251 305 304 251 251 251 251
BOO027-1 7 7 7 7 7 7 7
BOO028-1 4345 4577 926 4345 4345 4345 4345
BOO029-1 350 226 422 350 350 350 350
BOO034-1 28 40 35 30 30 30 30
BOO068-1 527 533 93 527 527 527 527
BOO069-1 57 57 60 57 57 57 57
BOO070-1 522 529 91 522 522 522 522
BOO071-1 55 55 58 55 55 55 55
BOO072-1 133 145 145 133 133 133 133
BOO074-1 153 165 165 153 153 153 153
BOO075-1 237 259 369 237 237 237 237

Table 5: classifiers: steps per BOO problem

BOO problem default nonneg NNreg
BOO001-1 13 24 14
BOO003-2 69 200 27296
BOO003-4 69 200 27296
BOO004-2 17 18 20
BOO004-4 18 18 20
BOO005-2 19 20 21
BOO005-4 19 18 21
BOO006-2 70 198 27469
BOO006-4 70 198 27469
BOO009-2 71 205 27373
BOO009-4 71 205 27373
BOO010-2 70 198 27397
BOO010-4 70 198 27397
BOO011-1 17 17 17
BOO011-2 6 8 6
BOO011-4 7 10 7
BOO012-2 126 259 28141

25

BOO problem default nonneg NNreg
BOO012-4 126 259 28141
BOO013-2 245 1270 29727
BOO013-4 185 1034 29079
BOO014-2 2170 2106 33673
BOO015-2 2152 2158 39881
BOO016-2 68 202 27536
BOO017-2 72 206 27401
BOO018-4 11 12 11
BOO021-1 78 67 28276
BOO024-1 222 137 5640
BOO025-1 217 153 5657
BOO026-1 251 349 433
BOO027-1 7 7 9
BOO029-1 350 489 776
BOO034-1 28 157 208
BOO068-1 527 112 54
BOO069-1 57 57 48
BOO070-1 522 113 56
BOO071-1 55 55 47
BOO072-1 133 87 83
BOO074-1 153 96 101
BOO075-1 237 325 322

COM problem default SVM Logistic NN1 NN2 NN3 NN4
COM001-1.p 716 31 202 197 197 197 197
COM001 1.p 716 31 202 197 197 197 197
COM002-1.p 15332 6040 5733 5733 5733 5733 5733
COM002 2.p 60 40 45 65 36 36 36
COM002 1.p 15324 6038 5740 5733 5733 5733 5733
COM002 2.p 456 95 241 226 186 186 186
COM003-2.p 72 51 51 51 55 51 51
COM003 1.p 741 825 807 489 732 732 732
COM004-1.p 16 13 13 24 13 13 13
COM007+1.p 2680 516 1021 1016 1016 1021 1021
COM007+2.p 33 33 33 33 33 33 33
COM009-2.p 6 5 5 5 5 5 5
COM010-2.p 5 6 6 5 5 5 5
COM011-2.p 474 515 515 515 515 515 515
COM012+1.p 54 54 54 56 56 54 54
COM012+3.p 63 63 66 63 63 63 63
COM013+4.p 208 202 207 180 180 180 180
COM016+4.p 57 49 66 67 68 59 59
COM018+1.p 42 41 41 37 41 41 41
COM018+4.p 69 84 79 69 69 69 69

26

COM problem default SVM Logistic NN1 NN2 NN3 NN4
COM021+4.p 152 156 153 152 152 152 152
COM022+1.p 121 129 134 124 121 121 121
COM022+4.p 153 80 139 154 149 149 149
COM023+1.p 156 168 141 147 147 147 149

Table 7: classiefiers: steps per COM problem

COM problem default nonneg NNreg
COM001-1 716 2600 9540
COM001 1 716 2600 9540
COM002-2 60 40 36
COM002 2 456 360 220
COM003-2 72 52 56
COM003 1 741 1164 5268
COM004-1 16 44 40
COM007+2 33 27 27
COM009-2 6 6 5
COM010-2 5 5 5
COM012+1 54 54 54
COM012+3 63 58 75
COM013+4 208 228 332
COM016+4 57 36 41
COM018+1 42 41 41
COM018+4 69 99 121
COM021+4 152 125 79
COM022+1 121 123 122
COM022+4 153 138 105
COM023+1 156 140 136

27

	Introduction
	Motivation
	Problem statement
	Hypothesis
	Contributions

	Background
	First-order Logic
	automated theorem proving
	Superposition calculus
	The E prover
	Heuristic types of E

	Machine learning
	data generation
	Proposed algorithms
	Support vector Machine
	Linear Regression
	Logistic Regression
	Neural networks
	Degenerate Trees (logistic)

	Evaluations
	Experimental setup
	Preliminary testing
	Testing Results
	Analysis

	Related work
	E prover
	tableaux
	probabilistic sat solving

	Conclusion
	References
	Appendix
	code
	tables

