
Higher-Order in SMT

Higher-Order in SMT

Daniel El Ouraoui, supervised by Pascal Fontaine and Jasmin Christian Blanchette,

Team VeriDis, Inria, and LORIA, Nancy, France

August 21, 2017

General context

Improving the security of many applications in business, industry and scientific research requires procedures to deter-
mine the satisfiability of logical formulas with respect to some specific theory, e.g. arithmetic on integers and reals,
arrays or bit-vectors. One usual way to reach this aim is to use Satisfiability Modulo Theories (SMT) solvers. SMT
stems from the propositional satisfiability problem(SAT), i.e. checking whether or not a propositional formula is sat-
isfied. Modern SMT solvers extend this propositional decision procedure to more expressive logics. Originally, these
tools were developed to check the satisfiability of first-order formulas. Between the late 1970s and early 1980s, Nelson
and Oppen [35] developed the first practical decision procedure for the theory of uninterpreted function symbols. In
the meantime, Shostak [43] progressed on a practical decision procedure for arithmetic. Later, Boyer and Moore [19]
provided one of the first theorem provers based on the concept of a theory reasoner. The Boyer-Moore theorem prover,
was able to handle quantifiers, arithmetic, induction and some rewriting problems. In the late 1990s, the interest for
SMT was increasing. Several research projects were developed, in academia as well as in industry. Modern SMT
solvers now rely on state-of-the-art techniques based on the advances in SAT technology. These advances contributed
to make them usable tools to solve specific first-order problems. Today the usages of SMT solvers are various. They
can go from the verification of systems (programs), e.g. Why3, F∗ or TLA+, to poof assistants, e.g. Coq (SMTCoq),
Isabelle (Sledgehammer), HOL or PVS. Recently, some programming languages like Haskell or F∗, use SMT features
to build more expressive type systems — i.e. refinement types or LIQUID types. There are two major approaches to
handle the SMT problem: the “eager” and “lazy” ones. The eager approach decomposes an input formula, expressed
in some first-order logic, into a set of propositional clauses which is equisatisfiable. Several specialized translations
and relevant consequences of the based theory are used. In some way, this method can be considered like a reduction
from the SMT problem to the SAT problem. This method is thus only based on the ability of the SAT solver to quickly
solve a formula. The main argument in favor of this technique is that SAT is a decidable problem, with practically
efficient solvers. However, this is an NP-complete problem (without known low complexity decision procedure) and
the translation might furthermore explode the size of formulas. The lazy approach is an ad hoc procedure specialized
on a background theory T . Typically, this method is built around a CDCL (Conflict-Driven Clause Learning) algo-
rithm extended to understand the background theory. The common practice is to write a theory solver able to handle
conjunctive sets of literals (that is, atomic formulas and their negations) and leave the Boolean structure of the formula
to the underlying SAT solver. This architecture allows to use the theory solvers as separate sub-modules, and leads to
a greater flexibility.

The research problem

Now, most of the efficient SMT solvers provide a suitable method to understand first-order (FO) formula with respect
to the theory. Some of them offer useful extensions. For example, Alt-Ergo allows polymorphism and CVC4 provides
datatypes, induction and function synthesis. But none of them are today able to reason on higher-order (HO) formulas.
The main goal of my internship (and my coming PhD) is to lift up the reasoning capabilities of SMT solvers towards

Daniel El Ouraoui 1

Higher-Order in SMT

higher-order. In order to propose more efficient tactics and richer higher-order languages, most of the interactive verifi-
cation tools (e.g. Coq, Why3, Isabelle) use SMT solvers as backend reasoning engines. Unfortunately, the language
of these tools cannot be directly understood by the SMT solvers. Most of the time, a translation should be defined to
interface SMT solvers with the more expressive tools. Often these translations rely on problems that are theoretically
or practically unprovable. Generally, SMT solvers cannot perform induction, which is typically the corner stone of
a higher-order reasoning. To our best knowledge, only CVC4 provides support for induction but in a limited form.
However, we believe it is important to develop higher-order reasoning in SMT. First, this would allow to by-pass the
actual translation which could lead to solve many more problems. Support for full inductive reasoning could also
significantly improve the reasoning capability. Higher-order logic yields a concise syntax to express problems in much
simple terms. Obviously, a native understanding could lead to better performances.
One of the first initiative to automating higher-order logic was the LEO-II [10] (now LEO-III) prover which relies on
a higher-order resolution calculus. Recently, Satallax [20] which is also a higher-order theorem prover has achieved
remarkable results at the CASC competition [44] in the higher-order division. Developing higher-order reasoning for
SMT is in the line of these previous works. This ambitious initiative is one of the aims of the Matryoshka 1 project.

Contributions

As a starting point, I studied the different encoding to first-order from higher-order logic. In particular, we inves-
tigated the encoding of λ-free higher-order [14]. This was helpful to understand the differences between HO and
FO logic. We have extended the language and the typing rules of the SMT-LIB standard [8] to handle higher-
order terms. In a second phase, we focused on two different axes, the solving part and the proof production.
The solving part has been extended in two ways:

– the pre-processing of all formulas by a module using rewriting to eliminate intricate cases;
– extend the congruence closure algorithm to deal with higher-order function symbols.

The proof-producing module of the SMT solver has been extended to deal with higher-order formulas. In the last part
of my internship I investigated instantiation of quantifiers.

Arguments supporting its validity

This report is a collection of several works pursued during my internship. Some of them have been implemented
in the veriT solver [18]. In particular the language, the typing system, the pre-processing (higher-order congruence,
normalization) and the congruence-closure algorithm have been implemented. A part of this work was the object of an
article accepted to the PxTP workshop 2017 which includes the result on proof of processing. The work performed on
the instantiation is still in progress and not yet fully evaluated.

Summary and future work

This internship covered the first steps required to build a higher-order reasoning module for SMT. In theory, this
provides a complete procedure for simple type theory. It remains however to implement the last piece of the puzzle,
that is the E-matching algorithm with λ-patterns — i.e see section 7. In this way we’ll able to implement the trig-
gers based instantiation to tackle higher-order quantification. We hope that we will be able to handle most of our
benchmarks with this method. A suitable approach would be to extend and implement the E-unification algorithm
to λ-patterns and generalizes this result to Conflict based instantiation. We could then compare the results with the
previous implementations. A fundamental question is how to instantiate efficiently the universal quantified function
symbols. Unification is one of the way to reach this aim but there may be others. Another direction of research could
be to study the synthesis of functions [41] to develop a new method of instantiation for function symbols. As a side
quest, it could be stimulating to explore other tracks. In particular, how to manage thousands of well know lemmas
during the instantiation, which of theme are really relevant for the current goal and on which criteria are they selected?
Some of these strips have been studied — i.e see [26]. But adapt these solutions in SMT to use libraries like TPTP or
Isabelle 2 directly with the solvers, could be an interesting work.

1http://matryoshka.gforge.inria.fr/
2https://www.isa-afp.org/

2

http://matryoshka.gforge.inria.fr/
https://www.isa-afp.org/

Higher-Order in SMT

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-world applications. In particular, it is
widely used in proof assistants (also known as interactive theorem provers) to provide trustworthy, machine-checkable
formal proofs of theorems. A major challenge in these applications is to automate as much as possible the production
of these formal proofs, thereby reducing the “burden of proof” on the users.
An effective approach towards stronger automation is to rely on less expressive but more automatic theorem provers to
discharge some of the proof obligations. Systems such as HOLYHammer, MizAR, Sledgehammer, and Why3, which
provide a one-click connection from proof assistants to first-order provers, have led in recent years to considerable
improvements in proof assistant automation [15]. Today, the leading automatic provers for first-order classical logic
are based either on the superposition calculus [4, 37] or on CDCL(T) [36]. Those based on the latter are usually called
satisfiability modulo theory (SMT) solvers and are the focus of this report.
Our goal, as part of the Matryoshka project, is to extend SMT solvers to natively handle higher-order problems, thus
avoiding completeness and performance issues with clumsy encodings. In this reporte, we present our first steps
towards two contributions within our established goal: to extend the input (problems) and output (proofs) of SMT
solvers to support higher-order constructs. Most SMT solvers support SMT-LIB [8] as an input format. We provide a
syntax extension for augmenting SMT-LIB with higher-order functions with partial applications, λ-abstractions, and
quantification on higher-order variables.

2 Background

As in [21], we use a classical higher-order logic based on the formulation of simple typed λ-calculus. The simple
types are freely generated from the basic types ι and o. Usually, ι represents a non-empty domain of individuals (in
SMT there are generally some basic types for individuals like Int or Real), while o denotes the type of thrust values
(more commonly called Boolean values). The simple types theory allows one to express functional types by the arrow
constructor→. So if τ1 and τ2 are simple types then τ1 → τ2 is a simple type. The set of terms of higher-order logic is
built inductively over the following extended grammar, where we represent the constant symbols in the grammar by c
and the variables by x. Additionally, we extend the grammar with the letx = u in t construction whose semantics is
exactly that of the following β-redex (λx.t)u.

M ::= x | c | M M | (λx.M) | letx = M inM

Notations In the following report, the letters a, c, f , g, p, q stand for function symbols. F, G, H denote free function
variables. a and b can be used to denote sets but it will always be made explicit before. w, x, y, z stand for variables, r,
s, t, u, v for well-typed terms, ϕ, ψ for formulas, B for a binder in the set {∀, ∃, λ} and Q in {∀, ∃}. We note an or
(ai)

n
i=1 the vector with n elements, and we write [n] for {1, . . . , n}. We express the fact that a term may depend on the

distinct variables xn by the notation t[xn]. Generally, we use the Greek letters τ, σ to express any simple types (e.g
o, ι, o → o, ι → ι ...), α the simple types which are neither propositions nor predicates and θ that is propositions or
predicates. In this report, we’ll use curried and uncurried formulations of functions. We suppose implicitly the existence
of two functions curry f (t1, . . . , tn) and uncurry f t1 . . . tn, where ti has a type τi, respectively curry is of type
(τ1 × . . . × τn → τ) → (τ1 × . . . × τn) → (τ1 → . . . → τn → τ) then curry f (t1, . . . , tn) = ((f t1) . . . tn) and
uncurry is of type (τ1 → . . .→ τn → τ)→ τ1 → . . .→ τn → (τ1 × . . .× τn → τ) hence uncurry f t1 . . . tn =

f(t1, . . . , tn). We assume both notations are equivalent. In particular, the λ-terms of the shape λx1 . . . λxn. t are
written λxn. t.

Terms Every variable or constant of type τ are terms. If f is function symbol of type (τ1 → . . .→ τn → σ) and tτ1 ,
. . ., tτn are terms of types τi, then f tτ1 . . . tτm is a term of type σ.

1http://matryoshka.gforge.inria.fr/ 3

http://matryoshka.gforge.inria.fr/

Higher-Order in SMT

Formulas Every term of type o is a formula. With respect to the λ-calculus formulation, all logical connectors are
declared as constant symbols as follows: ¬o→o, ∨o→o→o, ∧o→o→o, ⇒o→o→o, ∀(ι→o)→o, ∃(ι→o)→o. In addition,
we have a family of symbols indexed by all types of the theory (=τ→τ→o) which stand for the standard equality.
To distinguish between equality terms and the equivalence relation we give another family of equality symbols that
we write ('τ→τ→o). ϕ ⊕ ψ is short way to write binary operator. ⊕ range in {∨, ∧,⇒}. If p is a symbol of type
(τ1 → . . .→ τn → o) and tτ1 , . . ., tτn are terms of the type τi, then p tτ1 . . . tτm is formula, and p is a predicate.

Atoms (or literals) An atom is a formula of the form p t1 . . . tm where p is predicate symbol.

Ground formulas (terms) A ground formula (term) has no variables or quantifiers.

Closed formulas A closed formula has no free variables, whereas an open formula does have free variables.

Free variables and substitutions We denote by FV (t) free variables of the term t. The substitution is defined as
meta-function over terms. Substitution is defined up to α-renaming —i.e here before reducing (λx.(λy.x y)) y we
need to rename y in z thereby (λx.(λy.x y)) y 'α (λx.(λz.x z)) y. We write t{x 7→ u} to say we substitute all
occurrences of x in t by the term u. We write t{xn 7→ un} for t{x1 7→ u1} . . . {xn 7→ un}.

higher-order logic Fω denote the system of ω-order logic that have all finite order logics as subsystems. This is a
common notation of the higher-order logical system [2].

Signature of Fω Let S a set of symbols, and τ some type, S =
⋃
τ S

const
τ ∪

⋃
τ S

var
τ . (see [27])

logical system Let L a logical system, we denote by L(S) a logic in L defined by the signature S. Likewise we
define t a term of type τ over the signature Sτ by t ∈ T (Sτ).

map set Let A1, . . . An, B be sets, then F(A1, . . . An;B) is the set of all function from (A1 × . . .×An) to B.

Frame A frame is a collection {Dτ}τ of non empty set Dτ , for each type τ . In particular, Do = {>,⊥} and
Dτ1×...×τn→σ ⊆ F(Dτ1 , . . .Dτn ;Dσ) — i.e. unlike in the Tarski’s model where Dτ1×...×τn→σ = F(Dτ1 , . . .Dτn ;Dσ)

(standard model).

Interpretation ({Dτ}τ , I) consists of a frame and the map I : Sconstτ →Dτ for each type τ .

Valuation is a map V : Svarτ →Dτ for all type τ .

General model LetM = ({Dτ}τ , I) is called a general model for Fω iff there is a map J.KM such that for all
valuation V and term t of type τ JtKMV ∈ Dτ and :

– ∀ x ∈ Svarτ . JxKMV = V(x)

– ∀ c ∈ Sconstτ . JcKMV = I(c)

– ∀ f ∈ Sτ1×...×τn→σ, t1 ∈ T (Sτ1), . . . , tn ∈ T (Sτn) Jf(t1, . . . , tn)KMV = JfKMV (Jt1KMV , . . . , JtnK
M
V)

– for all formula ϕ, ψ Jϕ ⊕ ψKMV = JϕKMV ⊕ JψKMV

– for all formula ϕ, J¬ϕKMV = ¬ JϕKMV

– for all formula ϕ, J∀xτϕKMV = Πd∈Dτ JϕKMV[xτ 7→d]
We note by (Πd∈Dτϕ) the conjunction d1 ∈ Dτ , . . . , dn ∈ Dτ , ϕ{x 7→ d1} ∧ . . . ∧ ϕ{x 7→ dn}

Daniel El Ouraoui 4

Higher-Order in SMT

– for all formula ϕ, J∃xτϕKMV = Σd∈Dτ JϕKMV[xτ 7→d]
We note by (Σd∈Dτϕ) the disjunction d1 ∈ Dτ , . . . , dn ∈ Dτ , ϕ{x 7→ d1} ∨ . . . ∨ ϕ{x 7→ dn}

– ∀ t1, t2 ∈ T (Sτ), Jt1 ≡τ×τ→o t2 KMV = Jt1KMV ≡Dτ Jt2 KMV
Note ≡τ×τ→o is constant a symbol in the signature then it has a special interpretation; in fact, we consider terms
equal iff they are equal in the domain of the type τ then if they are the same interpretation they are equal in the
same domain.

3 A Syntax Extension for the SMT-LIB Language

Currently, the SMT-LIB standard is at version 2.5 [8], and version 2.6 is in preparation. Although some discussions
to extend this language to higher-order logic have occurred in the past, notably to include λ-abstractions, the format
is currently based on many-sorted first-order logic. We here propose to extend the language in a pragmatic way to
accommodate higher-order constructs: higher-order functions with partial applications, λ-abstractions, and quantifiers
ranging over higher-order variables. Our extension is inspired by the work on TIP (Tools for Inductive Provers) [42],
which is another pragmatic extension of SMT-LIB.
SMT-LIB contains commands to define atomic sorts and functions, but no functional sorts. We first extend the language
so that functional sorts can be built:

〈sort〉 ::= 〈identifier〉 | (〈identifier〉 〈sort〉+)

| (-> 〈sort〉+ 〈sort〉)

The second line is the addition to the original grammar.
The next modification is in the grammar for terms, which essentially adds a rule for λ-abstractions and generalizes the
application so that any term can be applied to other terms:

〈term〉 ::= 〈spec constant〉
| 〈qual identifier〉
| (〈term〉 〈term〉+)

| (lambda (〈sorted var〉+) 〈term〉+)

| (let (〈var binding〉+) 〈term〉)
| (forall (〈sorted var〉+) 〈term〉)
| (exists (〈sorted var〉+) 〈term〉)
| (match 〈term〉 (〈match case〉+))

| (! 〈term〉 〈attribute〉+)

〈sorted var〉 ::= (〈symbol〉 〈sort〉)

The old rule (〈qual identifier〉〈term〉+) is now redundant. Higher-order quantification requires no new syntax, since
sorts have been extended to accommodate functions.
If we want to define a function taking an integer as argument and returning a function from integers to integers, it is now
possible to write (declare-fun f (Int) (-> Int Int)). The following example illustrates higher-order
functions, terms representing a function, and partial applications:

(set-logic UFLIA)

(declare-fun g (Int) (-> Int Int))

(declare-fun h (Int Int) Int)

(declare-fun f ((-> Int Int)) Int)

(assert (= (f (h 1)) ((g 1) 2)))

(exit)

Daniel El Ouraoui 5

Higher-Order in SMT

The term (g 1) is a function form Int to Int, in agreement with the sort of g. Then it is applied to 2 in the expression
((g 1) 2) of sort Int. The term (h 1) is a partial application of the binary function h, and is thus a unary function.
The term (f (h 1)) is therefore well-typed and is an Int. The next example features a λ-abstraction:

(set-logic UFLIA)

(declare-fun g (Int) (Int))

(assert

(= ((lambda ((f (-> Int Int)) (x Int)) f x) g 1) (g 1)))

(exit)

The term (lambda ((f (-> Int Int)) (x Int)) f x) is an anonymous function that takes a function f
and an integer x as arguments. It is applied to g and 1, and the fully applied term is stated to be equal to (g 1). The
assertion is a tautology (thanks to β-reduction).

Typing rules In the following, we give the details for extending typing judgment with respect to the SMT-LIB. These
rules extend the current set of rules in the SMT-LIB. This extension is straightforward. Only the typing rules for the
λ-abstraction and the generalization of application are new. With these two rules we get all the power of the simply
typed λ-calculus. A judgment is composed of two items. On the left hand, the signature Σ that is a tuple composed
of function symbols and constant symbols. These symbols are annotated by their types. On the right hand is the term
annotated by its type. We call a such term an annotated term. The notation Σ[x : τ] denotes the signature that maps
x to the type τ in the signature Σ.

Σ[x : τ] ` x : τ
var

Σ[x : σ] ` t : τ

Σ ` λx.t : σ → τ
lambda

Σ ` u : σ Σ[x : σ] ` t : τ

Σ ` let x = u in t : τ
let

Σ ` u : σ → τ Σ ` v : σ

Σ ` u v : τ
app

Implementation In the veriT solver, the transition was a bit less simple. In fact as we have discussed above there is
no ambiguity when two terms are equal. Especially for the binary application, which is left associative. Left associative
means, that if we omit the parentheses we read first the leftmost term. For example, the term (λx.x) t u should be parsed
as ((λx.x) t)u. In the λ-calculus all terms are in curried form. More precisely, the application is part of the syntax.
Consequently, it is not required to declare some specific function symbols for each occurrence of application. For
example, if f is a function symbol with n arguments and there is an application f(a1, . . . , an) in the formula then these
informations should be in the signature. While than in λ-calculus only the information that f is a symbol is required.
This is why its formulation is so simple. Though, veriT is a first-order prover its representation of terms is flexible.
More exactly, veriT use a Dag representation of terms with maximum sharing. This representation allows it to be
extended to a higher-order syntax in simple way. Thereby, to deal with simple types and handle equalities of functional
types we have chosen to prepossess types before saving functional types in the typing environment and in order to
resolve the problem. By typing environment we mean the Σ signature in the abstract rules above. We give the idea
implemented in veriT with the simple following Ocaml code. We denote by the constructor Arrow of sort list
the arrow type →. The function last_of l returns the last element of l and unhook_last l return the list l
without the last element. This function is called at the parsing level.

Daniel El Ouraoui 6

Higher-Order in SMT

1 (** lty = [t_1 ; ... ; t_n ; return_type] **)

2 let rec flatting_type : sort -> sort = function
3 | Arrow lty ->

4 let return_type = last_of lty in
5 match return_type with
6 | Arrow l as arrow ->

7 let append_type = flatting_type arrow in
8 let args_ty = unhook_last lty in
9 Arrow(args_ty @ append_type)

10 | _ -> Arrow lty

11 | ty -> ty

4 Pre-processing formulas

One way to deal with higher-order formulas could be to handle the higher-order constructions before solving the
formula. The approach aims to avoid complicated cases such as partial-application or β-redex before the solving.

α-conversion α-conversion is the least equivalence relation 'α on λ-terms such that for any λ-term t, and variables
x, y where y /∈ FV (t), we have:

λx.t 'α λy.t{x 7→ y}. (α)

β-reduction The β-rule is the following reduction relation between λ-terms, such that for any λ-terms t,u, and
variable x, we have:

(λx.t)u→β t{x 7→ u}. (β)

The sub-term (λx.t)u which is transformed by the β-rule is called the redex (or β-redex).

η-reduction The η-rule is the following reduction relation, such that for any λ-term t, and variable x we have:

(λx.t x)→η t. if x /∈ FV (t). (η)

Normal form An expression is in normal form if it cannot be reduced further by use of β and η reduction.
For more details about properties of the λ-calculus and the rewriting systems the reader could be refer to [1].

Order The order of the simple type τ , is denoted by the function ord(τ) and is defined inductively over the structure
of the simple type:

ord(τ) = 0 if τ is non functional

ord(σ → τ) = max(ord(σ) + 1, ord(τ))

The first higher-order processing implemented in the veriT solver is β-reduction with respect to the above definitions.
Therefore, all terms must be in normal-form before being handled by the solver itself. Then, we have considered how
to handle partially applied terms. A partial application, provides strictly less arguments than the full number excepted
by the function. One example of this is given in section 3. This phenomenon can not appear in first-order for the simple
reason that the order of each function is at most one. Therefore, any function can’t take function in argument. However,
the way to avoid this particular form is to use systematically the higher-order congruence propertie on partially applied
terms.

Daniel El Ouraoui 7

Higher-Order in SMT

Rewriting with functional congruence The higher-order logic with equality is obtained by adding a family of
constant symbols (=τ→τ→o). Beyond that, a stronger sense of equality is obtained if some form of Leibniz’s law is
added as an axiom. The axiom states that two things are equal if they have all and only the same properties. Formally:

∀(x y : τ). x = y ⇒ ∀(P : τ → o) P x⇔ P y (Leibniz’s)

But, instead of considering Leibniz’s law as an axiom, it can also be taken as the definition of equality. This is what
we do. Thanks to the above properties it follows:

∀(f : σ → τ)∀(g : σ → τ) f = g ⇒ (∀(x : σ) f x = g x) (hocong)

Which is the right to left side of the extensionality axiom (generally deduced from the substitutivity property). Assum-
ing extensionality we deduce the following rewriting rules:

∀(fg : τ → σ) (f = g) = ∀(x : τ)(f x = g x) (3αβ)

One consequence of the above equality, where A and B are terms of type τ is:

(λxn.A) = (λxn.B) = ∀xn. A = B (3λ)

Sketch. The proof [2] is by induction n:

C A S E n = 1: (λx.A) = (λx.B) = ∀x. A = B follow by 3αβ

C A S E n + 1: (λxn.(λx.A)) = (λxn.(λx.B)) = ∀xn.(λx.A) = (λx.B) by inductive hypothesis

Let the one hole context formula be defined as follows where t is a λ-term as defined in 2 and ψ a well-formed
formula:

C ::= [] | ¬C | C ⊕ ψ | ψ ⊕ C | ∀x.C | ∃x.C

Then to ensure that our transformation is correct we prove the following theorem

Theorem 4.1. For all context C and function symbols f, g: C[f = g] is satisfiable iff C[∀xn. f xn = g xn] is
satisfiable.

Sketch. The proof is by induction on the context C and is performed by usage of 3λ and 3αβ .

It appears now obvious how these properties can be useful to avoid all partially applied terms. As before, we provide
an abstract view of the usage of these properties in order to simplify higher-order formulas: we call preprocess
the function which takes a formula and uses the properties above to avoid partial-application; reduce is the function
which takes a term and applies the β-reduction until normal-form; get_type is the function which takes a term and
returns its type; eq_type stands for the equality between two types; arity returns the arity of the type; mk_freshs
takes the type and the list of arguments of the function and returns the list of missing ones (e.g if f is a function symbol
of type σ1 → σ2 → σ3 → τ and t is a term of type σ1 then the result of mk_freshs f [t] is ([x;y],2)
where x : σ2 and y : σ3); mk_forall takes a list of variables and a formula and returns a quantified representation
of the formula — i.e Forall of var list * formula. Then the following Ocaml code expresses in simpler
terms exactly how this procedure was implemented in veriT. We give only the cases for equality, implication and
conjunction respectively denoted by the constructors Eq of term * term, Impl of formula * formula,
And of formulas * formulas. The other cases are treated in the same way:

1 let rec preprocess : formula -> formula = function
2 | Eq(e1,e2) as eq ->

3 match e1, e2 with begin
4 | App(FunId f,args_f), App(FunId g,args_g)

5 when eq_type (get_type f) (get_type g) ->

6 let fresh_args_f,delta_f =

Daniel El Ouraoui 8

Higher-Order in SMT

7 mk_freshs (get_type f) args

8 let fresh_args_g,delta_g =

9 mk_freshs (get_type g) args

10 mk_forall fresh_args_g (Eq(App(FunId(f),args_f@fresh_args_f),
11 App(FunId(g),args_g@fresh_args_g))) end
12 (** works in the same way for the symmetric case-i.e

13 partial = constant, constant = partial,... and lambda abstraction**) end
14 | Impl(f1,f2) -> Impl(preprocess f1, preprocess f2)

15 | And(f1,f2) -> Impl(preprocess f1, preprocess f2)

Skolemization and choice In the solving step, several methods can be used to encode quantifier dependencies. Of
course, one must be careful to obtain a sound framework. For instance, in Isabelle the existential quantifiers are encoded
by using ε-terms [32]. Typically, we have an additional constant symbol in our signature that we write εx. Then we
add to the theory these two following axiom schemas where A is a formula:

∃(x : τ)A[x]⇔ A(εxA[x]) ∀(x : τ)A[x]⇔ A(εx¬A[x])

The epsilon ε-term expresses the witness of the quantified formula. Another way to deal with existential quantifiers is
the Skolemization procedure. Together with the result of the Herbrand theorems this technique allows one to prove
the (un)satisfiability of existentially quantified formulas. In particular, this method makes possible to create a ground
model, also called Herbrand model, which is at the origin of many instantiation techniques used in the SMT solvers.
Without going back to semantic considerations, below we give in really simple terms the principle of Skolemization.
Given the following formula, where p is a predicate symbol with n+ 1 arguments:

∀(x1 : τ1) . . . ∀(xn : τn) ∃(y : σ) p(x1, . . . , xn, y)

We call a Skolem extension of our theory T , the new theory built by adding a new function symbol f of arity n, called
the Skolem symbol. The formula obtained after Skolemization is:

∀(x1 : τ1) . . . ∀(xn : τn) p(x1, . . . , xn, f(x1, . . . , xn))

For more details about Herbrand models and Skolemization the reader can refer to [2]. The existence of a Skolem
function follows from the choice axiom. This axiom, is inherited from the set theory. If we choose to accept this axiom
in the set theory, we get the so called theory ZFC. One way of articulating the axiom of choice is to say that there
exists a function (called the choice function) which from a collection of sets, selects an element in each of these sets.
Formally, let R be a relation between two elements of types σ and τ :

∀(x1 : σ)∃(y : τ) R(x, y)⇒ ∃(f : σ → τ)∀(z : σ)R(z, f(z))

Since we are in classical logic, we assume the axiom of choice. Yet, it is important to note that other systems may not:
in constructive logics (e.g. Coq, agda) this axiom is not assumed. Then, it follows that the Skolem symbols should not
be allowed without any restriction (see e.g [31]). There are some other problems with Skolemization. In particular,
when a type may have zero or one inhabitant prior to Skolemization and it may have an infinite number of inhabitants
afterwards. Another problems can appear during the unification of typed λ-terms those are describes in [11, 9].

Conclusions and implementation In accordance with the previous points, we provide a pre-treatment for higher-
order formulas. So far, this has been implemented and tested in the veriT solver over more than fifty benchmarks. Some
of them come from Sledgehammer [13] (and are translated by hand to our new syntax) from Isabelle formalizations.
With the given method, we got a correct answer on some of our examples. But since we didn’t provide yet an implemen-
tation of the instantiation technique, it is of course not excepted to get answers for the ones that need instantiation. The
downside of the approach described here is the systematic introduction of new quantifiers in the original formula. This
results in an overhead due to more calls to the instantiation module. The instantiation in SMT is a challenging problem

Daniel El Ouraoui 9

Higher-Order in SMT

generally tackled with considerable cost. Nevertheless, the usage of several heuristics help to minimize this cost. In
conclusion, it is common sense to add new symbols almost for free (and consequently more work for the instantiation
module) should be unacceptable. This is a temporary solution, while waiting for a full higher-order update of the veriT
source code.

5 A decision procedure for a higher-order QF UF theory

The QF UF theory is related to the equality problem over (quantifier free) uninterpreted function symbols. We present
here an extension of the algorithm of Nelson and Oppen [35]. This decision procedure uses the congruence closure
algorithm based on the union-find data structure. This method implements the equality theory that we’ll give bellow.

Theory of equality The equality theory is defined axiomatically as follows, where f is a constant symbol in the the-
ory: Let ' be a binary relation, an equivalence closure of ' is the smallest relation closed under reflexivity, symmetry,
transitivity which is an equivalence relation. It follows that an equivalence class is a set T of terms closed under
equivalence relation. In particular, we denote by [t] the representative term of its class. Notably, thanks to this con-
struction we get that two terms t, u, are equals (i.e t ' u) iff [t] and [u] are equals (i.e [t] ' [u]). Then the congruence
closure of a relation is the smallest relation that is closed under equivalence and congruence. Congruence class is
the set Ecc of terms closed under congruence closure.

∀(x : τ) x = x (reflexivity)

∀(xy : τ) x = y ⇒ y = x (symmetry)

∀(xyz : τ) (x = y ⇒ y = z)⇒ x = z (transitivity)

∀(xyz : τ) (x = y)⇒ fx = fz (congruence)

Computing the congruence closure As we have seen above, the congruence closure provides a suitable structure to
rank similar objects among themselves. This structure can be used to establish which terms are equal and consequently
provide a way to gather them all together. To reach this goal, we will give ourselves an abstract representation of terms,
which is called DAGs — i.e Directed Acyclic Graphs. Usually, the DAG representation enjoys the sharing property.
While a tree data structure includes many duplications of a node, DAG data structure contains only one occurrence of
each node. This means that during the construction of the structure, a fresh node is generated if and only if it does not
appear in the structure. Generally, each node has a unique identifier stored in a table interrogated before any production
of new node. Adapted to the terms we call this kind of representation a maximum sharing of terms. We encode a
term in a graph structure where nodes represent an application (or in uncurried form a function symbol of n-arity
respectively by a node with n branches) and leafs describe variable or constant symbols — i.e 0-arity. Typically, we
can represent the term f(f(a, b), b) by the following DAG in the right figure bellow. Toward an equality algorithm,
we give to each node a unique identifier, as in the figure. Formally, let G = (V,E) be a graph, the set of identifiers
is represented by V and the set of edges E describes the equivalence relation ' between the nodes. We define two
operations overs this structure: for all terms u, v, union u v combines the equivalence class of u with the class of v;
find u takes a term and returns its representative. Now, we have enough material to build the relation'. For example,
taking the term f(f(a, b), b) represented by the right DAG right figure below. The proposition f(f(a, b), b) = a can
be written as the relation {(n1, n3)}. Now, if we want a decision procedure we start by building the initial relation
containing all sub-terms of the formula. These sub-terms are initially in relation with themselves. For example, the
proposition f(a, b) = a ∧ f(f(a, b), b) = a we build the initial relation that is ' = {{n3}, {n4}, {n2}, {n1}} which
is the representation of {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}. First we take f(a, b) = a that is ' ∪ {n3, n2}, then we
deduce {n3, n2} and {n4, n4} by congruence {n1, n2}, then {n3, n1}, finally the relation is'= {{n3, n2, n1}, {n4}}
that is the representation of {{a, f(a, b), f(f(a, b), b)}, {b}}. Finally, if ' is a relation on the nodes of G, that ' is
closed under congruence and u, v are nodes of G then, the function merge u v builds the congruence closure by
adding (u, v) and all its outbuildings at the current relation '. The Ocaml code given at the left describe the complete

Daniel El Ouraoui 10

Higher-Order in SMT

algorithm to compute the congruence closure. The function ccpar u computes the set pu of all predecessors of all
nodes equivalents to u — i.e informally this function computes the congruence closure parents which are the parents
of all members of the class of u. For example, assume that our relation is the result of the previous example and on
the diagram above we choose u = n3. Then by the previous analyse n2 and n3 are equivalent then the predecessor of
n3 is n2 and of n3 is n1. Thus pu = {n2;n1}. Trivially, the function congruent u v checks if u, v have all their
children in common.

let rec merge u v =

if find u <> find v

then begin
let pu = ccpar u in
let pv = ccpar v in
union u v;

List.iter (

fun t1 ->

List.iter (

fun t2 ->

if (find t1) <> (find t2)

&& congruent t1 t2 then
merge t1 t2

) (IdSet.elements pv)

) (IdSet.elements pu)

end

f : n1

f : n2

a : n3 b : n4

Higher-order congruence closure Similarly, we can build the higher-order congruence closure of two terms u, v
by adding the property hocong to our equality theory. In fact, while the first-order congruence property only allows us
to reason between the arguments of the same function, the higher-order congruence hocong is stronger and allows one
to reason on different functions. In particular, it makes possible to deduce more sub-terms in the relation '. Therefore,
we can exploit equality between functional symbols. From this observation, it becomes easy to see that to extend the
decision procedure described above it is enough to consider the full application of functions as a particular case. If we
have an equality which involves partial application for some symbol f, then we merge all the children of f which appear
in the relation '+ from its current arity. We denote by '+ the higher-order closure, which is simply the congruence
closure plus the hocong property given above. Suppose we have the following equalities, with (f : (τ → τ)→ τ →
τ),(g : (τ → τ)→ τ → τ), (a : τ → τ), (b : τ), (x : τ): let E1 : f '+ g; E2 : (f a b) '+ x; E3 : (g a b) '+ (a b).
By hocong from E1 we deduce (f a b) '+ (g a b) then by transitivity we deduce a b '+ x. Furthermore, if we add
the conjunctive proposition E1 ∧ E2 ∧ E3 the disequality ¬(f a '+ g a), then the proposition becomes unsatisfiable.
The reason is simple. If we add ¬(f a '+ g a) then by E1 all sub-terms of the shape f xi should be equal to all
sub-terms g x′i. More precisely, we have f xi ∈ [g x′i] and g xi ∈ [f x′i] which is absurd since (f a) '+ (g a).
By consequence, the higher-order closure allow us to refute the proposition E1 ∧ E2 ∧ E3 ∧ ¬(f a '+ g a). It’s
enough to consider for all equalities f xi ' g yi, all occurrences of sub-terms t, t′ in '+ such that t has the shape
f x′n and t′ is g y′n with i ≤ n. We consider the sets: Ef ={ t |

⋃
t∈'+

symbol(t) = f ∧ i ≤ arity t}
and Eg = { t′ |

⋃
t′∈'+

symbol(t′) = g ∧ i ≤ arity t′}. Let [f i], [gi], respectively denote the classes of terms with
the shape: f x′i and g y′i. Then from Ef and Eg we build for all t, t′ the new class [f i] ∪ [gi] and adding at '+ all
pairs (f x′i, g y′i). Therefore, all partial application of the same arity become congruent.
Now, it remains only to add this condition in the code of merge u v. The function ecchil u (arity u) built
exactly the set Eu — i.e Closure Children. The function ho_congruent u v check if the terms u, v have the same
parents or if the terms have the same children — i.e we consider a hierarchy of terms in the Dags structure, for example
the term f is the parent of f a and f a of f a b see example below. Finally, the function arity u given a term returns
its arity, in other word return the number of arguments applied to the symbol function at the head of the term.

Daniel El Ouraoui 11

Higher-Order in SMT

let rec merge u v =

if find u <> find v then begin
let cu = cchil u (arity u) in
let cv = cchil v (arity v) in
let pu = ccpar u in
let pv = ccpar v in
union u v;

List.iter (fun t1 ->

List.iter (fun t2 ->

if (find t1) <> (find t2)

&& ho_congruent t1 t2 then
merge t1 t2

) (IdSet.elements (IdSet.union pv cv))

) (IdSet.elements (IdSet.union pu cu))

end

f

f

f

a

a

b

x

g

g

g

Figure 5.1 – At the left the Dags representation of f '+ g ∧ (f a b) '+ x ∧ (g a b) '+ (a b)

congruent parent
higher-order closure relation
structure of term
equalities

6 Proof producing

Regrettably, there is no standard yet for proof output; each proof-producing solver has its own proof format. We focus
in this section on the proof format of the SMT solver veriT [18]. This solver is known for its very detailed proofs [12,
5], which are reconstructed in the proof assistants Coq [3] and Isabelle/HOL [16] and in the GAPT system [22]. Proofs
in veriT accommodate the formula processing and the proof search performed by the solver. Processing steps are
represented using an extensible set of inference rules described in Barbosa et al. [5]. Here, we extend the processing
calculus by Barbosa et al. to support transformations such as β-reduction and congruence with λ-abstractions, which
are required by the new constructs that can appear in higher-order problems (Section 6.1).
The CDCL(T) reasoning performed by veriT is represented by a resolution proof, which consists of the resolution
steps performed by the underlying SAT solver and the lemmas added by the theory solvers and the instantiation
module. These steps are described in Besson et al. [12]. The part of the proof corresponding to the actual proving
will change according to how we solve higher-order problems. In keeping with the CDCL(T) setting, the reasoning
is performed in a stratified manner. Currently, the SAT solver handles the propositional reasoning, a combination of
theory solvers tackle the ground (variable-free) reasoning, and an instantiation module takes care of the first-order
reasoning. Our initial plan is to adapt the instantiation module so that it can heuristically instantiate quantifiers with
functional variables, and to extend veriT’s underlying modular engine for computing substitutions [7]. Since only
modifications to the instantiation module are planned, the only rules that must be adapted are those concerned with
quantifier instantiation:

I N S T∀
∀x. ϕ[x]→ ϕ[t]

I N S T∃
ϕ[t]→ ∃x. ϕ[x]

These rules are generic enough to be suitable also for higher-order instantiation. Here, we focus on adapting the rules

Daniel El Ouraoui 12

Higher-Order in SMT

necessary to suit the new higher-order constructs in the formula processing steps.

6.1 An Extension for the veriT Proof Format

Our setting is classical higher-order logic as defined by the extended SMT-LIB language above, or abstractly described
by the following grammar:

M ::= x | c | M M | λx. M | let x̄n 'Mn in M

where formulas are terms of Boolean type. For λ-abstraction, we can now rely on the following axiom, where '
denotes the equality predicate:

|= ∃x.ϕ[x]⇒ ϕ[εx.ϕ] (ε1)

|= (∀x.ϕ = ψ)⇒ (εx.ϕ) = (εx.ψ) (ε2)

|= (let x̄n = s̄n in t[x̄n]) = t[s̄n] (let)

|= (λx.t[x]) s = t[s] (β)

For readability, and because it is natural with a higher-order calculus, we present the rules in curried form—that is,
functions can be partially applied, and rules must only consider unary functions.
The notion of context is as in Barbosa et al.:

Γ ::= ∅ | Γ, x | Γ, x̄n 7→ t̄n

Each context entry either fixes a variable x or defines a substitution {x̄n 7→ s̄n}. Any variables arising in the terms s̄n
will normally have been introduced in the context Γ on the left. If a context introduces the same variable several times,
the rightmost entry shadows the others. Abstractly, a context Γ fixes a set of variables and specifies a substitution
subst(Γ) defined by:

subst(∅) = {}, subst(Γ, x) = subst(Γ)[x 7→ x], andsubst(Γ, x̄n 7→ t̄n) = subst(Γ) ◦ {x̄n 7→ t̄n}.

The substitution is the identity for ∅ and is defined as follows in the other cases:

subst(Γ, x) = subst(Γ)[x 7→ x] subst(Γ, x̄n 7→ t̄n) = subst(Γ) ◦ {x̄n 7→ t̄n}

The [x 7→ x] update shadows any replacement of x induced by Γ. The examples below illustrate this subtlety:

subst(x 7→ 7, x 7→ g(x)) = {x 7→ g(7)} subst(x 7→ 7, x, x 7→ g(x)) = {x 7→ g(x)}

We write Γ(t) to abbreviate the capture-avoiding substitution subst(Γ)(t).
Transformations of terms (and formulas) are justified by judgments of the form Γ B t ' u, where Γ is a context, t is an
unprocessed term, and u is the corresponding processed term. The free variables in t and u must appear in the context
Γ. Semantically, the judgment expresses the equality of the terms Γ(t) and u for all variables fixed by Γ. Crucially, the
substitution applies only on the left-hand side of the equality. The inference rules for the transformations covered in
this report are presented below, followed by explanations.

TA U TT if |=T Γ(t) ' u
Γ B t ' u

Γ B s ' t Γ B t ' u
T R A N S if Γ(t) = t

Γ B s ' u(
Γ B ti ' ui

)
n
i=1

C O N G
Γ B f(t̄n) ' f(ūn)

Γ, y, x 7→ y B ϕ ' ψ
B I N D if y /∈ FV (Qx. ϕ)

Γ B (Qx. ϕ) ' (Qy. ψ)

Γ, x 7→ (εx. ϕ) B ϕ ' ψ
S K O ∃

Γ B (∃x. ϕ) ' ψ

Γ, x 7→ (εx. ¬ϕ) B ϕ ' ψ
S K O ∀

Γ B (∀x. ϕ) ' ψ(
Γ B ri ' si

)
n
i=1 Γ, x̄n 7→ s̄n B t ' u

L E T if Γ(si) = si for all i ∈ [n]
Γ B (let x̄n ' r̄n in t) ' u

Daniel El Ouraoui 13

Higher-Order in SMT

Our new set of rules is similar to Barbosa et al. The rules T R A N S , S K O ∃, S K O ∀, L E T , and TA U TT apply
unchanged. The B I N D rule is modified to accommodate the new λ-binder:

Γ, y, x 7→ y B ϕ ' ψ
B I N D if y /∈ FV (Bx. ϕ)

Γ B (Bx. ϕ) ' (By. ψ)

The metavariable B ranges over ∀, ∃, and λ. Another rule is modified to suit new cases. With respect to the first-order
calculus, the left hand side of an application is not always a simple function or predicate symbol anymore, but can
involve more complicated terms. Rewriting can now occur also on these complicated terms. The updated C O N G rule
is as follows:

Γ B t ' s Γ B u ' v
C O N G

Γ B t u ' s v

The only genuinely new rule handles β-reduction—that is, the substitution of an argument in the body of a λ-abstraction.
It is similar in form to the L E T rule from the first-order calculus [5]:

Γ B v ' s Γ, x 7→ s B t ' u
B E TA if Γ(s) = s

Γ B (λx. t) v ' u

Indeed, (let x ' u in t) and (λx. t)u are equal semantically.

Example 6.1. The derivation tree of the normalization of (λx. p x x) a is as follows:

B a ' a
C O N G

x 7→ a B p ' p
TA U TT

x 7→ a B x ' a
R E F L

x 7→ a B p x ' p a
C O N G

x 7→ a B x ' a
R E F L

x 7→ a B p x x ' p a a
C O N G

B (λx. p x x) a ' p a a
B E TA

Example 6.2. The following tree features a β-redex under a λ-abstraction. Let Γ1 = w, x 7→ w; Γ2 = Γ1, y 7→ f w;
and Γ3 = Γ2, z 7→ f w:

Γ1 B f ' f
TA U TT

Γ1 B x ' w
R E F L

Γ1 B f x ' f w
C O N G

Γ2 B y ' f w
R E F L

Γ3 B p z ' p (f w)
R E F L

Γ2 B (λz. p z) y ' p (f w)
B E TA

Γ1 B (λy. (λz. p z) y) (f x) ' p (f w)
B E TA

B (λx. (λy. (λz. p z) y) (f x)) ' (λw. p (f w))
B I N D

Example 6.3. The transitivity rule is useful when the applied term reduces to a λ-abstraction. Let Γ1 = w, y 7→ w;
Γ2 = Γ1, x 7→ w; Γ3 = Γ1, w1 7→ p w; Γ4 = Γ1, x 7→ λw1.w; Γ5 = Γ1, w1, x 7→ w1; and Γ6 = Γ4, z 7→ λw1.w:

Γ1 B y ' w
R E F L

Γ2 B p x ' p w
R E F L

Γ1 B (λx. p x) y ' p w
B E TA

Π

Γ1 B ((λx. (λz. z) x) (λx. y)) ((λx. p x) y) ' (λw1. w) (p w)
C O N G

Γ1 B p w ' p w
R E F L

Γ3 B w ' w
C O N G

Γ1 B (λw1. w) (p w) ' w
B E TA

Γ1 B ((λx. (λz. z) x) (λx. y)) ((λx. p x) y) ' w
T R A N S

B (λy. (λx. (λz. z) x) (λx. y)) ((λx. p x) y)) ' (λw. w)
B I N D

where Π stands for the subtree

Γ5 B y ' w
R E F L

Γ1 B (λx. y) ' (λw1. w)
B I N D

Γ4 B x ' (λw1. w)
R E F L

Γ6 B z ' (λw1. w)
R E F L

Γ4 B (λz. z) x ' (λw1. w)
B E TA

Γ1 B (λx. (λz. z) x) (λx. y) ' (λw1. w)
B E TA

Daniel El Ouraoui 14

Higher-Order in SMT

The correctness of the extended calculus is a simple extension of the correctness proof in Barbosa et al. We focus
on the extensions. Recall that the proof uses an encoding of terms and context in λ-calculus, based on the following
grammar:

M ::= t | (λx.M) | (λx̄n.M) t̄n

As previously reify(M ' N) is defined as ∀x̄n. t ' u if M =αβ λx1 . . . λxn. t and N =αβ λx1 . . . λxn. u .
The encoded rules are as follows:

M [u] ' N [v] M [t] ' N [s]
C O N G

M [t u] ' N [s v]

M [λy. (λx. ϕ) y] ' N [λy. ψ]
B I N D if y /∈ FV (Bx. ϕ)

M [Bx. ϕ] ' N [By. ψ]

M [v] ' N [s] M [(λx. t) s] ' N [u]
B E TA if M [v] =αβ N [s]

M [(λx. t) v] ' N [u]

Lemma 6.4. If the judgment M ' N is derivable using the encoded inference system with the theories T1 . . . Tn, then
|=T reify(M ' N) with T = T1 ∪ · · · ∪ Tn ∪ ' ∪ ε ∪ let ∪ β.

Proof. The proof is by induction over the derivation M ' N . We only provide here the three new cases:

C A S E B I N D B = λ: The induction hypothesis is |=T reify(M [λy. (λx. ϕ[x]) y] ' N [λy. ψ[y]]). Using (β) and the
side condition of the rule, we can also deduce that |=T reify(M [λy. ϕ[y])] ' N [λy. ψ[y]]). Hence by α-conversion
this is equivalent to |=T reify(M [λx. ϕ[x])] ' N [λy. ψ[y]]).

C A S E C O N G: This case follows directly from equality in a higher-order setting.

C A S E B E TA: This case follows directly from (β) and equality in a higher-order setting.

The remaining cases are similar to Barbosa et al.

The auxiliary functions L(Γ)[t] and R(Γ)[u] are used to encode the judgment of the original inference system Γ B
t ' u. They are defined over the structure of the context, as follows:

L(∅)[t] = t R(∅)[u] = u

L(x, Γ)[t] = λx. L(Γ)[t] R(x, Γ)[u] = λ. L(Γ)[u]

L(x̄n 7→ s̄n,Γ)[t] = (λx̄n. L(Γ)[t]) s̄n R(x̄n 7→ s̄n,Γ)[u] = (λx̄n. L(Γ)[u]) s̄n

Lemma 6.5. If the judgment Γ B t ' u is derivable using the original inference system, the equality L(Γ)[t] '
R(Γ)[u] is derivable using the encoded inference system.

Proof. The proof is by induction over the derivation Γ B t ' u, we give only the three new cases:

C A S E B I N D with B = λ: The encoded antecedent is M [λy. (λx. ϕ) y] ' N [λy. ψ] (i.e., L(Γ, y, x 7→ y)[ϕ] '
R(Γ, y, x 7→ y)[ψ]), and the encoded succedent is M [λx. ϕ] ' N [λy. ψ]. By the induction hypothesis, the encoded
antecedent is derivable. Thus, by the encoded B I N D rule, the encoded succedent is derivable.

C A S E C O N G: Similar to B I N D.

C A S E B E TA: Similar to L E T with n = 1.

The remaining cases are similar to Barbosa et al.

Lemma 6.6 (Soundness of Inferences). If the judgment Γ B t ' u is derivable using the original inference system
with the theories T1 . . . Tn, then |=T Γ(t) ' u with T = T1 ∪ . . . ∪ Tn ∪ ' ∪ ε ∪ let ∪ β.

Proof. Using the above updated lemmas, the proof is identical to the one for the original calculus.

Daniel El Ouraoui 15

Higher-Order in SMT

7 Quantifier instantiation

Substitutions are finite mappings from variables to terms. In this section substitutions are denoted by σ. The application
of σ to t is written tσ, and tσ ↓β express that tσ is in β-normal form. An individual substitution is still denoted by
t{x 7→ t} (where x could be free or not). The environments are represented by a list of substitutions at left, and equality
at right. Respectively, we represent the empty list at left by >, which is equivalent to the empty conjunction, and by ⊥
at right which is equivalent to the empty disjunction. We introduce the notation Eσ = {x ' xσ |x ∈ dom(σ)}. We
say that a formula ϕ is true in a modelM (orM is model of ϕ) :M |= ϕ.

Checking the satisfiability of quantified formulas with respect to the underlying theories is generally a hard problem.
Most of my work during the internship was focused around the veriT solver. This is an example of a system based
on the CDCL(T) framework [36]. In recent years, many heuristic instantiation techniques were developed around the
CDCL(T) framework. Although the problem is most of the time undecidable the purpose of the game is to be able to
derive a set of a ground instances of the quantified formula and afterwards to delegate all generated instances of the
original formulas to an efficient ground solver. Generally, the satisfiability of a quantified formula is checked through
a feedback loop which at each step activates the instantiation module until either it finds an instance which refutes the
formula, finds a complete instantiation, loops forever or answers unknown. Usually, all input formulas are in Skolem
form, and by consequence, all the generated instantiation lemmas are of the form:

∀xn ∈ dom(σ). ψ ⇒ ψσ

Currently, there are three main methods to perform quantifier instantiation in the CDCL(T) framework. These methods
are sometimes more efficient on some particular problems, then generally these techniques are combined to fill the
gaps in each of them.

– Trigger based instantiation was originally developed in the thesis of Nelson [34] and is roughly based on the
observation that a universal quantifier on a variable (x : τ) can most of the times (in first order) be transformed
to a conjunction of the values of the domain of τ with some shape reminiscent of the terms already appearing in
the formula.

– Conflict based instantiation [40] was originally created to produce relevant sets of instances, unlike the trigger
based instantiation method, which sometimes may produce many irrelevant instances for the solving. The idea
is that given a ground model M and a quantified formula ∀(xn : τn).ϕ, we find a substitution σ such that
M |= ¬ϕσ. In this way, once the corresponding instantiation lemmas are added, we will prevent the derivation
of that same candidate model.

– Model based instantiation [23] was introduced to provide a complete instantiation method for CDCL(T). The
basic purpose aims to build an interpretation over a ground modelM for all uninterpreted functions — e.g if
f is a function symbol then we build its interpretation for an arbitrary predicate P (usually inferred from the
formula) with respect to the current theory. JfnKM = λxn.if P (x1) then > else . . . if P (xn) then > else ⊥.
If the interpretation satisfies all formulas inQ then we can answer SAT,Q stands for a set of quantified formulas.

In the following we focus on trigger based instantiation and provide an extension to tackle higher-order quantification.
Notice that we aim for a higher-order logic with the general semantic, more commonly called Henkin semantics [24].
Henkin showed that higher-order logic interpreted in the general model is completely equivalent to its counter-part in
first-order. Then higher-order logic with Henkin semantic is equivalent to first-order logic. However, that is the origin
of the current translations employed in verification tools to turn the higher proposition into a first-order one. Thanks to
this observation we can extend without worries the trigger based instantiation which relies on semantic observations.

Daniel El Ouraoui 16

Higher-Order in SMT

7.1 trigger based instantiation

Trigger instantiation is a combination of two procedures. First, we select all relevant terms occurring in the quantified
formula. Then, we batch these terms in a collection of sets that we call triggers. Secondly, we try to match the terms
which appears in triggers with terms occurring in the ground model, in order to derive instantiation lemmas. This
process is performed through E-matching.

E-matching Given a conjunctive set of equality literalsE and terms u and t, with t ground, theE-matching problem
is that of finding a substitution σ such that E |= uσ ' t.

Triggers A trigger T for a quantified formula ∀xn.ψ is a set of non-ground terms u1, . . . , un ∈ T(ψ) such that
{x} ⊆ FV (u1) ∪ . . . ∪ FV (un). Given a ground modelM and a set of quantified formulas Q, for each formula
ψ ∈ Q we do:

1. choose a collection of trigger T1, . . . , Tn from ψ;

2. build the set of instantiation lemma:

I =
n⋃
i=1

{ ∀xn.ψ ⇒ ψσ | Ti = {u1, . . . , un} and t1, . . . , tn ∈M, M |= u1σ ' t1, . . . , M |= unσ ' tn}

3. adding I to the original problem.

The substitution σ computed in the step 2 of the above procedure is the solution to the E-matching problem for
the specific formula ψ. In order to compute this substitution Leonardo de Moura and Nikolaj Bjørner provided an
efficient algorithm [33], given a term u in a trigger and a ground term t infer the substitution σ such that uσ = t. This
algorithm has been implemented in the Z3 SMT solver. We propose to extend this algorithm to compute substitutions
of higher-order formulas. Consider the well-typed literal F (a) ' g(a, a), with F being a functional variable. There
are four unifiers for this problem:

σ1 = {F 7→ λw. g(w, w)}
σ2 = {F 7→ λw. g(w, a)}
σ3 = {F 7→ λw. g(a, w)}
σ4 = {F 7→ λw. g(a, a)}

These unifiers can be found systematically with Huet’s algorithm [25]. Higher-order matching is decidable, unification
is semi-decidable (if the problem has unifiers they will be found, however the procedure may loop indefinitely if no
solution exists). A good alternative to Huet’s algorithm, which is quite explosive, is pattern unification [29], based on
subclass of λ-terms which behave almost like first-order terms. More exactly this is a decidable and deterministic frag-
ment of λ-calculus for unification algorithm (there exist most general unifiers). This observation come first from Dale
Miller [28]. Surprisingly, although restrictive this technique is still effective in practice, being the default higher-order
unification procedure used in systems such as λProlog and Isabelle [39]. When considering how to handle higher-order
quantifiers in CDCL(T) we have to decide how to tackle E-ground (dis)unification [7] in a higher-order context, since
it is the base for the major instantiation techniques. Here we start with the simplest case: how to perform E-matching
in a higher-order, belong knowing that this will be enough to perform trigger based instantiation. Moreover, we start
investigating how to do so using only pattern matching, in the above sense, hoping that this fragment will be enough
to yield effective procedures. We proceed by defining pattern unification in lambda calculus, then how it works in the
context where quantifiers are present (HOSMT).

Daniel El Ouraoui 17

Higher-Order in SMT

7.2 Pattern unification

The following observations come from Nipkow [38], which provides a simple yet efficient implementation of unifi-
cation of both untyped and simply typed patterns: This can be seen as a specialised and improved version of Huet’s
algorithm. The fact that patterns turn out so frequently in practice is probably the reason that Huet’s algorithm works so
surprisingly well in practice (given its explosive nature, that is). The specialisation sums up to: imitation and projection
coincide and flex-flex pairs can be solved. An interesting detail: it is possible, as shown by Miller [30], to perform
full higher-order unification by means of pattern unification if one implements an external search procedure on top
of it. A pattern is defined below. Furthermore, we choose to hold the same formalism of Nipkow [38] in the syntax.
Accordingly, the n-applied terms ((. . . (a s1) . . .)sn) is written a(sn).

Pattern A term t in β-normal form is a (higher-order) pattern if and only if every free occurrence of a variable F is
in a subterm F (ūn) of t such that ūn is η-equivalent to a list of distinct bound variables.

Example 7.1. Examples of patterns are λx. c(x), λx. F (λz. x(z)), and λxy. F (x, y). Examples of non-patterns are
F (c), λx. F (x, x), and λx. F (F (x)). More in details the first λ-term F (c) is obviously not a pattern because c is
not a bounded variable. The second λx. F (x, x) is not a pattern because: F should be applied to a list of distinct
bound variables. Finally the last one may seem well-formed pattern but we have F which is a free-variable, hence in
F (F (x)) we have F which is not a bound variable.

The rules for pattern unification:

Eσ
 ((λx. s) ' (λx. t)) :: L

Eσ
 (s ' t) :: L

Eσ
 (a(s̄n) ' a(t̄n)) :: L

Eσ
 [s1 ' t1, . . . , sn ' tn] @L

Eσ
 (F (x̄m) ' a(s̄n)) :: L

Eσ ∪ {F ' (λx̄m. a(H̄n(x̄m)))}
 [H1(x̄m) ' s1, . . . , Hn(x̄m) ' sn] @L

where F 6∈ FV (s̄n) and a is constant or a ∈ {x̄m}

Eσ
 (F (x̄m) ' F (ȳn)) :: L

Eσ ∪ {F ' (λx̄m. H(z̄p))}
 L

Eσ
 (F (x̄m) ' G(ȳn)) :: L

Eσ ∪ {F ' (λx̄m. H(z̄p)), G ' (λȳn. H(z̄p))}
 L

where {z̄p} = {xi | xi ' yi} where F 6= G and {z̄p} = {x̄m} ∩ {ȳn}

Table 1 – Pattern unification

These rules has been adapted to match our needs. Then, in the above figure a judgment is composed of two elements:
at the left a set of equivalents literals which is equivalent of the original presentation with substitution; at the right a
list of pattern equalities which is strictly adapted to [38]. Finally, the relation
 stand for the entailment relation. The
@ is the concatenation and :: perform the appending in head of the list.

Theorem 7.2. A list of pattern equalities L has a solution iff from the judgment >
 L we derive Eσ
 ⊥ where Eσ
is the most general unifier of L.

Proof. Completeness and correctness follows because the above rules cover all solvable cases and because the
antecedent (modulo the resulting computed substitution after the rule) and succedent have the same set of uni-
fiers. [38]

Example 7.3. Consider λxy. F (x) and λxy. c(G(y, x)). The derivation is:

>
 [(λxy. F (x)) ' (λxy. c(G(y, x)))]

>
 [F (x) ' c(G(y, x))]

{F ' λx. c(H(x))}
 [H(x) ' G(y, x)]

{F ' λx. c(H ′(x)), H ' λx. H ′(x), G ' λyx. H ′(x)}
 ⊥

1(λx.Fx) ' F whenever x does not appear free in F . This conversion embodies extensionality. 18

Higher-Order in SMT

7.3 Pattern E-matching on HOSMT

An abstract version of the de Moura and Bjørner algorithm is presented in the following with three new rules which
allow one to tackle higher-order patterns. This calculus performs higher-order E-matching, where the following call
ematch(s, t, S) is composed of a pattern s in the first component, a ground term t and a set S of a substitutions. Then
the rules are:

ematch(x, t, S) = {σ ∪ {x 7→ t} |σ ∈ S, s /∈ dom(σ))} ∪ {σ |σ ∈ S, E |= xσ ↓beta' t}
ematch(λx. s, λx. t, S) = ematch(s, t, S)

ematch(t′, t, S) =

{
S if E |= t′ ' t
∅ otherwise

ematch(a(sn), t, S) =
⋃

a(tn)∈T(E), E |= a(tn)'t

ematch(sn, tn, . . . , ematch(s1, t1, S) . . .)

ematch(F (xn), t, S) =


⋃

a(tm)∈T(E), E |= a(tm)' t

ematch(Hm(xn), tm, . . . , ematch(H1(xn), t1, S) . . .)

{F 7→ λxn. a(Hm(xn))}
see the note

Such that all instantiations for a quantified formula with a trigger T = {u1, . . . , un} can be obtained with the set of
substitutions:

S =
⋃

ti ∈T(E)

ematch(un, tn, . . . , ematch(u1, t1, S) . . .)

The correctness of these rules follow first from the correctness of the original subset [33] of rules, the first, the third
and a sub case of the forth — i.e originally we didn’t allow application of bound variables. Secondly, the correctness
and completeness of the new added rules directly follows from 7.2, since E-matching is a sub problem of unification
— i.e because by definition one side of the equality is ground.

8 Conclusion and Future Work

We have presented a preliminary extension of the SMT-LIB syntax, a decision procedure to ground higher order
equality, an instantiation technique and an extension of the veriT proof format to support higher-order constructs in
SMT proofs. Partial applications, λ-abstractions, and quantification over functional variables can now be understood
by a solver compliant with these languages. For the proof production, the only relatively challenging element of these
extensions so far concerns the rules for representing detailed proofs of formula processing. The next step is to extend
the generic proof-producing formula processing algorithm from Barbosa et al. [5]. Given the structural similarity
between the introduced extensions and the previous proof calculus, we expect this to be straightforward.
A more interesting challenge will be to reconstruct these new proofs in proof assistants, to allow full integration of a
higher-order SMT solver. Since detailed proofs are produced, with proof checking being guaranteed to have reasonable
complexity, we are confident to be able to produce effective implementations. Independently, we have extend the so
called C C F V (i.e. congruence closure with free variables) calculus [6] to λ-patterns. This calculus provides a suitable
and efficient framework to find instantiations of quantified formulas. Furthermore, it one allows to handle almost all the
main instantiation techniques in a flexible way. Due to the space constraint and because this is still a work in progress
I preferred to avoid this part of my report. In parallel, we have planned to carry on the SMTpp [17] and Dolmen 1

projects in order to provide generic tools for syntactic manipulations with SMT and HOSMT e.g. translate TPTP [45]
benchmarks. With the foundations laid down, the next step will be to implement the automatic reasoning machinery
for higher-order formulas and properly evaluate its effectiveness.Moreover, when providing support for techniques
involving, for example, inductive datatypes, we will need to augment the proof format. This internship was for me a
good introduction to a SMT and it allowed me to get acquainted with this research field.

1https://github.com/Gbury/dolmen 19

Higher-Order in SMT

9 Remerciments

Je tiens tout d’abord à remercier profondément Pascal fontaine et Jasmin Blanchette pour m’avoir accueilli au sein du
projet Matryoshka et ainsi m’avoir donné l’opportunité d’effectuer ce stage. Je remercie personnellement Pascal pour
son aide, son soutien et sa pédagogie qui au jour le jour m’a poussé à corriger mes erreurs et à évoluer. Je remercie
personnellement Jasmin pour son aide dans mon travail ainsi que pour ses conseils qui m’ont aidé à me perfectionner.
Je tiens à remercier Haniel pour son aide et ses conseils quotidiens. Mais aussi Simon et Martin pour leur sympathie
journalière, leurs points de vue aiguisés et leurs très bonnes explications. Je remercie pour sa gentillesse Stephan Merz,
et le remercie de m’avoir accueilli dans son équipe. Je remercie tous les membres de l’équipe VeriDis: Sophie, Marie,
Thomas, Margaux, Tung, Punam pour leur bonne humeur quotidienne. Je souhaite finir en remerciant mes parents qui
sans eux rien n’aurait été possible, je les remercie pour leur soutien et leur aide durant ces 5 années me permettant
ainsi de me consacrer essentiellement à ma passion l’informatique.

References

[1] Roberto M. Amadio. “Operational methods in semantics”. Lecture. Paris, France, Dec. 2016. U R L: https:
//hal.archives-ouvertes.fr/cel-01422101.

[2] Peter B Andrews. An introduction to mathematical logic and type theory. Vol. 27. Springer Science & Business
Media, 2002.

[3] Michaël Armand et al. “A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses”. In:
Certified Programs and Proofs. Ed. by Jean-Pierre Jouannaud and Zhong Shao. Vol. 7086. Lecture Notes in
Computer Science. Springer, 2011, pp. 135–150. D O I: 10.1007/978-3-642-25379-9_12.

[4] Leo Bachmair and Harald Ganzinger. “Rewrite-Based Equational Theorem Proving with Selection and Simplifi-
cation”. In: Journal of Logic and Computation 4.3 (1994), pp. 217–247. D O I: 10.1093/logcom/4.3.217.
U R L: http://dx.doi.org/10.1093/logcom/4.3.217.

[5] Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine. “Scalable fine-grained proofs for formula
processing”. In: Proc. Conference on Automated Deduction (CADE). Ed. by Leonardo de Moura. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2017.

[6] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence Closure with Free Variables. Tech. rep.
https://hal.inria.fr/hal-01442691. Inria, 2017.

[7] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. “Congruence Closure with Free Variables”. In: Tools
and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by Axel Legay and Tiziana Margaria.
Vol. 10206. Lecture Notes in Computer Science. 2017, pp. 214–230. D O I: 10.1007/978-3-662-54580-
5. U R L: http://dx.doi.org/10.1007/978-3-662-54580-5.

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5. Tech. rep. Available at
www.SMT-LIB.org. Department of Computer Science, The University of Iowa, 2015.

[9] Christoph Benzmüller et al. “Automation of Higher-Order Logic.” In: Computational Logic. Vol. 9. 2014,
pp. 215–254.

[10] Christoph Benzmüller et al. “The Higher-Order Prover Leo-II”. In: Journal of Automated Reasoning 55.4 (2015),
pp. 389–404. I S S N: 1573-0670. D O I: 10.1007/s10817-015-9348-y. U R L: https://doi.org/
10.1007/s10817-015-9348-y.

[11] Christoph E Benzmuller and Chad E Brown. “A structured set of higher-order problems”. In: TPHOLs. Springer.
2005, pp. 66–81.

[12] Frédéric Besson, Pascal Fontaine, and Laurent Théry. “A Flexible Proof Format for SMT: a Proposal”. In:
Workshop on Proof eXchange for Theorem Proving (PxTP). 2011.

Daniel El Ouraoui 20

https://hal.archives-ouvertes.fr/cel-01422101
https://hal.archives-ouvertes.fr/cel-01422101
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1093/logcom/4.3.217
http://dx.doi.org/10.1093/logcom/4.3.217
https://hal.inria.fr/hal-01442691
https://doi.org/10.1007/978-3-662-54580-5
https://doi.org/10.1007/978-3-662-54580-5
http://dx.doi.org/10.1007/978-3-662-54580-5
https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.1007/s10817-015-9348-y

Higher-Order in SMT

[13] Jasmin Christian Blanchette. Hammering Away: A Users Guide to Sledgehammer for Isabelle/HOL. 2013.

[14] Jasmin Christian Blanchette, Uwe Waldmann, and Daniel Wand. “A lambda-free higher-order recursive path
order”. In: International Conference on Foundations of Software Science and Computation Structures. Springer.
2017, pp. 461–479.

[15] Jasmin Christian Blanchette et al. “Hammering towards QED”. In: Journal of Formalized Reasoning 9.1 (2016),
pp. 101–148.

[16] Jasmin Christian Blanchette et al. “Semi-intelligible Isar Proofs from Machine-Generated Proofs”. In: Journal
of Automated Reasoning 56.2 (2016), pp. 155–200.

[17] Richard Bonichon et al. “SMTpp: preprocessors and analyzers for SMT-LIB”. In: Proceedings of the 13th
International Workshop on Satisfiability Modulo Theories (SMT 2015). 2015.

[18] Thomas Bouton et al. “veriT: An Open, Trustable and Efficient SMT-Solver”. In: Proc. Conference on Auto-
mated Deduction (CADE). Ed. by Renate A. Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer,
2009, pp. 151–156. D O I: 10.1007/978-3-642-02959-2_12. U R L: http://dx.doi.org/10.
1007/978-3-642-02959-2_12.

[19] Robert S Boyer and J Strother Moore. “A theorem prover for a computational logic”. In: International Confer-
ence on Automated Deduction. Springer. 1990, pp. 1–15.

[20] Chad E. Brown. “Satallax: An Automated Higher-Order Prover”. In: 6th International Joint Conference on
Automated Reasoning (IJCAR 2012). Ed. by Ulrike Sattler Bernhard Gramlich Dale Miller. Accepted. Springer,
2012, pp. 111 –117.

[21] Alonzo Church. “A formulation of the simple theory of types”. In: The journal of symbolic logic 5.2 (1940),
pp. 56–68.

[22] Gabriel Ebner et al. “System Description: GAPT 2.0”. In: International Joint Conference on Automated Reason-
ing (IJCAR). Ed. by Nicola Olivetti and Ashish Tiwari. Vol. 9706. Lecture Notes in Computer Science. Springer,
2016, pp. 293–301.

[23] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo
Theories”. In: Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture
Notes in Computer Science. Springer, 2009, pp. 306–320. D O I: 10.1007/978-3-642-02658-4_25.
U R L: http://dx.doi.org/10.1007/978-3-642-02658-4_25.

[24] Leon Henkin. “Completeness in the theory of types”. In: The Journal of Symbolic Logic 15.2 (1950), pp. 81–91.

[25] G.P. Huet. “A unification algorithm for typed -calculus”. In: Theoretical Computer Science 1.1 (1975), pp. 27
–57. I S S N: 0304-3975. D O I: http://dx.doi.org/10.1016/0304-3975(75)90011-0. U R L:
http://www.sciencedirect.com/science/article/pii/0304397575900110.

[26] Cezary Kaliszyk and Josef Urban. “Learning-assisted theorem proving with millions of lemmas”. In: J. Symb.
Comput. 69 (2015), pp. 109–128. D O I: 10.1016/j.jsc.2014.09.032. U R L: https://doi.org/
10.1016/j.jsc.2014.09.032.

[27] Manfred Kerber. “How to prove higher order theorems in first order logic”. In: (1999).

[28] Tomer Libal and Dale Miller. “Functions-as-Constructors Higher-Order Unification”. In: Formal Structures
for Computation and Deduction (FSCD). Ed. by Delia Kesner and Brigitte Pientka. Vol. 52. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 26:1–26:17.

[29] Dale Miller. “A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple
Unification”. In: J. Log. Comput. 1.4 (1991), pp. 497–536. D O I: 10.1093/logcom/1.4.497. U R L:
https://doi.org/10.1093/logcom/1.4.497.

[30] Dale Miller. “Unification of Simply Typed Lamda-Terms as Logic Programming”. In: International Conference
on Logic Programming (ICLP). Ed. by Koichi Furukawa. MIT Press, 1991, pp. 255–269.

Daniel El Ouraoui 21

https://doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/http://dx.doi.org/10.1016/0304-3975(75)90011-0
http://www.sciencedirect.com/science/article/pii/0304397575900110
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1016/j.jsc.2014.09.032
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497

Higher-Order in SMT

[31] Dale A. Miller. “A compact representation of proofs”. In: Studia Logica 46.4 (1987), pp. 347–370. I S S N:
1572-8730. D O I: 10.1007/BF00370646. U R L: https://doi.org/10.1007/BF00370646.

[32] Georg Moser and Richard Zach. “The Epsilon Calculus”. In: Computer Science Logic: 17th International
Workshop CSL 2003, 12th Annual Conference of the EACSL, 8th Kurt Gödel Colloquium, KGC 2003, Vienna,
Austria, August 25-30, 2003. Proceedings. Ed. by Matthias Baaz and Johann A. Makowsky. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 455–455. I S B N: 978-3-540-45220-1. D O I: 10.1007/978-3-540-
45220-1_36. U R L: https://doi.org/10.1007/978-3-540-45220-1_36.

[33] Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”. In: Proc. Conference on
Automated Deduction (CADE). Ed. by Frank Pfenning. Vol. 4603. Lecture Notes in Computer Science. Springer,
2007, pp. 183–198. I S B N: 978-3-540-73594-6. D O I: 10.1007/978-3-540-73595-3_13. U R L: http:
//dx.doi.org/10.1007/978-3-540-73595-3_13.

[34] Charles Gregory Nelson. “Techniques for Program Verification”. PhD thesis. Stanford, CA, USA, 1980.

[35] Greg Nelson and Derek C Oppen. “Fast decision procedures based on congruence closure”. In: Journal of the
ACM (JACM) 27.2 (1980), pp. 356–364.

[36] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solving SAT and SAT Modulo Theories: From an
Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T)”. In: J. ACM 53.6 (Nov. 2006), pp. 937–
977. I S S N: 0004-5411. D O I: 10.1145/1217856.1217859. U R L: http://doi.acm.org/10.
1145/1217856.1217859.

[37] Robert Nieuwenhuis and Albert Rubio. “Paramodulation-Based Theorem Proving”. In: Handbook of automated
reasoning. Ed. by Alan Robinson and Andrei Voronkov. Vol. 1. 2001, pp. 371–443.

[38] Tobias Nipkow. “Functional Unification of Higher-Order Patterns”. In: Logic In Computer Science (LICS).
IEEE Computer Society, 1993, pp. 64–74.

[39] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Vol. 2283. LNCS. Springer, 2002.

[40] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding conflicting instances of quanti-
fied formulas in SMT”. In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195–202.
U R L: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680.

[41] Andrew Reynolds et al. “Counterexample-Guided Quantifier Instantiation for Synthesis in SMT”. In: Computer
Aided Verification (CAV). Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9207. Lecture Notes in
Computer Science. Springer, 2015, pp. 198–216.

[42] Dan Rosén and Nicholas Smallbone. “TIP: Tools for Inductive Provers”. In: Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). Ed. by Martin Davis et al. Springer, 2015, pp. 219–232.

[43] Robert E Shostak. “A practical decision procedure for arithmetic with function symbols”. In: Journal of the
ACM (JACM) 26.2 (1979), pp. 351–360.

[44] G. Sutcliffe. “The CADE ATP System Competition - CASC”. In: AI Magazine 37.2 (2016), pp. 99–101.

[45] G. Sutcliffe. “The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0”. In:
Journal of Automated Reasoning 43.4 (2009), pp. 337–362.

Daniel El Ouraoui 22

https://doi.org/10.1007/BF00370646
https://doi.org/10.1007/BF00370646
https://doi.org/10.1007/978-3-540-45220-1_36
https://doi.org/10.1007/978-3-540-45220-1_36
https://doi.org/10.1007/978-3-540-45220-1_36
https://doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1145/1217856.1217859
http://doi.acm.org/10.1145/1217856.1217859
http://doi.acm.org/10.1145/1217856.1217859
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975680

	Introduction
	Background
	A Syntax Extension for the SMT-LIB Language
	Pre-processing formulas
	A decision procedure for a higher-order QF_UF theory
	Proof producing
	An Extension for the veriT Proof Format

	Quantifier instantiation
	trigger based instantiation
	Pattern unification
	Pattern E-matching on HOSMT

	Conclusion and Future Work
	Remerciments

