Bachelor Thesis

New clause selection function elements for the E theorem prover

Author: Niels Galjaard

(2518100)
supervisor: Jasmin Blanchette
2nd reader: Petar Vukmirovic

A thesis submitted in fulfillment of the requirements for the VU Bachelor of Science degree in Computer Science

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Problem statement 3
1.3 Hypothesis 3
1.4 Contributions 3
2 Background 4
2.1 First-order Logic 4
2.2 automated theorem proving 4
2.3 Superposition calculus 5
2.4 The E prover 5
2.4.1 Heuristic types of E 5
3 Machine learning 6
3.1 data generation 6
3.2 Proposed algorithms 7
3.2.1 Support vector Machine 7
3.2.2 Linear Regression. 7
3.2.3 Logistic Regression 7
3.2.4 Neural networks 7
3.2.5 \quad Degenerate Trees (logistic) 8
4 Evaluations 8
4.1 Experimental setup 8
4.2 Preliminary testing 9
4.3 Testing Results 11
4.4 Analysis 13
5 Related work 14
5.1 E prover 14
5.2 tableaux 14
5.3 probabilistic sat solving 14
6 Conclusion 14
References 16
7 Appendix 17
7.1 code 17
7.2 tables 19

1 Introduction

1.1 Motivation

There is a large variety of research and implementation of automated theorem proving [1] with academic and commercial use, from proving mathematical theorems to proving the correctness of circuits. At times automated provers even find proofs for not yet proven theorems [9, hence there is clear benefit to improving the speed of these provers. Because the work of building provers has already been done, I have decided not to reinvent the wheel and simply go by an existing implementation. Moreover I have decided to use various machine learning algorithms to attempt to achieve this, since the ability to use the required computational resources is far more accessible today, when compared to the time at which these provers were build. Additionally related problems can be efficiently solved using machine-learning as shown by Stanford researchers [12]. Proof search heuristics are therefore a promising subject of research.

1.2 Problem statement

The main point of interest for this paper is the speed of provers. Since most provers are already proven to be refutationally complete, what remains is the speed at which these proofs can be found, as is usually the case in computer Science there are two metrics of speed for algorithms, the speed in seconds, and the speed in steps of the program. Because of the degree of inconsistency when measuring speed in seconds, I am for the purpose of this paper focused on the number of steps of the program. Another metric is the number of proofs, since there is a possibility of improving the number of proofs found, by not considering unproductive clauses.

1.3 Hypothesis

This paper concerns with the ability to improve the speed of a prover, we are interested in whether or not adapting several existing heuristics with machine learned heuristics increases the speed of a prover, where speed is the number of steps, in this case that is the number of clauses processed by the prover. And whether or not this change in speed results in more proofs found.

1.4 Contributions

Similar to almost all theorem provers [1] the E prover is implemented in C, the main bulk of the code of this paper including the code to train models is also in C, because of this a package of C code for training models is included, this ended up not part of the modified E code, however it is used to train several models. see models.c for specifics

E extensions For this paper several additions and modifications have been made to the Eprover, these are somewhat inelegant, given the issue with file I/O that is currently prohibiting some features on windows Linux subsystem. on many of the Machine learning models this means that the original model file has not been used and the weights learned have been hard coded into C functions. Moreover the bash scripts also contain some strange constructs as a result of file issues, however several manual checks applied afterwards do show the data and measurements to be correct.

One of the two main sections of this paper is the classification models for priority functions, these are partially trained using the training module of C included in the paper and partially trained on sklearn[?] or Keras[?] models. In both cases due to file i/o issues they cannot be made to work directly with fopen in C, therefore I have in both cases simply printed the weights and copy pasted the weights into a piece of C code and recompiled.

Despite the issues in training and somewhat strange implementation, the Neural networks and regression models are correct and can with little effort be included into the E prover for testing or further work.

Training Code and scripts Another section of the paper restricted due to the file i/o is the printing of clause features. The current version of bash some times discards fprintf calls, and often is incapable of piping to files whenever files exceed a 0.5 GB limit. However the way the features are printed to std.out in the current implementation, they can be extracted using grep.

Piping these output files into a larger file I have used very basic pandas[?] to organize them into a larger CSV file, which is ultimately used by the training module of C, Keras and sklearn. Once these have been trained the last file is used to evaluate the results of the learned networks.

2 Background

2.1 First-order Logic

First-order logic can be seen as an extension of propositional logic, introducing predicates and quantifiers. Predicates are functions which map domain variables to truth values. This allows for predication of objects, which have no truth value, hence a formula like $P(x)$, is a well formed formula in first order logic. Quantifiers bind variables. Which describe the value of their respective variables, hence a formula like $\exists x, P(x)$ is a sentence in first order logic with a fixed truth value. As a result we can use all sentences as propositions in rules.

2.2 automated theorem proving

Depending on the definition of the Predicates and functions, several statements in mathematics can be proven using first-order logic 10 . Most of the time this is done through a proof of refutation, given a set of axioms $\left\{A_{1}, A_{2}, \ldots A_{n}\right\}$ and
a hypothesis $\{H\}$ assume $\left\{\neg H, A_{1}, A_{2} \ldots A_{n}\right\}$ and try to show the unsatisfiability of this set. Since this set of statements is rewritten to CNF. If it's possible to derive \emptyset from any of the clauses, this shows that the set of axioms is unsatisfiable and proves $\neg \neg H$

2.3 Superposition calculus

Any of the previous FOL literals from the CNF can be rewritten to equations, for example $P(x)$ becomes $P(x) \simeq \top$ and $\neg P(x)$ becomes $P(x) \nsucceq \top$. From these types equations it's possible to use paramodulation, for example given $C_{1} \quad C_{2}$. it's possible to derive C_{3} like this

$$
\frac{C_{1}: G[x] \simeq y \vee C_{1}^{\prime} \quad C_{2}: f(a) \simeq x \vee C_{2}^{\prime}}{C_{3}: G[f(a)] \simeq y \vee C_{1}^{\prime} \vee C_{2}^{\prime}}
$$

The E prover uses a restricted form of paramodulation, which uses an ordering \succ, to constrain the possible from and into clauses. This would make the previous derivation subject to three extra constraints, with more constraints introduced for negative superposition.

$$
\left.\begin{array}{cl}
C_{1}: G[x] \simeq y \vee C_{1}^{\prime} \quad C_{2}: f(a) \simeq x \vee C_{2}^{\prime} & \\
\hline C_{3}: G[f(a)] \simeq y \vee C_{1}^{\prime} \vee C_{2}^{\prime} & \\
\hline & \\
& f(x] \succ y \simeq x \succ \succ(a) \\
&
\end{array}\right)
$$

Another important feature of the super position calculus is the use of rewrite rules, which alter or remove clauses from the current set. These rules [11] unlike the paramodulation consume their premise.

The rule on the left simply removes clause C from the current set. This rule is used to remove tautologies, which are unproductive when trying to show that the sets are unsatisfiable. The other rules is used to removed contradictory literals, Since $C_{1}^{\prime} \vee \perp \equiv C_{1}^{\prime}$

2.4 The E prover

2.4.1 Heuristic types of E

E by default has three different types of interdependent heuristics, which are considered in the following order, priority functions, generic weight functions and literal selection strategies.

Priority functions Priority functions split the data set into two categories, those with high and normal priority. The prover considers the clauses for selection in this order, by adding them to priority queues. Higher priority is always considered first. Therefore prioritizing bad clauses severely impacts the prover's performance.

In the E implementation these priority functions are based on features that are based on clause properties, hence the E prover contains priority functions like "PreferGoal".
generic weight functions Generic weights functions assign a weight to clauses. In the original implementation of E these are based on symbols and their type in clauses. And are linear combinations of their features. These weights are considered from lowest to highest, they are used to sort the priority queues from the priority functions.

Literal selection strategies This heuristic is a function which marks literals for paramodulation, resulting from these markings the prover will perform generating inferences on those literals.

3 Machine learning

3.1 data generation

The following algorithms have been used to fit models to data, where the binary classifications are made using the clause features, with the class being if the clause was in the proof. For the use of generic weight functions, I have split the data into Goal and nonGoal as a result we train two models on these datasets, moreover we obviously need to innovate some response variable, I have chosen to use a hyper parameter ζ^{1}, which is a term that is added to the original clauseweight assigned by E, where the clause was not in the proof. The hyper parameter is subtracted if the clause was in the proof. This modified clause weight data will be used for regression fitting. This returns a model, which should assign a higher score to clauses not in the proof, thereby improving on the original weight.

Since the E prover already provides several methods for heuristics, which assign multiplicative scores to certain types of features, i.e. "Refinedweight" and "Literalweight" [2] it is possible to use these functions to extract features, by setting all but one multiplier to 0 and the remaining multiplier to 1 . This extracts the feature for that one multiplier, thereby creating $2^{\text {multipliers }}$ features to use. In addition to these I have also included whether or not the clause is a goal clause as a feature. This means that the heuristics created from these features can only leverage that information, which is also available to the code that computes the default heuristic.

Creating the data is done though running the E prover on ALG tptp problems 13 for which it can rapidly find the proofs ${ }^{2}$ then piping out, the clause features

[^0]to be considered, the heuristic clause evaluation assigned, as well as the proof object, into an intermediate file. Consequently the remaining dataset is split and merged into two CSV files, the clauses in the proof and those not in the proof. These datasets are once again split into train and validation data, these two datasets have been used to fit the algorithms. The partitioning is done to prevent overfitting on the training problems.

3.2 Proposed algorithms

3.2.1 Support vector Machine

The Support vector machine is a model, which creates a maximum margin decision boundary between N classes, since we use only two classes those in and not in the proof we can use this model as a classifier, however a slight adaptation can change it to a ranking classifier. Therefore in addition to classification it is also an appropriate model to compute a generic clause weight function.

3.2.2 Linear Regression

There are several versions of linear regression, since this is a known reliable method we will include it's most standard variants here. We will use the least squares estimate by using the ordinary least squares regression, as well as the constrained version of non negative regression. So we are looking for a $y^{\prime}=$ $\vec{w} \cdot \vec{x}+b$ has minimal L
$\left.L=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\vec{w} \cdot \overrightarrow{x_{i}}\right)\right)^{2}$ and $\left.L=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\vec{w} \cdot \overrightarrow{x_{i}}\right)\right)^{2}$, where, $\vec{w} \in \mathbb{R}_{+}^{n}$

3.2.3 Logistic Regression

A logistic regression is applicable to binary classification and there is no obvious extension to modeling clause-weights. We will use this prediction model only for determining clause-priorities. For the content of this paper we will use only the logistic regression with $b=e$ or,$\frac{1}{1+e^{\overrightarrow{w^{*}} \cdot \vec{x}}}$ this has little to no effect on performance, but simply allows us to take advantage of faster computation by the standard implementations of $\exp ()$ in C.

Some adaptations can be made in testing the model, where the minimal score for proper classification; using raw output vs strict predictions, meaning that we can use the logistic regression model, however slightly changing the decision boundary. To better fit validation data.

3.2.4 Neural networks

A neural network can, depending on it's architecture, be equivalent to various other functions [3]. For example a net with no hidden layer and a sigmoid activated output, has the following structure. $\frac{1}{1+e^{\vec{w} \cdot \vec{x}}}$. As can be seen from

[^1]the previous section this is an equivalent function to a logistic regression. Except here the method of determining weights differs, hence assuming that both weight assignment algorithms do converge to the same hidden distribution, we can view neural networks as a super set of the other methods used in this paper. Because of this fact I have decided to devote most training and testing to neural-networks.

To determine the exact architecture the training data is used to fit the model, where evaluations on the validation data is used to determine it's architecture. A set of conjectured options and combinations are fit on the validation data and these will ultimately be exported to E. This approach can be extended by recreating the data several times after it has been generated by neural network heuristics, however on the current version of Linux subsystem bash this is not feasible 3

3.2.5 Degenerate Trees (logistic)

A degenerate tree is a decision tree where all decisions have are in a single direction, hence it is effectively a linked list of decision nodes, where every leaf node except the deepest is a negative result. For this ensemble it is critical to achieve as high a recall as possible, while minimizing false positives. from the preceding four models only the logistic regression has an easy extension to this type of behaviour

Using the logit output of the logistic regression that we can change it's threshold line to effectively create 1.0 recall or a close approximation of it, it's possible to use many logistic models, with different true negatives, to ensemble a powerful classifier. This type of ensemble is an adaptation from the well known Viola Jones algorithm. 15]

4 Evaluations

for raw data see the appendix

4.1 Experimental setup

Technical details :

lenovo y570k 80WK005QMH
OS windows 10 / Linux subsystem / gcc
(modified)Eprover 2.3 Gielle
powershell / bash
memory allocation: 6 GB

[^2]Feature selection There are several linear models, SVMs and linear regression, which have not been included in this paper but have simply been used as dummies to detect useful features. The data gathered for this purpose is not from the ALG or any other group of problems used to evaluate the algorithms. It is very much inline with what E does by default. The features that are deemed most useful from this preliminary testing are those which the E prover uses by default. The use of maximal terms, positive terms, etc. Hence the features are simply those elements of a clause which, are subject to multipliers, not subject to multipliers and clause types. Therefore we have features of the type, "count of non-positive non-maximal function symbols". and "clause is goal". Meaning that the original heuristic of Refined weight is simply a weighted sum of the elements of our features vector.

Data gathering The data is gathered using the default settings of the E prover, this is done so that we can see this data as the original policy π. We cannot start from the usual case where we simply take random steps. Because a simple random policy π^{\prime} does not produce enough data, as it rarely ever finds a proof. From the outputs of the E prover on the ALG set, only those for which the default setting of the prover finds, a proof or a satisfiable set, are included in the dataset. This is done to determine which parts of the proof are productive and which are not. Considering a clause which is not in the proof is unproductive and something the heuristic should seek to avoid. Hence after selecting a subset of files the data is split into two large CSV files it is then labeled with class 0 , in the proof object and derivation, and class 1 , outside of the proof object. This is then further split into training and testing data, where the training data is split further into training data and validation data.

4.2 Preliminary testing

Control group Preliminary testing does show that all random models have extraordinarily poor performance. These control models achieve almost no proofs, hence we can already conclude that at least a relation is learned by all those algorithms which pass this sanity check.

Support vector machines While the SVM for classification performs fine, the ranking SVM based on this is incapable of achieving any results, even when tested on problems in it's original dataset. More detailed testing of this particular model shows that the SVM has negative weights for some of it's features, this results in a situation where the clause set of the prover can contain clauses like $f(y) \simeq x$ and $C^{\prime} \vee \phi(x)$, which can produce something of the type $C^{\prime} \vee \phi(f(y))$, which in turn can be combined with $y \simeq g(x)$ to produce $C^{\prime} \vee \phi(f(g(x))$. 4 Given that our model assigned negative weights to the maximal literal of a

[^3]clause, it simply generated clauses, with ever larger maximal literals. Ending with larger clauses and a timeout or out of memory crash.

Logistic Regression This method performs really well in terms of the validation set, achieving $95 \%+$ accuracy on both training and validation data. attempting to change the level of recall and or accuracy by changing the cutoff does not improve performance, hence we set it to 0.5 .

Linear Regression Like the SVM the oridnary linear regressions get stuck trying to minimize negative features, however there exists a special extension to this type of regressions, where we ensure the results are always positive. Because this forces a positive intercept and coefficients the result can not decrease whenever the features increase. This prevents the crashing behaviour that undermines the normal regression.

Degenerate trees None of the trees of logistic regressions seem to really improve on the original, achieving only below 90% validation accuracy. Recall only improves when accuracy decreases. And the maximal performance is achieved using only a single logistic regression, hence I have removed the degenerate tree from the results. As it is literally equivalent to a logistic regression.

Neural networks Many architectures of neural networks are used to simulate some of the other algorithms in this paper, logistic and linear regression, however these provide inferior results and have been dropped accordingly. Based on these attempts a large set of possible options has been determined. All networks are a combination the following options,L1 regularization, L2 regularization, dropout, Relu, TanH, Sigmoid, Hingeloss, Cross entopy loss, mean squared error loss and absolute error loss. Using these in addition to several architecture sizes, the only well performing classification networks use Cross entropy, with no regularization other than drop out and a $(16,16,1)$ or $(16,1)$ size, Relu for the hidden layers and sigmoid as last activation.

The performance of these classifiers in preliminary testing was inline with expectations except for some rare cases, This seems to be due to similar reasons for the failure of the ranking SVM, the neural networks develop negative weights thereby becoming stuck and crash due to memory errors. Because of this the previous process has been repeated in Keras, because it allows for constraints on the weights. When, all weights are non negative, and the activation functions are monotonic and have a Range $[0, \infty)$, it follows that the neural-network will have monotonic-like properties, whereby for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given $\left(x_{1}, x_{2}, . ., x_{n}\right)$ and $\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)$ and $x_{1}<x_{1}^{\prime}$ it follows that $f\left(x_{1}, x_{2}, . ., x_{n}\right) \leq$ $f\left(x_{1}, x_{2}, . ., x_{n}\right)$ this is also true for all $x \in\left(x_{1}, x_{2}, . ., x_{n}\right)$. This monotonic-like property should avoid such behaviour.

Other changes have also been tested with the Keras module, the introduction of a diagonal matrix \boldsymbol{M}, whose elements are $\frac{1}{\max }$ for their respective features, as explained above the smallest case is 0 for all features, hence the normalizations
$\frac{x_{i}-\min _{i}}{\max _{i}-\min _{i}}$ are equal to $x_{i} \cdot \frac{1}{\text { maxi }_{i}}$. Prepending this \boldsymbol{M} to the model does not positively affect it's performance in either validation or any intermediate test. Likewise prepending \boldsymbol{M} as a learnable layer has no increase in accuracy or recall. Even when all models are tested using different learning rates across special layers etc, there is no significant improvement.

The above architectures have also been considered on the regression networks, The $(16,16,1)$ architecture with relu activation, mean squared error and dropout performs best. I have also attempted a recurrent Network, but in preliminary testing this network fails due to assigning negative weights, it also fails when constraint to strictly positive weights. Moreover an attempt has been made to use the learned regression as the starting point of the data gathering, this is "Regression network v2" in the table.

4.3 Testing Results

The following test have been performed on several combinations of these new priority functions and clause weight functions, which also include the default settings of the E prover. When testing several of these combinations, it seems like the $(3,1,1)^{5}$ split is determined by testing on the training set of problems. The results obtained are from this exact command: 6

```
./eprover -D"ex1=Refinedweight(<custom prio function>, 2,1,1.5,1.1,1)
ex2=Refinedweight (PreferNonGoals,2,1,1.5,1.1,1.1)
ex3=Refinedweight(PreferGoals, 2,1,1.5,1.1,1)" --cpu-limit=20
--output-level=0 -H"new=(3*ex1,1*ex2,1*ex3)" -x new \$f
```

Where for all classifiers the Clause weight is Refinedweight $\|^{7}$, and for all clause weight functions the following command is used.

```
./eprover -D"ex1=<custom clause weight>(PreferNonGoals)
ex2=<custom clause weight>(PreferGoals)" --cpu-limit=20
--output-level=0 -H"new=(3*ex1,1*ex2)" -x new $f
```

The previous command gives us the following result, where clauses are determined running a separate command with higher "-output-level", the total clauses in the table are the sum of their respective intersections, clauses under ALG classifier are the result of the intersection of all proven ALG problems, likewise ALG regression, etc.

[^4]| | ALG test set | | BOO | | COM | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| classifier | clauses | proofs | clauses | 8 | proofs | clauses |
| proofs | | | | | | |
| default | 1958649 | 94 | 12017^{\prime} | 55 | 37706 | 24 |
| classifier SVM | 1746017 | 98 | 11450 | 53 | 15265 | 25 |
| Logistic Classifier | 1755604 | 94 | 15754 | 44 | 15694 | 24 |
| $(16,16,1)$ NN | 1728466 | 98 | 12022 | 55 | 15338 | 24 |
| $(16,1)$ NN | 1728239 | 98 | 12020 | 55 | 15502 | 24 |
| $(16,16,1)$ constrained NN | 1728462 | 98 | 12020 | 55 | 15492 | 24 |
| $(16,1)$ constrained NN | 1729340 | 98 | 12020 | 55 | 15492 | 24 |
| regression | | | | | | |
| default | 696102 | 94 | 8668 | 55 | 3896 | 24 |
| Ranking SVM | None | None | None | None | None | None |
| Linear Regression | None | None | None | None | None | None |
| RNN | None | None | None | None | None | None |
| NonNeg Linear Regression | 239719 | 104 | 11445 | 52 | 7950 | 24 |
| Regression network 5 epochs | 274566 | 99 | 504496 | 39 | 25843 | 24 |
| Regression network v2 | 283375 | 93 | 413596 | 41 | 26296 | 24 |

Table 1: summary table 1
This section is the comparison of proofs to default, where faster, means less clauses processed, equal the exact same, and slower more clauses processed.

	SVM	logistic	NN1	NN2	NN3	NN4	noneg	reg ntwrk
ALG								
faster	56	53	51	51	53	53	52	51
equal	16	6	8	6	6	7	20	17
slower	19	32	34	34	31	31	6	10
BOO								
faster	15	12	0	0	0	0	9	6
equal	5	2	38	39	39	39	5	4
slower	21	27	3	2	2	2	25	29
COM								
faster	14	14	12	15	15	15	10	10
equal	3	2	5	6	7	7	3	2
slower	7	8	7	3	2	2	7	8

Table 2: summary table 2

4.4 Analysis

The raw steps tables, which include the entire intersection for ALG, are too large and have been included in the appendix. However the above provide a good summary. In other tests, preliminary tests and features selections etc, the behaviour of the classifiers roughly follows that of the COM data set, except for the one case of the BOO dataset which is a unique example, where the neural networks almost perfectly follow the default settings of E . I have yet to uncover a problem set where the classification neural net policies underperform when compared to the default policy. Though these probably exist.

Moreover over a Chi-square test on the BOO results, between NNets, SVM and default cannot reject the null that these are homogeneous populations 9 with respect to the policy strategy. Therefore it is impossible to state that in any case the new provers take more steps or find fewer proofs when given a random sample. Likewise a T test for the classification Heuristics only ever displays a reduction in steps or no rejection of the null, when comparing these proof sets, however it should be noted that none of the problem sets follow a normal distribution, thereby they violate the assumptions of the T test.

Several of the generic weight functions computed are completely dysfunctional and should be discarded. Given expert knowledge for constraints and changes to, class weight, and loss, they can be modified to create desirable behaviour, the problem of negative weights are a good example, but more tests to get at the details of this have to be done.

Moreover the regression models do actually underperform in many cases, when they are evaluated on problem sets, which are not of the same type as the training data.

[^5]
5 Related work

5.1 E prover

There is a history of machine learning optimizations for the Eprover, however the most used techniques in those papers are store and recall [5]. The closest paper to this one is the use of the LIBLINEAR [6] library SVM, by [8], to construct a prediction function, which also adds the length in symbols to the same weight. I have used this idea in prelimenary testing aswell, but it is not very applicable in my case ${ }^{10}$

5.2 tableaux

There is also research on introducing new machine learned proof search for different calculi, such as connection tableaux [14], however these leverage proof state descriptions that don't exist in the E prover.

5.3 probabilistic sat solving

Recently Stanford University published paper on sat solving using a neural network to predict it's satisfiability [12] "When it guesses sat, we can almost always decode the satisfying assignment it has found from its activations." 4, within polynomial time. It is a closely related subject, however it critically differs in that it is not focused on proving. Other neural net based approaches do exist for various provers [7], however these lack some of the specifications required to re-implement and compare them.

6 Conclusion

summary It is clear from the results that we can improve the search heuristic in steps, real time and scope at the same time, however this improvement seems to mostly generalize to other problems within the same set. Moreover despite the fact that the adding and subtracting of the hyper-parameter to the existing heuristic makes this heuristics a nonlinear function, with respect to it's features, the linear regression that fits on the least squares estimate is still the best performing heuristic. Moreover there is a sampling bias that might have crept into the prover as it loses performance on very small proofs, but offsets this by gains made in performance on the larger proofs. This happens in the training set(see ALG194+1.p ALG200+1.p) as well as the test set.

[^6]future work This paper can be summarized as finding a policy π^{\prime} from π, which is the basis of reinforcement learning algorithms. Given that it is possible to automate all steps of this paper, we can setup the following program:

```
Train, Test, Validation = Shuffle_and_split(tptp_problems)
for(training_length):
    sample <- Sample(train)
    for(problem in sample):
        features.append( proof(problem) )
    test_policy <- learn(policy,features)
    if( check(test_policy,Validation) ):
        policy <- test_policy
    logg(features)
    features <- empty;
done
```

Since the original update of the policy increases the amount of proofs found and reduces the number of steps of the program, without any clear cost. I would expect this program to create an incrementally better prover every iteration, up to some maximum. This could however require a major modification of the E prover, such as merging the clause picking heuristics into a single function mapping clauses, as well as requiring an extremely large amount of time and computational resources, several moths of running time is a conservative estimate of the requirements. Given that every update can take well up to a day to complete.

Another very interesting topic would be the retraining of a small network combined with L1 regularization, this results into a sparse graph, where it would be possible to understand the underlying logic of the decision procedure.

References

[1] https://theoremprover-museum.github.io/, 2019-06-09.
[2] E 2.3 User Manual preliminary version.
[3] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of Sciences, Etvs Lornd University, Hungary, 24:48, 2001.
[4] et.al. Daniel Selsam, Stanford University. Neuro Sat, February 2018.
[5] Jörg Denzinger, Matthias Fuchs, Christoph Goller, and Stephan Schulz. Learning from previous proof experience: A survey. 1999.
[6] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and ChihJen Lin. Liblinear: A library for large linear classification. Journal of machine learning research, 9(Aug):1871-1874, 2008.
[7] Christoph Goller. A connectionist control component for the theorem prover setheo. In In ECAI-94 Workshop on Combining Symbolic and Connectionist Processing, page pages, 1994.
[8] Jan Jakubv and Josef Urban. Enigma: efficient learning-based inference guiding machine. In International Conference on Intelligent Computer Mathematics, pages 292-302. Springer, 2017.
[9] William McCune. Solution of the robbins problem. Journal of Automated Reasoning, 19(3):263-276, 1997.
[10] Alan =Robinson and Andrei Voronkov. handbook of, automated reasoning, volume I. elsevier, 2006.
[11] Stephan Schulz. E-a brainiac theorem prover. Ai Communications, 15(2, 3):111-126, 2002.
[12] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill. Learning a SAT solver from single-bit supervision. CoRR, abs/1802.03685, 2018.
[13] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483-502, 2017.
[14] Josef Urban, Jiří Vyskočil, and Petr Štěpánek. Malecop machine learning connection prover. In International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pages 263-277. Springer, 2011.
[15] Paul Viola and Michael Jones. Robust real-time object detection. In International Journal of Computer Vision, 2001.

7 Appendix

7.1 code

The start of this loop is identical to the one that prints the clause features, the numbers that mutliply fmmp,fmmn etc are the weights learned(in this case sklearn non negative linear regression), they cannot be implemented by having the custom Heuristic accept a file description as the current bash version might insert a " $\backslash \mathrm{r}$ " character which will make it fail to load.

```
double nnl_goal(void* data,Clause_p clause){
    Eqn_p handle;
    ustomParam_p local = data;
    ClauseCondMarkMaximalTerms(local->ocb, clause);
    double fmmp = 0;
    ouble fmmn = 0;
    double fmnp = 0;
    Couble fmnn = 0;
    double fnmp = 0;
    Ouble fnmn = 0;
    double fnnp = 0;
    double fnnn = 0;
    ouble vmmp = 0;
    double vmmn = 0;
    double vmnp = 0;
    double vmnn = 0;
    double vnmp = 0;
    double vnmn = 0;
    double vnnp = ; ;
    for(handle = clause->literals;handle;handle=handle->next){
        //res += LiteralWeight(handle, max_term_multiplier, max_literal_multiplier, pos_multiplier, vweight, fweight, 1, false);
        // m m p v f
        fmmp += LiteralWeight(handle, 1, 1, 1, 0, 1, 1, false);
        fmmn += LiteralWeight(handle, 1, 1, 0, 0, 1, 1, false);
        mmp += Littrer, (hangle, 1, 0, , 0, 1, , false);
        mnp += LlteralWelght(handle, 1, 0, 1, 0, 1, 1, false)
        mnn + Ll (, 1, 0, 0, 1, false)
        nmp += LiteralWeight(handle, 0, 1, 1, 0, 1, 1, false)
        fnmn += LiteralWeight(handle, 0, 1, 0, 0, 1, 1, false);
        fnnp += LiteralWeight(handle, 0, 0, 1, 0, 1, 1, false);
        fnnn += LiteralWeight(handle, 0, 0, 0, 0, 1, 1, false);
        vmmp += LiteralWeight(handle, 1, 1, 1, 1, 0, 1, false);
        vmmn += LiteralWeight(handle, 1, 1, 0, 1, 0, 1, false);
        vmnp += LiteralWeight(handle, 1, 0, 1, 1, 0, 1, false);
        vmnn += LiteralWeight(handle, 1, 0, 0, 1, 0, 1, false);
        vnmp += LiteralWeight(handle, 0, 1, 1, 1, 0, 1, false);
        vmn += LiteralWeight(handle, 0, 1, 0, 1, 0, 1, false);
        vnp += LiteralWeight(handle, 0, 0, 1, 1, 0, 1, false)
        vnnn += LiteralWeight(handle, 0, 0, 0, 1, 0, 1, false);
    }
    return fmmp * 7.552057 + fmmn * 0.000000 + fmnp* 4.691503 + fmnn * 0.000000 +
        fnmp * 7.972812 + fnmn * 0.000000 + fnnp * 2.291421 + fnnn * 0.000000 +
        vmmp * 6.258440 + vmmn * 0.000000 + vmnp * 1.012416 + vmnn * 0.000000 + + + vmm * 0.000000 + vnnp * 0.000000 + vnnn * 9.338033 + 166.5520588210747;
}
```

The following section is the implementation of some neural network functionality, it is copied from the training file, and is part of models.h. It simply defined the necessary functions from the training module. functions like "BackwardPass" and or "train" are not part of the E modifications and thereby not part of the E code. the blunt use of "NN* network1();" is due to previously mentioned issue with file i/o.

```
#ifndef NN_MODELS
#define NN_MODELS
typedef float (*act) (float x);
typedef float (*dist) (float x, float y);
typedef struct l
{
    float *inputs; //store this layers input for dynamic computation of gradients
    float *output; //store the output to allow for dynamic computation of gradients
    float *weights; //store the weights of a network
    float *bias; //store the bias of the layer
    float *error; //store this layers error of gradient descent
    float *delta; //store this layers derivative on it's output
    int in; //in size for weight retrieval
    int out; //out size for weight retrieval
    act S; //activation function
    act SD; //dynamic activation
    struct l *next; //nextlayer NULL --> this layer is the output layer
    struct l *next; //nextlayer NULL --> this layer is the output layer
} layer;
typedef struct NetN
{
    layer *initial; //inputlayer of the network
    float alpha; //learning rate
    float epsilon; //dropout rate --increase in later versions--
    float lambda; //weight decay rate/ lambda in loss function
    dist loss; //loss function
    dist lossDeriv; //loss function derivative
    dist acc; //accuracy function
    float (*regfunc)(struct NetN* network);
} NN;
float Relu (float x);
float Sigmoid (float x);
float* getWeight(int i, int j, layer * l);
void pred (float *in, layer * l);
float forward (float *in, NN* network);
NN* network1();
NN* network2();
NN* network3();
NN* network4();
NN* network5();
NN* network6();
NN* network7();
NN* network7();
NN* network8();
NN* network9();
NN* network10()
```


7.2 tables

ALG_problem	default	SVM	logistic	NN1	NN2	NN3	NN4
ALG002-1	3352	11705	12780	5100	5100	5095	5095
ALG007-1	448	441	998	448	448	448	448
ALG011-1	44	33	33	33	35	33	33
ALG012-1	3724	17236	6106	6106	6110	6106	6106
ALG014+1	20	20	32	32	32	32	32
ALG016+1	3115	4115	4130	4098	4098	4098	4098
ALG017+1	25	24	37	37	37	37	37
ALG018+1	32	24	24	24	28	24	24
ALG019+1	32	24	24	24	28	24	24
ALG020+1	302	279	283	267	267	267	267
ALG021+1	424	424	424	425	425	425	425
ALG022+1	483	480	480	481	481	481	481
ALG023+1	337098	230003	229596	230305	230288	230250	230266
ALG025+1	1904	925	600	595	595	595	595
ALG026+1	37902	54101	53123	53198	53198	53198	53198
ALG028+1	13583	3780	1390	1390	1390	1390	1390
ALG029+1	64	58	58	58	58	58	58
ALG030+1	64	58	58	58	58	58	58
ALG031+1	847	720	720	684	684	684	684
ALG032+1	802	802	802	802	802	802	802
ALG033+1	815	815	829	815	815	815	815
ALG036+1	20	18	18	18	18	18	18
ALG037+1	17530	16684	16689	16694	16694	16694	16694
ALG038+1	481166	479853	479823	479818	479818	479822	479824
ALG039+1	20	20	24	24	24	24	24
ALG040+1	32	24	24	24	28	24	24
ALG041+1	32	24	24	24	28	24	24
ALG042+1	302	279	283	267	267	267	267
ALG043+1	1016	1016	1019	1019	1019	1019	1019
ALG044+1	1075	1072	1075	1079	1079	1075	1075
ALG045+1	9038	10888	10889	10889	10889	10889	10889
ALG054+1	147	152	162	163	163	163	163
ALG055+1	38667	13847	15422	13839	13839	13839	13839
ALG058+1	8027	6008	7506	6004	6004	6004	6004
ALG062+1	719	1267	1267	1267	1267	1267	1267
ALG063+1	1765	1563	1762	1572	1572	1568	1569
ALG067+1	1145	1482	972	1484	1484	1482	1484
ALG069+1	36	21	21	21	21	21	21
ALG070+1	48	43	46	43	43	43	43
ALG071+1	5068	16217	10631	8185	8185	8185	8185
ALG073+1	306	606	137	313	313	313	313
ALG075+1	487	421	431	406	406	406	406

ALG_problem	default	SVM	logistic	NN1	NN2	NN3	NN4
ALG076+1	503	437	447	422	422	422	422
ALG077+1	502	436	446	421	421	421	421
ALG078+1	506	440	450	425	425	425	425
ALG079+1	519	453	463	438	438	438	438
ALG080+1	825	759	769	744	744	744	744
ALG081+1	489	423	433	408	408	408	408
ALG082+1	490	424	434	409	409	409	409
ALG083+1	501	435	445	420	420	420	420
ALG084+1	546	480	490	465	465	465	465
ALG085+1	489	423	433	408	408	408	408
ALG086+1	491	425	435	410	410	410	410
ALG087+1	486	420	430	405	405	405	405
ALG088+1	485	419	429	404	404	404	404
ALG089+1	490	424	434	409	409	409	409
ALG090+1	1039	1039	1040	1064	1064	1040	1040
ALG091+1	1156	1156	1163	1161	1161	1161	1161
ALG092+1	1029	1029	1030	1054	1054	1030	1034
ALG093+1	1798	1798	1873	1803	1803	1803	1803
ALG094+1	1017	1017	1022	1046	1046	1022	1025
ALG095+1	1017	1016	1021	1046	1046	1021	1021
ALG105+1	39404	40676	40947	40515	40515	40515	40515
ALG107+1	191635	167768	168172	167721	167747	168135	168205
ALG110+1	12995	17145	17130	17181	17181	17181	17181
ALG111+1	2648	1019	1039	1033	1033	1033	1033
ALG113+1	1213	787	760	778	778	779	779
ALG114+1	1423	62062	62093	62073	62073	62062	62062
ALG115+1	7093	6436	6837	6870	6905	6888	6888
ALG117+1	1442	51363	50926	51747	51747	50914	50914
ALG118+1	19265	18519	18789	18948	18940	18971	18977
ALG121+1	1101	1093	1184	1112	1112	1112	1112
ALG123+1	5859	5179	5122	5056	5056	5044	5054
ALG125+1	92400	91177	91384	91487	91487	91482	91482
ALG138+1	274	133	137	137	137	137	137
ALG166+1	40477	37844	38994	38044	38044	38409	38643
ALG167+1	349293	211041	222874	210594	209589	210329	210844
ALG168+1	1346	1700	1706	1728	1728	1727	1727
ALG169+1	1307	1659	1688	1699	1699	1699	1699
ALG170+1	17861	17487	17894	17384	17384	17484	17484
ALG171+1	42	144	144	144	144	144	144
ALG172+1	57	171	171	171	171	171	171
ALG173+1	40	109	109	109	109	109	109
ALG174+1	67	179	179	179	179	179	179
ALG175+1	58	160	163	163	163	163	163
ALG176+1	84	112	66	67	67	67	67
ALG177+1	80	62	62	62	62	62	62

ALG-problem	default	SVM	logistic	NN1	NN2	NN3	NN4
ALG178+1	128	122	122	122	122	122	122
ALG179+1	128	122	122	122	122	122	122
ALG180+1	468	395	404	379	379	379	379
ALG181+1	417	351	361	336	336	336	336
ALG182+1	417	351	361	336	336	336	336
ALG183+1	417	351	361	336	336	336	336
ALG184+1	417	351	361	336	336	336	336
ALG185+1	1623	1487	1487	1462	1462	1462	1462
ALG186+1	1010	1000	1007	1034	1034	1006	1006
ALG187+1	1010	1001	1008	1035	1035	1007	1007
ALG188+1	978	978	980	1001	1001	980	980
ALG189+1	978	978	980	1001	1001	980	980
ALG192+1	24127	19651	19663	19663	19663	19663	19663
ALG193+1	163826	113007	113054	113069	113084	113089	113054
ALG194+1	3108	932	932	932	932	932	932
ALG198+1	32	18	28	28	28	28	28
ALG199+1	112	2662	2676	2676	2676	2676	2676
ALG200+1	1776	410	405	405	405	405	405
ALG201+1	16	13	13	13	13	13	13
ALG202+1	28	26	26	26	26	26	26
ALG203+1	48	43	45	45	45	45	45
ALG204+1	930	724	731	682	682	682	682
ALG205+1	3077	2864	2870	2821	2821	2821	2821
ALG206+1	1391	1185	1195	1143	1143	1143	1143
ALG207+1	3690	3691	3719	3723	3723	3697	3697
ALG208+1	3679	3679	3713	3729	3729	3684	3684
ALG209+1	3690	3690	3718	3701	3701	3701	3701
ALG210+2	74	109	129	66	66	66	66
ALG211+1	28	20	20	20	20	20	20
ALG227+1	1506	1338	1338	1328	1333	1338	1338
ALG235-1	38	38	43	38	38	38	38
ALG236-1	186	185	510	186	186	186	186
ALG299-1	3	3	3	3	3	3	3
ALG300-1	3	3	3	3	3	3	3
ALG302-1	2	2	2	2	2	2	2
ALG350-1	136	64	330	149	145	145	145
ALG371-1	886	1296	2880	1213	1192	1267	1267
ALG397-1	240	236	236	121	121	233	233
	$1 a b$						

Table 3: classifiers: steps per ALG problem

ALG_problem	default	nonneg	NNreg
ALG006-1	296	3012	36587
ALG007-1	448	1553	23394

ALG_problem	default	nonneg	NNreg
ALG011-1	44	31	31
ALG014+1	20	30	30
ALG016+1	3115	3097	3999
ALG017+1	25	35	35
ALG018+1	32	44	36
ALG019+1	32	36	36
ALG020+1	302	241	226
ALG021+1	424	424	424
ALG022+1	483	480	480
ALG025+1	1904	1904	1904
ALG026+1	37902	14051	7560
ALG028+1	13583	8948	8788
ALG029+1	64	56	64
ALG030+1	64	56	64
ALG031+1	847	626	551
ALG032+1	802	802	802
ALG033+1	815	815	815
ALG036+1	20	20	20
ALG037+1	17530	16406	16371
ALG039+1	20	20	20
ALG040+1	32	44	36
ALG041+1	32	36	36
ALG042+1	302	241	226
ALG043+1	1016	1016	1016
ALG044+1	1075	1072	1072
ALG045+1	9038	3558	3033
ALG054+1	147	133	133
ALG055+1	38667	1727	1738
ALG058+1	8027	2441	2877
ALG062+1	719	427	474
ALG063+1	1765	1101	1078
ALG067+1	1145	733	803
ALG069+1	36	32	32
ALG070+1	48	40	40
ALG075+1	487	348	330
ALG076+1	503	365	346
ALG077+1	502	363	345
ALG078+1	506	365	349
ALG079+1	519	381	362
ALG080+1	825	688	662
ALG081+1	489	352	332
ALG082+1	490	354	333
ALG083+1	501	356	344
ALG084+1	546	408	389
ALG085+1	489	352	332

ALG_problem	default	nonneg	NNreg
ALG086+1	491	351	334
ALG087+1	486	349	329
ALG088+1	485	347	328
ALG089+1	490	349	333
ALG090+1	1039	1039	1039
ALG091+1	1156	1156	1156
ALG092+1	1029	1034	1034
ALG093+1	1798	1798	1821
ALG094+1	1017	1017	1017
ALG095+1	1017	1017	1017
ALG105+1	39404	22700	19193
ALG107+1	191445	7386	2397
ALG110+1	12995	8617	8511
ALG111+1	2648	2362	2375
ALG113+1	1213	1155	1127
ALG114+1	1423	17382	18103
ALG115+1	7093	5158	5093
ALG117+1	1442	14430	15265
ALG121+1	1101	1120	1173
ALG138+1	274	523	523
ALG166+1	40477	35949	33309
ALG168+1	1346	1290	1270
ALG169+1	1307	1278	1290
ALG170+1	17861	11391	9395
ALG171+1	42	35	35
ALG172+1	57	49	49
ALG173+1	40	40	40
ALG174+1	67	59	59
ALG175+1	58	58	58
ALG176+1	84	40	40
ALG177+1	80	40	40
ALG178+1	128	112	100
ALG179+1	128	112	100
ALG180+1	468	333	313
ALG181+1	417	284	260
ALG182+1	417	284	260
ALG183+1	417	284	260
ALG184+1	417	284	260
ALG185+1	1623	1443	1416
ALG186+1	1010	1010	1010
ALG187+1	1010	1010	1010
ALG188+1	978	978	978
ALG189+1	978	978	978
ALG194+1	3108	1356	1356
ALG198+1	32	32	32

ALG_problem	default	nonneg	NNreg
ALG199+1	112	113	113
ALG200+1	1776	1296	1332
ALG201+1	16	16	16
ALG202+1	28	28	28
ALG203+1	48	48	52
ALG204+1	930	512	478
ALG205+1	3077	2811	2302
ALG206+1	1391	971	904
ALG207+1	3690	3690	3717
ALG208+1	3679	3679	3725
ALG209+1	3690	3690	3690
ALG211+1	28	24	28
ALG227+1	1506	689	481
ALG235-1	38	115	420
ALG299-1	3	3	3
ALG300-1	3	3	3
ALG302-1	2	2	2
ALG340-1	544	2504	334
ALG341-1	186505	320	328
ALG350-1	136	93	60
ALG371-1	886	779	1008
ALG372-1	298	475	339
ALG397-1	240	219	162

Table 4: regressor steps per ALG problem

BOO_problem	default	SVM	Logistic	NN1	NN2	NN3	NN4
BOO001-1	13	20	15	13	13	13	13
BOO002-1	132	254	44	132	132	132	132
BOO002-2	131	254	44	131	131	131	131
BOO003-2	69	50	104	69	69	69	69
BOO003-4	69	40	24	69	69	69	69
BOO004-2	17	36	97	18	18	18	18
BOO004-4	18	25	55	18	18	18	18
BOO005-2	19	28	130	19	19	19	19
BOO005-4	19	27	31	19	19	19	19
BOO006-2	70	47	131	70	70	70	70
BOO006-4	70	41	26	70	70	70	70
BOO007-4	1332	2177	6564	1332	1332	1332	1332
BOO009-2	71	47	127	71	71	71	71
BOO009-4	71	42	47	71	71	71	71
BOO010-2	70	80	144	70	70	70	70
BOO010-4	70	50	60	70	70	70	70
BOO011-1	17	17	17	19	17	17	17

BOO_problem	default	SVM	Logistic	NN1	NN2	NN3	NN4
BOO011-2	6	6	9	6	6	6	6
BOO011-4	7	10	11	7	7	7	7
BOO012-2	126	37	125	126	126	126	126
BOO012-4	126	72	54	126	126	126	126
BOO013-2	245	118	161	245	245	245	245
BOO013-4	185	71	334	185	185	185	185
BOO014-2	2170	800	4345	2170	2170	2170	2170
BOO016-2	68	94	131	68	68	68	68
BOO017-2	72	65	145	72	72	72	72
BOO018-4	11	15	15	11	11	11	11
BOO021-1	78	29	89	78	78	78	78
BOO026-1	251	305	304	251	251	251	251
BOO027-1	7	7	7	7	7	7	7
BOO028-1	4345	4577	926	4345	4345	4345	4345
BOO029-1	350	226	422	350	350	350	350
BOO034-1	28	40	35	30	30	30	30
BOO068-1	527	533	93	527	527	527	527
BOO069-1	57	57	60	57	57	57	57
BOO070-1	522	529	91	522	522	522	522
BOO071-1	55	55	58	55	55	55	55
BOO072-1	133	145	145	133	133	133	133
BOO074-1	153	165	165	153	153	153	153
BOO075-1	237	259	369	237	237	237	237

Table 5: classifiers: steps per BOO problem

BOO_problem	default	nonneg	NNreg
BOO001-1	13	24	14
BOO003-2	69	200	27296
BOO003-4	69	200	27296
BOO004-2	17	18	20
BOO004-4	18	18	20
BOO005-2	19	20	21
BOO005-4	19	18	21
BOO006-2	70	198	27469
BOO006-4	70	198	27469
BOO009-2	71	205	27373
BOO009-4	71	205	27373
BOO010-2	70	198	27397
BOO010-4	70	198	27397
BOO011-1	17	17	17
BOO011-2	6	8	6
BOO011-4	7	10	7
BOO012-2	126	259	28141

BOO_problem	default	nonneg	NNreg
BOO012-4	126	259	28141
BOO013-2	245	1270	29727
BOO013-4	185	1034	29079
BOO014-2	2170	2106	33673
BOO015-2	2152	2158	39881
BOO016-2	68	202	27536
BOO017-2	72	206	27401
BOO018-4	11	12	11
BOO021-1	78	67	28276
BOO024-1	222	137	5640
BOO025-1	217	153	5657
BOO026-1	251	349	433
BOO027-1	7	7	9
BOO029-1	350	489	776
BOO034-1	28	157	208
BOO068-1	527	112	54
BOO069-1	57	57	48
BOO070-1	522	113	56
BOO071-1	55	55	47
BOO072-1	133	87	83
BOO074-1	153	96	101
BOO075-1	237	325	322

COM_problem	default	SVM	Logistic	NN1	NN2	NN3	NN4
COM001-1.p	716	31	202	197	197	197	197
COM001_1.p	716	31	202	197	197	197	197
COM002-1.p	15332	6040	5733	5733	5733	5733	5733
COM002_2.p	60	40	45	65	36	36	36
COM002_1.p	15324	6038	5740	5733	5733	5733	5733
COM002_2.p	456	95	241	226	186	186	186
COM003-2.p	72	51	51	51	55	51	51
COM003_1.p	741	825	807	489	732	732	732
COM004-1.p	16	13	13	24	13	13	13
COM007+1.p	2680	516	1021	1016	1016	1021	1021
COM007+2.p	33	33	33	33	33	33	33
COM009-2.p	6	5	5	5	5	5	5
COM010-2.p	5	6	6	5	5	5	5
COM011-2.p	474	515	515	515	515	515	515
COM012+1.p	54	54	54	56	56	54	54
COM012+3.p	63	63	66	63	63	63	63
COM013+4.p	208	202	207	180	180	180	180
COM016+4.p	57	49	66	67	68	59	59
COM018+1.p	42	41	41	37	41	41	41
COM018+4.p	69	84	79	69	69	69	69

COM_problem	default	SVM	Logistic	NN1	NN2	NN3	NN4
COM021+4.p	152	156	153	152	152	152	152
COM022+1.p	121	129	134	124	121	121	121
COM022+4.p	153	80	139	154	149	149	149
COM023+1.p	156	168	141	147	147	147	149
Table 7: classiefiers: steps per COM problem							

COM_problem	default	nonneg	NNreg
COM001-1	716	2600	9540
COM001_1	716	2600	9540
COM002-2	60	40	36
COM002_2	456	360	220
COM003-2	72	52	56
COM003_1	741	1164	5268
COM004-1	16	44	40
COM007+2	33	27	27
COM009-2	6	6	5
COM010-2	5	5	5
COM012+1	54	54	54
COM012+3	63	58	75
COM013+4	208	228	332
COM016+4	57	36	41
COM018+1	42	41	41
COM018+4	69	99	121
COM021+4	152	125	79
COM022+1	121	123	122
COM022+4	153	138	105
COM023+1	156	140	136

[^0]: ${ }^{1}$ in my case $\zeta=5$ and $\zeta=20$
 2 in our case ALG006-1.p ALG007-1.p ALG011-1.p ALG014+1.p ALG017+1.p ALG018 + 1.p ALG019+1.p ALG029+1.p ALG030+1.p ALG036+1.p ALG039+1.p ALG040+1.p ALG041+1.p ALG069+1.p ALG070+1.p ALG171+1.p ALG172+1.p ALG173+1.p ALG174+1.p ALG175+1.p ALG176+1.p ALG177+1.p ALG178+1.p

[^1]: ALG179+1.p ALG194+1.p ALG198+1.p ALG200+1.p ALG201+1.p ALG202+1.p ALG203+1.p ALG211+1.p ALG235-1.p ALG340-1.p ALG350-1.p ALG371-1.p ALG372-1.p ALG397-1.p

[^2]: ${ }^{3}$ currently bash has problem releasing file locks in many cases, as does the rest of the Linux subsystem for Windows, hence any looping and re-selecting of files and models is extremely difficult

[^3]: ${ }^{4}$ Depending on the ordering this may or may not eventually terminate. As the ordering determines which clause is maximal And restricts the paramodulation.

[^4]: ${ }^{5}$ the 3 can be made slightly larger but this won't improve the performance much
 ${ }^{6}$ these might have to be modified given the binary "eprover" location and /or operating system / bash version
 ${ }^{7}$ the default E function

[^5]: ${ }^{9}$ see appendix for the table

[^6]: ${ }^{10}$ It is both fundamentally different from what I do here, and I am unable to find the exact library used, since they reference a library that has implemented L2-SVM after the publishing date of the paper.

