
Faster, Higher, Stronger: E 2.3

Stephan Schulz1, Simon Cruanes2, and Petar Vukmirović3

1 DHBW Stuttgart, Germany, schulz@eprover.org
2 Aesthetic Integration, Austin, Texas, USA, simon.cruanes.2007@m4x.org

3 Vrije Universiteit Amsterdam, The Netherlands, p.vukmirovic@vu.nl

Abstract. E 2.3 is a theorem prover for many-sorted first-order logic
with equality. We describe the basic logical and software architecture of
the system, as well as core features of the implementation. We partic-
ularly discuss recently added features and extensions, including the ex-
tension to many-sorted logic, optional limited support for higher-order
logic, and the integration of SAT techniques via PicoSAT. Minor addi-
tions include improved support for TPTP standard features, always-on
internal proof objects, and lazy orphan removal. The paper also gives an
overview of the performance of the system, and describes ongoing and
future work.

1 Introduction

E is a fully automated theorem prover for first-order logic with equality. It has
been under development for about 20 years, adding support for full first-order
logic with E 0.82 in 2004, many-sorted first-order logic with E 2.0 in 2017,
and both optional support for λ-free higher-order logic (LFHOL) and improved
handling of propositional logic with the current release, E 2.3.

The basic architecture of the clausal inference core has previously been de-
scribed in [15] (covering E 0.62), and the last updated description of E 1.8 was
published in 2013 [18]. The recent support for λ-free higher-order logic is covered
in detail in [30,31]. In this paper, we describe the current state of the prover,
with a particular focus on recent developments.

E is available as free software under the GNU General Public License. Official
point releases are available as source distributions from https://www.eprover.

org. Development versions and the full history of changes can be found at https:
//github.com/eprover.

2 System Design and Architecture

The system is designed around a pipeline of largely distinct processing steps
(compare Fig. 1): Parsing, preliminary analysis, axiom selection, clausification,
clausal preprocessing, auto-mode CNF analysis, saturation and proof object ex-
traction. Parsing, clausification and saturation are necessary for actual theorem
proving, the other steps are optional and enabled by command line options.

https://www.eprover.org
https://www.eprover.org
https://github.com/eprover
https://github.com/eprover

Parsing

Raw analysis

Axiom selection

Clausification

CNF analysis

Saturation

Proof extraction

Proof problem

Heuristic control information

Proof object

Formula
set

Formula
set

Selected
formulae

Clause
set

Clause
set

Status,
derivation
graph

Preprocessing

Clause
set

Fig. 1. Logical pipeline

In the first step, the input problem is parsed
as a set of annotated formulas, where each logi-
cal formula is represented as a shared term over
a signature including the usual logical operators,
and wrapped in a data structure that allows anno-
tations to capture additional extra-logical proper-
ties such as the formula role (in particular axiom
and conjecture), the name of the formula, and its
provenience.

The next step is an optional analysis of the
parsed problem, primarily to automatically deter-
mine if and how an axiom selection scheme should
be applied in the third step to reduce the number
of axioms. Axiom selection is based on a variant of
the SInE algorithm [8]. This step is optional. Ax-
iom selection can be manually triggered or blocked
by the user or triggered automatically based on
the results of the preceding analysis step.

At the core of the prover is a refutational
proof procedure for first-order clausal logic with
equality. It is based on the superposition calcu-
lus (with some extensions and modifications), and
works on a clausal representation of the prob-
lem. The clausification step converts the full first-
order problem into a set of clauses. It is based
on the ideas presented by Nonnengart and Wei-
denbach [13]. As usual with refutational theorem
provers, if an explicit conjecture is given, it is
negated before clausification, so that the resulting
clause set is unsatisfiable if the conjecture logically
follows from the axioms.

The prover optionally performs preprocessing
of the clause set. Preprocessing removes redun-
dant literals and tautologies, optionally unfolds
some or all equational definitions, and orders lit-
erals and clauses in a canonical ordering so that
the prover behaves in a more deterministic way.

The resulting clause set can be extracted after
this stage. Indeed, several other clausal provers use E as an external clausifier.
If E continues, the clause set is then analyzed to determine the search control
strategy to be used by the inference core. The superposition calculus is param-
eterized by a term ordering and (optionally) a literal selection function. The
implementation uses a variant of the given-clause algorithm (Fig. 2). The main
additional search parameter for this algorithm is the scheme for the selection of
the given clause for each iteration of the main loop. However, there are a large

number of additional flags controlling e.g. different options for simplification.
All aspects of the search strategy can again be explicitly set by the user, or
automatically determined by the automatic mode of the prover.

The inference core performs a classical saturation of the clause set, option-
ally interspersed with calls to the CDCL-based SAT-solver PicoSAT [3] to de-
tect conflicts hidden in (so far) unprocessed clauses. The procedure terminates
successfully when either the empty clause has been derived directly, when the
SAT-solver detects unsatisfiability of the proof state, or when the clause set is
saturated. It terminates unsuccessfully, if it cannot reach success within user-
defined limits (e.g. CPU time, memory, iterations, elementary term operations).

In the case of success, an optional final step can extract a proof object from
the search state and present the proof to the user.

3 Calculus and Implementation

3.1 Superposition for many-sorted logic

E was originally built around untyped first-order logic, distinguishing only pred-
icate symbols (returning a Boolean value) and function symbols (returning an
individual, represented as a term). Variables would implicitly range over all
terms, and hence could be bound to any term. As of version 2.0, the prover has
been extended to support many-sorted first order logic in the style described by
Sutcliffe, Schulz, Claessen and Baumgartner [27].

In this logic, every plain function symbol has an associated function type,
accepting a fixed number of arguments of defined sorts, and constructing a term
of a defined return sort. Predicate symbols also accept terms of the correct sorts
only. An exception is the equality-predicate, which is ad-hoc polymorphic, but
requires terms of the same sort for both arguments.

Supporting many-sorted logic unlocks access to many useful features:

– expressing some size constraints over models, using axioms such as ∃a, b :
τ,∀x : τ, x ' a ∨ x ' b;

– enabling more efficient encodings from systems with richer logics, such as
proof assistants [4] or program verification tools [5]. While types can be
encoded within plain first-order logic, these encodings tend to bloat formulas,
adding sort predicates to every axiom, and to bloat terms, which reduces the
effectiveness of many simplification rules;

– supporting some built-in theories, as SMT solvers typically do; indeed, the
SMT-LIB language [2] is typed;

– supporting the FOOL extension [10] of first-order logic and its realization
in the TFX format [26], allowing Boolean sub-terms as well as let and
if-then-else constructs.

Basic support for interpreted numbers is planned for the near future, full support
for TFX is already in progress and will most likely be included in the next release.

The superposition calculus readily generalizes to this logic. E implements the
standard inference rules from [1]: Superposition, equality resolution, and equality

factoring. In addition, it implements a large array of simplification rules, the most
important of which are unconditional rewriting, subsumption, equational literal
cutting and contextual literal cutting. A more detailed description of the calculus
(and its realization in the proof procedure) is provided in the manual [19].

In practice, supporting simple types requires every variable and term to be
annotated with its sort. Unification and retrieval of terms from indices (e.g. for
demodulation) check that types are compatible before binding a variable to any
given term. This is what prevents an axiom such as ∀x : side, x ' left∨x ' right
to rewrite another clause’s subterm of an incompatible type. This change had
negligible impact on performance, but significantly improves the expressiveness
of the logic.

E can currently parse the TFF0 sub-grammar of the TPTP TFF format [27],
and prints typed terms and formulas using the same syntax.

Sorts were originally represented as indices into a sort table. The LFHOL
extension of E 2.3 [31] further generalizes this representation to support higher-
order simple types and partially applied terms. The implementation of types
now uses a lightweight term-like structure, in which complex types are build
from basic sorts and the arrow operator. Like terms, types are perfectly shared
for efficient type equality comparisons.

3.2 Implementation

The system is being developed in C, providing good performance and maximal
portability. The code of the prover proper largely restricts itself to features from
C99, with some POSIX extensions. It has been successfully built on a large range
of different UNIX-style operating systems, in particular OS-X/macOS (with both
LLVM and GCC as compilers) and Linux, the two main development and testing
platforms. It has also been compiled and run under versions of Windows, using
the CygWin libraries for POSIX/UNIX compatibility.

In the past, supporting software for testing and optimizing the system has
been built in a number of scripting languages, but more recently has been largely
moved to Python.

While C is an excellent language for performance and portability, it offers a
relatively small number of built-in data structures and programming constructs.
As a consequence, E has been built on a layer of libraries providing generic
data types such as unlimited size stacks, splay trees, dynamic arrays, as well as
convenient abstractions for a number of operating system services.

On top of these generic libraries, the prover implements logical data types
and operations. At the heart of the system is the term bank data type, an
efficient and garbage-collected data structure originally for aggressively shared
first-order terms. All persistent terms are inserted in a bottom-up manner into
this term bank. Thus, identical terms are represented by identical pointers. This
results in a saving in the number of cells needed to represent the proof state
of several orders of magnitude [11]. It also enables us to precompute a number
of properties and store them in the term cells. Examples include the number of
function symbols in the term and the number of variable occurrences. Thus, we

can e.g. decide if a shared term is ground in constant time. More importantly,
we can cache the result of rewrite attempts at the term level — in the case of
success with a link to the result (and, for proof reconstruction, with the clause
used as a side premise), in the case of failure with the age of the youngest clause
tried, so that future attempts can be restricted to newer clauses.

The term bank data structure and its API has proven to be efficient and
convenient. In particular, the mark-and-sweep garbage collector makes the cre-
ation and destruction of terms very convenient and reduces programmer effort
and errors. As a result, shared terms are now also used to represent formulas
and in some roles even clauses (which, as of E 2.2, are parsed as a special case
of formulas).

Literals and clauses for the inference core are implemented as dedicated data
structures. Internally, all literals are equational. In addition to the two terms
making up the equation, literals include polarity (positive or negative), a number
of Boolean flags, and a pointer for creating linked lists. Clauses consist of such a
linked list of literals, wrapped in a container for meta-data, heuristic evaluations,
and information about the derivation of the clause.

Proof procedure Fig. 2 depicts the main saturation procedure. It is a modi-
fied version of the DISCOUNT loop [6], one of the variants of the given-clause
algorithm. The proof state is represented by two disjoint subsets of clauses, the
processed clauses P and the unprocessed clauses U . Initially, all clauses are un-
processed. At each iteration of the main loop, the prover heuristically selects a
given clause from U , adds it to P , and performs all generating inferences be-
tween this clause and all clauses in P . The resulting new clauses are added to
U . This maintains the invariant that all direct consequences between clauses in
P have been performed. Forward simplification is performed on the given clause
(using clauses in P as side premises) before it is used for generation, and on new
clauses before they are added to U. In addition, clauses in P are back-simplified
with the given clause, and simplified clauses are moved to U. This maintains
the additional invariant that the clauses in P are interreduced, or maximally
simplified with respect to other clauses in P .

In addition to saturation, the current version may trigger a propositional
check for unsatisfiability of a grounded version of the proof state, as described
below.

Internal proof objects Originally, E only offered the option to log all infer-
ences to an external medium and then generate a proof object in a post-mortem
analysis. Since these logs often reached extreme sizes, this was costly and not
even practically possible for long runs.

With E 1.8, we finally found a way to use the invariants of the given-clause
algorithm to very compactly represent the derivation graph internally [22]. Since
the overhead in time and memory turned out to be negligible, we have simplified
the code and now always build an internal proof object. In addition to efficiently
providing a checkable proof object in TPTP syntax [28], the presence of the

Search state: (U,P)
U contains unprocessed clauses, P contains processed clauses.
Initially, P is empty and all clauses are in U .
The given clause is denoted by g.

while U 6= {}
if prop trigger(U,P)

if prop unsat check(U,P)
SUCCESS, Proof found

g = extract best(U)
g = simplify(g, P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T) ∪ {g}
T = T ∪ generate(g, P)
T ′ = {}
foreach c ∈ T

c = cheap simplify(c, P)
if c is not trivial

T ′ = T ′ ∪ {c}
U = U ∪ T ′

SUCCESS, original U is satisfiable

Fig. 2. The modified given-clause algorithm as implemented in E

derivation information enables the detection of vacuous proofs (based on an
inconsistent axiomatization). It also enables an elegant lazy implementation of
orphan killing. An orphan is a generated clause which has lost at least one of its
parents to interreduction before being selected for processing, and which hence
can be deleted as well. Older versions of E maintained an explicit list of direct
descendants for processed clauses, and actively removed such descendents if the
parent clause became redundant. As of E 2.2, we instead check the status of
the parent clauses (which are either active or archived) only when the clause is
selected for processing. This removes the bookkeeping overhead and simplifies
both code and data structures.

In addition to the generation of proof objects, the system supports the pro-
posed TPTP standard for answers [29]. An answer is an instantiation for an
existential conjecture (or query) that makes the conjecture true. E can supply
bindings for the outermost existentially quantified variables in a TPTP formula
with type question.

Indexing Most of the generating and simplifying inference rules require two
premises - the main premise and a side premise. For generating inferences, one

of the inference partners is the given clause, the other one is a clause in P . E
uses a fingerprint index [16] to efficiently find clauses with (sub-)terms that are
unifiable with the maximal terms of inference literals of the given clause.

For simplification, the DISCOUNT loop distinguishes two situations. In for-
ward simplification, all clauses in P are used as side premises to simplify a given
clause - either the given clause, or a newly generated clause. E uses perfect
discrimination trees [12] with size- and age-constraints for forward rewriting.
Backward simplification uses a single clause to simplify all clauses from P . E
uses fingerprint indexing for backwards rewriting. Subsumption and contextual
literal cutting use feature vector indexing [17], a clause indexing technique that
supports the finding of both generalizations and instances.

SAT integration SAT solvers have greatly improved performance in the last
decades, and can handle propositional problems that are far beyond the practical
scope of classical first-order provers with ease. Following other attempts [9,14],
we want to utilize this power to improve the performance of the prover both
for problems with a significant propositional component as well as for first-order
problems where contradictory instances are generated early, but are not detected
until all involved clauses have been selected for processing.

We have thus integrated the CDCL solver PicoSAT [3] with E. The satura-
tion loop is periodically interrupted, and all clauses in the current proof state are
grounded, i.e. all variables are bound to a constant of the proper sort. The in-
stantiated clauses are efficiently translated into propositional clauses and handed
to PicoSAT. Our original implementation used PicoSAT as an external tool via
files and UNIX pipes [20], but as of E 2.2 we link PicoSAT as a library and
use its documented C API. If PicoSAT refutes the given propositional problem,
E extracts the unsatisfiable core and relates it back to the original first-order
clauses to construct a proof object. If PicoSAT fails to find unsatisfiability, the
saturation is resumed.

E users can control this process by choosing the following options:

– the point when PicoSAT is called – currently it is after N generated or
processed clauses or after N new subterms created, where N is a user-chosen
constant

– the way variables are instantiated with constants – some of the options are
to use the most or the least frequent constant, a fresh constant (for each
type), or a frequent or infrequent constant appearing in the conjecture.

We have only started to explore the parameter space. With current config-
urations, E finds about 1% more proofs on TPTP when PicoSAT is enabled.
While this number seems low, it is significant among hard problems - 90% of
solutions are found before the first run of the SAT solver.

3.3 Higher-order logic support

One of the most recent updates for E adds support for λ-free higher-order logic
(LFHOL). Supporting richer logics in a highly optimized theorem prover without

compromising performance required some changes to fundamental data struc-
tures and algorithms. Here we will only briefly describe the changes. We refer
the reader to [31] for details.

LFHOL is a fragment of simply-typed higher-order logic, with no λ-abstra-
ction, but supporting functional variables and partial application of terms. It
is expressive enough to axiomatize, for example, frequently used functional pro-
gramming combinators such as map. We have generalized E’s term representa-
tion to allow applied variables, as well as the type system to support partially
applied terms. The most laborious change was the extension of all three index-
ing data structures to support more complex terms. Our experimental results
show that E extended to support LFHOL natively outperforms the traditional
encoding-based approaches. E 2.3 users can specify LFHOL problems in TPTP
THF syntax. Support for LFHOL can be specified as an option at compile time.

3.4 Search Control

All provers for first-order logic search for proofs in an infinite search space.
While fairness is a minimal requirement for completeness, practical performance
depends critically on making the right choices. The prover supports a large
number of options for controlling preprocessing and actual search control.

The most important parameters for the saturation are the term ordering, the
literal selection strategy, and clause evaluation heuristics. Term orderings primar-
ily determine in which direction equations can be applied (and as a consequence,
which terms are overlapped for superposition inferences), and which literals are
maximal and hence available for inferences. Literal selection can be used to over-
write the default inference literals and restrict inferences to particular (negative)
literals. Finally, clause evaluations determine the order in which the given-clause
algorithm processes clauses. In the simplest case, this is a single value, represent-
ing the number of symbols in the clause (known as a symbol-counting heuristic
— smaller is better). E generalizes this concept and allows the user to specify
an arbitrary number of priority queues and a weighted round-robin scheme that
determines how many clauses are picked from each queue. Each queue is ordered
by a particular evaluation function. A major feature is the use of goal-directed
evaluation functions. These give a lower weight to symbols that occur in the goal,
and a higher weight to other symbols, thus preferring clauses likely connected
to the conjecture. We have so far only evaluated a small part of the possibility
space opened by this design [21].

More complex clause evaluation functions allow the system to evaluate clauses
based on a user-provided watch list. Clauses that match clauses on the watch
list are preferred over other clauses. Watch lists can either be created based on
human intuition, by manual analysis of similar proofs, or by automated mining
of related proofs. The watch list mechanism in E has been improved several
times, with the current incarnation [7] being successfully used for challenging
mathematical problems.

Automatic prover configuration Finding good heuristics for a given problem
is challenging even for an experienced user. E supports a number of automatic
modes that analyze the problem and apply either a single strategy or a sched-
ule of several strategies. The selection of strategies and generation of schedules
for each class of problems is determined automatically by analyzing previous
performance of the prover on similar problems.

3.5 Usage and formats

Recent versions of E have made minor changes to the usage and options, as well as
to I/O formats. These are mostly conservative, i.e. they should not significantly
impact integration of the prover into larger systems.

The first such change is automatic detection of the input format. E supports
three different formats: The original LOP format inherited from SETHEO, the
old TPTP format (TPTP format version 1/2) and the current TPTP format
version 3. The prover has originally used command line options to select the
desired format. However, with E 1.9.1, we introduced automatic detection of the
input format (and automatic setting of the corresponding output format). This
feature is implemented by checking the first proper input token, and selecting
TPTP-3 format if it is one of the TPTP-3 language identifiers (cnf, fof, . . .),
or include, TPTP-2 format if it is one of input clause or input formula,
and LOP otherwise. It is not completely foolproof (it can e.g. misidentify LOP
input that uses TPTP-3 language identifiers as normal function symbols), but it
works very well in practice. If it misidentifies the format, it fails towards the more
modern TPTP-3 format. We have not yet encountered that situation. If TPTP-3
syntax is identified, the output syntax is also set to TPTP-3, otherwise it is set
to PCL2 (E’s original, more limited format). These choices can be independently
overwritten via explicit use of the existing command line options.

The second change is more strict checking of TPTP language constraints.
In particular, E now requires FOF, TFF and TCF style formulas to be fully
quantified. CNF formulas are implicitly considered universally quantified. This
change was prompted by frequent user errors dur to misjudging quantifier scopes
and hence inadvertently creating free variables. Such cases will now be flagged
as errors.

Similarly, E will now automatically type numerical constants as $int/$rat
or $real (which will result in errors if they are used in untyped formulas) unless
they are explicitly marked as free constants by a command line switch.

Finally, the prover now can detect proofs resulting from an inconsistent axiom
set, and explicitly report the problem status as ContradictoryAxioms.

4 Experimental Evaluation

We have performed an evaluation of E 2.3 on the 16094 CNF and FOF problems
of the TPTP problem library [25], release 7.2.0. Experiments were run on the
StarExec cluster [23], i.e. on machines with an Intel Xeon E5/2.40 GHz processor

Strategy UEQ CNE CEQ FNE FEQ All
Class size (1193) (2383) (4442) (1771) (6305) (16094)

Auto (proofs) 814 1603 2360 1156 3704 9637
Auto (sat) 16 280 220 304 203 1023
Auto (all) 830 1883 2580 1460 3907 10660
E 1.8 Auto (all) 812 1851 2561 1456 3909 10589

Schedule (proofs) 829 1625 2470 1165 3961 10050
Schedule (sat) 16 286 219 307 206 1034
Schedule (all) 845 1911 2689 1472 4167 11084
E 1.8 Schedule (all) 828 1889 2655 1463 4113 10948

Table 1. Proofs and (counter-)saturations found within 300 seconds

and at least 128 GB of main memory. We used a CPU time limit of 300 seconds
per problem and the prover was configured to optimize memory usage to at most
2 GB.

Table 1 summarizes the results of the experiment. We list the performance
for unit-equational problems, clausal and non-clausal problems with and without
equality. The two tested strategies are the automatic mode and the automatic
strategy scheduler. For each strategy, we list the number of proofs found, the
number of counter-saturations (i.e. saturations not including the empty clause),
and the total number of successes. For comparison, we have also included data
for E 1.8, the last version with a formally published description. The full data,
including the exact command line options, is available at http://www.eprover.
eu/E-eu/E_2.3.html.

5 Future Work

While E is quite mature and widely used, there is a number of projects for further
improvement - in data structures, search control, and supported language. In
particular, terms can be more compactly represented with variable length arrays
(a feature not yet available in standard C when the data type was first designed),
and priority queues can be more efficiently realized with heaps. Feature vector
indexing works very well for classical theorem proving problems, but is less than
optimal for problems with very large and sparsely used signatures. We plan to
develop it into a more adaptive and efficient variant.

On the language side, we plan to support the full TFX language [26] and
hence the FOOL logic. We also plan to add at least basic support for interpreted
arithmetic sorts.

A lot of recent improvements have only been evaluated in isolation, not in
concert. A major project is such a large-scale evaluation and a regeneration of
the automatic modes to make better use of the new features.

Finally, E has grown over more than 20 years now. While we have tried to
integrate new techniques in as modular and elegant a way as possible, some of
the higher level-code can profit from significant refactoring and streamlining.

http://www.eprover.eu/E-eu/E_2.3.html
http://www.eprover.eu/E-eu/E_2.3.html

6 Conclusion

E is a mature and yet still developing fully automated theorem prover for first-
order logics and some extensions. It has good performance, as demonstrated in
the yearly CASC competitions [24].

The prover is available as free and open source software, and has been used
and extended by a large number of parties. We hope and expect that this success
will continue throughout the third decade of its lifetime.

References

1. Bachmair, L., Ganzinger, H.: Rewrite-Based Equational Theorem Proving with
Selection and Simplification. Journal of Logic and Computation 3(4), 217–247
(1994)

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-lib standard: Version 2.0. In: Proc. of
the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK)
(2010), http://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf

3. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation 4, 75–97 (2008)

4. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formal. Reasoning 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your
Herd of Provers. In: Boogie 2011: First International Workshop on Intermedi-
ate Verification Languages. pp. 53–64. Wroc law, Poland (August 2011), http:

//proval.lri.fr/publications/boogie11final.pdf

6. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT: A Distributed and Learn-
ing Equational Prover. Journal of Automated Reasoning 18(2), 189–198 (1997),
special Issue on the CADE 13 ATP System Competition

7. Goertzel, Z., Jakub̊uv, J., Schulz, S., Urban, J.: ProofWatch: Watchlist guidance
for large theories in E. In: Avigad, J., Mahboubi, A. (eds.) Interactive Theorem
Proving: 9th International Conference, Oxford, UK. pp. 270–288. Springer (2018)

8. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) Proc. of the 23rd CADE, Wroclav. LNAI,
vol. 6803, pp. 299–314. Springer (2011)

9. Korovin, K.: Inst-Gen - A Modular Approach to Instantiation-Based Automated
Reasoning. In: Programming Logics - Essays in Memory of Harald Ganzinger,
LNCS, vol. 7797, pp. 239–270. Springer (2013)

10. Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The Vampire and the FOOL.
In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, Saint Petersburg, USA. pp. 37–48. ACM
(2016)

11. Löchner, B., Schulz, S.: An Evaluation of Shared Rewriting. In: de Nivelle, H.,
Schulz, S. (eds.) Proc. of the 2nd International Workshop on the Implementation of
Logics. pp. 33–48. MPI Preprint, Max-Planck-Institut für Informatik, Saarbrücken
(2001)

12. McCune, W.: Experiments with Discrimination-Tree Indexing and Path Indexing
for Term Retrieval. Journal of Automated Reasoning 9(2), 147–167 (1992)

http://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf

13. Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I,
chap. 5, pp. 335–367. Elsevier Science and MIT Press (2001)

14. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, A.P., Mid-
deldorp, A. (eds.) Proc. of the 25th CADE, Berlin, Germany. LNAI, vol. 9195, pp.
399–415. Springer (2015)

15. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3),
111–126 (2002)

16. Schulz, S.: Fingerprint Indexing for Paramodulation and Rewriting. In: Gram-
lich, B., Sattler, U., Miller, D. (eds.) Proc. of the 6th IJCAR, Manchester. LNAI,
vol. 7364, pp. 477–483. Springer (2012)

17. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics:
Essays in Memory of William W. McCune, LNAI, vol. 7788, pp. 45–67. Springer
(2013)

18. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) Proc. of the 19th LPAR, Stellenbosch. LNCS, vol. 8312, pp. 735–743.
Springer (2013)

19. Schulz, S.: E 2.0 User Manual. EasyChair preprint no. 8 (2018).
https://doi.org/10.29007/m4jw

20. Schulz, S.: Light-weight integration of SAT solving into first-order reasoners –
first experiments. In: Kovács, L., Voronkov, A. (eds.) Vampire 2017. Proceed-
ings of the 4th Vampire Workshop. EPiC Series in Computing, vol. 53, pp. 9–
19. EasyChair (2018). https://doi.org/10.29007/89kc, https://easychair.org/

publications/paper/94vW

21. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-
based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) Proc. of the 8th IJCAR,
Coimbra. LNAI, vol. 9706, pp. 330–345. Springer (2016)

22. Schulz, S., Sutcliffe, G.: Proof generation for saturating first-order theorem provers.
In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proofs for All,
Mathematical Logic and Foundations, vol. 55, pp. 45–61. College Publications,
London, UK (January 2015)

23. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A Cross-Community Infrastructure
for Logic Solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Proc. of the 7th
IJCAR, Vienna. LNCS, vol. 8562, pp. 367–373. Springer (2014)

24. Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition–
CASC-J8. AI Communications 29(5), 607–619 (2016)

25. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483–502 (2017)

26. Sutcliffe, G., Kotelnikov, E.: TFX: The TPTP extended typed first-order form. In:
Konev, B., Urban, J., Rümmer, P. (eds.) Proceedings of the 6th Workshop on Prac-
tical Aspects of Automated Reasoning (PAAR), Oxford, UK. pp. 72–87. No. 2162 in
CEUR Workshop Proceedings (2018), http://ceur-ws.org/Vol-2162/#paper-07

27. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-
order Form with Arithmetic. In: Bjørner, N., Voronkov, A. (eds.) Proc. of the 18th
LPAR, Merida. LNAI, vol. 7180, pp. 406–419. Springer (2012)

28. Sutcliffe, G., Schulz, S., Claessen, K., Gelder, A.V.: Using the TPTP Language
for Writing Derivations and Finite Interpretations . In: Fuhrbach, U., Shankar, N.
(eds.) Proc. of the 3rd IJCAR, Seattle. LNAI, vol. 4130, pp. 67–81. Springer (2006)

https://doi.org/10.29007/m4jw
https://doi.org/10.29007/89kc
https://easychair.org/publications/paper/94vW
https://easychair.org/publications/paper/94vW
http://ceur-ws.org/Vol-2162/#paper-07

29. Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer Extraction for
TPTP. http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.

html, (acccessed 2013-07-08)
30. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac

prover to lambda-free higher-order logic - report version. Tech. rep., Matryoshka
Project (2018), http://matryoshka.gforge.inria.fr/pubs/ehoh_report.pdf

31. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) Proc.
25th Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’19). pp. 192–210. No. 11427 in LNCS, Springer (2019)

http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html
http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html
http://matryoshka.gforge.inria.fr/pubs/ehoh_report.pdf

	Faster, Higher, Stronger: E 2.3

