
New Heights: E 3.0

Stephan Schulz1, Petar Vukmirović2, and Jasmin Blanchette3

1 DHBW Stuttgart, Germany, schulz@eprover.org
2 Vrije Universiteit Amsterdam, The Netherlands, petar.vukmirovic2@gmail.com

3 Ludwig-Maximilians-Universität München, Germany,
jasmin.blanchette@ifi.lmu.de

Abstract. E 3.0 is a fully automatic theorem prover for classical first-
order logic with equality, many-sorted first-order logic (with first-class
Booleans), and monomorphic higher-order logic. It also supports efficient
propositional reasoning, (near-)zero-overhead proof objects, and the inte-
gration of machine learning for proof search control. This paper describes
the overall architecture of the system, with a focus on new features (first-
class Booleans, full higher-order logic, multicore scheduling, data-driven
schedule selection and representation). We discuss major aspects of the
implementation and the performance of the system on the TPTP library.

1 Introduction

E is a fully automatic theorem prover. It has been under development for over 20
years, gaining support for full first-order logic with E 0.82 in 2004, many-sorted
first-order logic with E 2.0 in 2017, and both optional support for λ-free higher-
order logic (LFHOL) and improved handling of propositional logic with E 2.3.
The current release, E 3.0 Shangri-La, introduces support for full higher-order
logic as well as for most FOOL/TFX features [26].

The basic architecture of the clausal inference core has previously been de-
scribed in a 2002 article [13] covering E 0.62, and the last updated description
of E 2.3 was published in 2019 [19]. Details on the extension to full higher-order
logic are described in a 2023 paper [31]. In this paper, we give an overview of
the current state of the prover, with a particular focus on recent developments.

E is available as free software under the GNU General Public License. Official
point releases are available as source distributions from https://www.eprover.

org. Development versions and the full history of changes can be found at https:
//github.com/eprover.

2 System Design and Architecture

The system is designed around a pipeline of largely distinct processing steps
(Fig. 1): parsing, preliminary analysis, axiom selection, higher-order preprocess-
ing, clausification, clausal preprocessing, auto-mode CNF analysis, saturation,
and proof object extraction. Parsing, clausification, and saturation are neces-
sary for actual theorem proving; the other steps are optional and enabled by
command-line options or the automatic mode.

https://www.eprover.org
https://www.eprover.org
https://github.com/eprover
https://github.com/eprover

Parsing

Preliminary analysis

Axiom selection

Clausification

CNF analysis

Saturation

Proof extraction

Proof problem

Heuristic control information

Proof object

Formula
set

Formula
set

Selected
formulae

Clause
set

Clause
set

Status,
derivation
graph

Preprocessing

Clause
set

HO-Preprocessing

Processed
formulae

Fig. 1. Logical pipeline

In the first step, the input problem is parsed as
a set of annotated formulas, where each logical for-
mula is represented as a shared term over a signature
including the usual logical operators, and wrapped
in a data structure that allows annotations to cap-
ture additional extra-logical properties such as the
formula role (in particular axiom and conjecture),
the name of the formula, and its provenience.

The next step is an optional analysis of the
parsed problem, primarily to automatically deter-
mine whether and how an axiom selection scheme
should be applied in the third step to reduce the
number of axioms. Axiom selection is based on a
variant of the SInE algorithm [7]. This step is op-
tional. Axiom selection can be manually triggered or
blocked by the user or triggered automatically based
on the results of the preceding analysis step.

Next, the prover performs some preprocessing
steps. It normalises Boolean equations into equiv-
alences, it eliminates the FOOL constructs let and
ite, and it may perform λ-lifting (which replaces λ-
abstractions by concrete function symbols).

At the core of the prover is a refutational proof
procedure for clausal logic with equality. It is based
on the superposition calculus (with some extensions
and modifications), and works on a clausal represen-
tation of the problem. The clausification step con-
verts the full first- or higher-order problem into a set
of clauses. It is based on the ideas presented by Non-
nengart and Weidenbach [11]. As usual with refu-
tational theorem provers, if an explicit conjecture
is given, it is negated before clausification, so that
the resulting clause set is unsatisfiable if the conjec-
ture logically follows from the axioms. Higher-order
problems are also eagerly clausified, even though
Boolean structure may re-emerge during proving and
then needs to be eliminated by dedicated inference
rules [3, 31]. The prover optionally performs further
preprocessing of the clause set. Preprocessing re-
moves redundant literals and tautologies, optionally

unfolds some or all equational definitions, and sorts literals and clauses in a
canonical order so that the prover behaves in a more deterministic way.

The resulting clause set can be extracted after this stage. Indeed, several
other clausal provers use E as an external clausifier. If E continues, the clause
set is then analyzed to determine the search control strategy to be used by the
inference core. The superposition calculus is parameterized by a term ordering

and (optionally) a literal selection function. The implementation uses a variant
of the given-clause procedure. The main additional search parameter for this
procedure is the scheme for the selection of the given clause for each iteration
of the main loop. All aspects of the search strategy can again be explicitly set
by the user, or automatically determined by the automatic mode of the prover.

The inference core performs a classical saturation of the clause set, option-
ally interspersed with calls to the CDCL-based SAT solver PicoSAT [4] to detect
conflicts hidden in (so far) unprocessed clauses. The procedure terminates suc-
cessfully when either the empty clause has been derived directly, when the SAT
solver detects unsatisfiability of the proof state, or when the clause set is satu-
rated. It terminates unsuccessfully if it cannot reach success within user-defined
limits (e.g., CPU time, memory, iterations, elementary term operations).

In the case of success, an optional final step can extract a proof object from
the search state and present the proof to the user.

3 Calculus and Implementation

3.1 First- and Higher-Order Superposition

E was originally built around untyped first-order logic, distinguishing only pred-
icate symbols (returning a Boolean value) and function symbols (returning an
individual, represented as a term). Variables would implicitly range over all
terms, and hence could be bound to any term.

For version 2.0, the prover was extended to support many-sorted first-order
logic in the style described by Sutcliffe, Schulz, Claessen, and Baumgartner [27].
In this logic, every plain function symbol has an associated function type, ac-
cepting a fixed number of arguments of defined sorts and constructing a term of a
defined return sort. Predicate symbols also only take terms of the correct sorts as
arguments. An exception is the equality predicate, which is ad hoc polymorphic
but requires both arguments to be of the same sort.

The superposition calculus can straightforwardly be generalized to this logic.
E implements the core inference rules from Bachmair and Ganzinger [2]: super-
position, equality resolution, and equality factoring. In addition, it implements a
large set of simplification rules, including unconditional rewriting, subsumption,
equational literal cutting, and contextual literal cutting [17].

Version 3.0 introduces support for full higher-order logic [31]. The underly-
ing calculus is a pragmatic, incomplete variant of the λ-superposition calculus
with Booleans [3]. Compared with E 2.3, which already supported application
of variables to terms, this version also supports λ-abstraction; hence, the E 3.0
term representation compatible with full higher-order logic. Terms are subject to
implicit αβη-normalization; thus, λx. f x and λy. f y are considered syntactically
identical by the calculus, and they are both syntactically identical to f.

The core inference rules (superposition, equality resolution, and equality fac-
toring) are analogous to those of first-order superposition, with three main dif-
ferences: First, they operate on higher-order terms. Second, instead of a single

most general unifier, they compute a finite (possibly incomplete) sequence of
unifiers [31]. Third, they use term orderings designed for higher-order terms [3].

Superposition inferences are performed only at positions that correspond to
a first-order-style context. Consider this example, where g is considered larger
than f according to the term ordering. Given the clauses g ' f and g a 6' f a, no
superposition inference is possible to rewrite g in g a, because [] a is not a first-
order-style context — the hole corresponds to a function, which is higher-order.
Instead, a new inference rule, called argument congruence, comes into play and
generates the clause gX ' fX from the premise g ' f. This new clause can then
be used to rewrite g a, yielding the conclusion f a 6' f a. From there, equality
resolution takes over and generates the empty clause.

Even though the outer Boolean structure is removed during the initial clausi-
fication of the problem, formulas can reappear at the top level of clauses during
saturation. For example, after instantiating X with λx. λy. x ∧ y, the clause
X p q ∨ a ' b becomes (p ∧ q) ∨ a ' b. E dynamically clausifies every clause of
the form ϕ ∨ C where ϕ is a headed by a logical symbol.

The λ-superposition calculus includes many rules that act on Boolean sub-
terms and that are necessary for completeness. Other than Boolean simplification
rules, which use simple equivalences such as p∧> ↔ p to simplify terms, we have
implemented none of these Boolean rules in E. Instead, E uses an incomplete,
but more easily controllable and intuitive rule, called primitive instantiation.
This rule instantiates free predicate variables with approximations of formulas
that are ground instances of the variable [33].

E also has special handling for the Hilbert choice operator, inspired by Leo-III
[22], and for Leibniz equality [33]. Moreover, E treats induction axioms specially.
Immediately after clausification, it abstracts literals from the goal clauses and
instantiates induction axioms with these abstractions. After E has collected all
the abstractions, it traverses the clauses and instantiates those that have applied
variable of the same type as the abstraction.

3.2 Implementation

E is being developed in C, which provides good performance and high portabil-
ity. The code of the prover proper largely restricts itself to features from C99,
with some POSIX extensions. It has been successfully built on a large range
of UNIX-style operating systems, in particular macOS (with both LLVM and
GCC as compilers) and Linux, the two main development and testing platforms.
It has also been compiled and run under versions of Windows, using the Cyg-
win libraries for POSIX/UNIX compatibility. In the past, supporting software
for testing and optimizing the system has been built in a number of scripting
languages, but more recently it has been largely moved to Python.

While C is an excellent language for performance and portability, it offers
only a small number of built-in data structures and programming constructs.
As a consequence, E has been built on a layer of libraries providing generic
data types such as unlimited size stacks, splay trees, dynamic arrays, as well as
convenient abstractions for a number of operating system services.

On top of these generic libraries, the prover implements logical data types and
operations. At its hearth is the term bank data type, an efficient and garbage-
collected data structure originally for aggressively shared first-order terms. All
persistent terms are inserted in a bottom-up manner into this term bank. Thus,
identical terms are represented by identical pointers. This results in a saving
in the number of cells needed to represent the proof state of several orders of
magnitude [9]. It also enables us to precompute a number of properties and store
them in the term cells. Examples include the number of function symbols in the
term and the number of variable occurrences. Thus, we can, for example, decide
whether a shared term is ground in constant time. More importantly, we can
cache the result of rewrite attempts at the term level — in the case of success
with a link to the result, in the case of failure with the age of the youngest clause
tried, so that future attempts can be restricted to newer clauses.

The term bank data structure and its API have proven to be efficient and
convenient. In particular, the mark-and-sweep garbage collector reduces pro-
grammer effort and errors. Term banks are also used to represent formulas and
in some roles even clauses.

Literals and clauses for the inference core are implemented as dedicated data
structures. Internally, all literals are equational. In addition to the two terms
making up the equation, literals include polarity (positive or negative), a number
of Boolean properties, and a pointer for creating linked lists. Clauses consist of
such a linked list of literals, wrapped in a container for meta-data, heuristic
evaluations, and information about the derivation of the clause.

Sorts were originally represented as indices into a sort table. The LFHOL
extension of E 2.3 [32] generalized this representation to support higher-order
simple types and partially applied terms. Types now use a lightweight term-like
structure, in which complex types are build from basic sorts and the arrow op-
erator. Like terms, types are perfectly shared for efficient equality comparisons.
These types were reused as is for the extension to full higher-order logic [31].

Proof Procedure The main saturation procedure is a modified version of the
DISCOUNT loop [6], one of the variants of the given-clause procedure. The proof
state is represented by two disjoint subsets of clauses, the unprocessed clauses
U and the processed clauses P . Initially, all clauses are unprocessed. At each
iteration of the main loop, the prover heuristically selects a given clause from
U , adds it to P , and performs all generating inferences between this clause and
all clauses in P . The resulting new clauses are added to U . This maintains the
invariant that all direct consequences between clauses in P have been generated.
Forward simplification is performed on the given clause (using clauses in P as
side premises) before the clause is used for generation, and on new clauses before
they are added to U . In addition, clauses in P are back-simplified with the
given clause, and simplified clauses are moved back to U . This maintains the
additional invariant that the clauses in P are interreduced. We refer to the system
description of E 2.3 for the pseudocode of the saturation procedure [19, Fig. 2].

In addition to saturation, recent version may trigger a propositional check
for unsatisfiability of a grounded version of the proof state, as described below.

Indexing Most of the generating and simplifying inference rules require two
premises — the main premise and a side premise. For generating inferences, one
of the premises is the given clause, the other one is a clause in P . E uses a
fingerprint index [14] to efficiently find clauses with (sub)terms that are unifiable
with the maximal terms of inference literals of the given clause.

For simplification, the DISCOUNT loop distinguishes between two situations.
In forward simplification, all clauses in P are used as side premises to simplify a
given clause — either the given clause or a newly generated clause. E uses perfect
discrimination trees [10] with size- and age-constraints for forward rewriting.
Backward simplification uses a single clause to simplify all clauses from P . E
uses fingerprint indexing for backwards rewriting. Subsumption and contextual
literal cutting use feature vector indexing [15], a clause indexing technique that
supports finding both generalizations and instances.

Higher-Order Logic Support E 3.0 adds support for monomorphic higher-
order logic. Supporting richer logics in a highly optimized theorem prover with-
out compromising performance required some changes to fundamental data struc-
tures and algorithms. Here we will only briefly describe the changes. We refer
to Vukmirović et al. [31, 32] for details.

We have generalized E’s term representation to allow applied variables (e.g.,
Y a), as well as the type system to support partially applied terms and λ-ab-
stractions. The most laborious change was the extension of all three indexing
data structures to support more complex terms.

E uses De Bruijn indices to represent the bound variables of λ-terms [5].
This enforces α-equivalence. For example, the term λx. λy. f xx is represented as
the first-order-style term LAM(0, LAM(0, f(1, 1))). The first argument of LAM is
redundant, since it can be deduced from the type of the λ-abstraction. However,
it is convenient to have it stored there when performing basic term manipulation.

As for βη-equivalence, it is enforced by representing terms in βη-reduced
forms. Since β- and η-reduction are performed very often, they need to be
efficient. There are many optimizations. Notably, terms are equipped with a
Boolean property that indicates whether they contain a β-redex somewhere as
a subterm. If this property is not set — as will always be the case for terms be-
longing to the logic’s first-order fragment — the term does not need to be visited
by the β-reduction procedure. Similarly, for η-reduction, only terms containing
λ-abstractions are visited.

When we added support for higher-order logic, another necessary change
was to the unification and matching procedures, which need to cope with ap-
plied variables and λ-abstractions. In general, higher-order unification may lead
to an infinite set of incomparable unifiers. For example, unifying Y (f a) with
f (Y a) yields the infinite set of unifiers {{Y 7→ λx. x}, {{Y 7→ λx. f x}, {{Y 7→
λx. f (f x))}, . . .}. E 3.0 implements a terminating, incomplete variant of the
procedure described by Vukmirović et al. [30].

The support for higher-order logic incurs very little overhead, as we would
expect from a graceful generalization. Nevertheless, it is disabled by default
and must be explicitly enabled at compile time. Experimental results [31, 32]

show that E extended to support higher-order logic natively outperforms the
traditional encoding-based approaches.

SAT Solver Integration SAT solvers have greatly improved in performance
in the last decades and can handle propositional problems that are far beyond
the practical scope of classical first-order provers with ease. Following other
attempts [8, 12], we want to use this power to improve the performance of the
prover both for problems with a significant propositional component and for
first-order problems where contradictory instances are generated early but are
not detected until all involved clauses have been selected for processing.

We have integrated the CDCL-based SAT solver PicoSAT [4] with E. The
saturation loop is periodically paused, and all clauses in the current proof state
are grounded, i.e. all variables are bound to a constant of the proper sort. The in-
stantiated clauses are efficiently translated into propositional clauses and passed
to PicoSAT via its C API. If PicoSAT refutes the given propositional problem,
E extracts the unsatisfiable core and relates it back to the original first-order
clauses to construct a proof object. If PicoSAT fails to find unsatisfiability, the
saturation is resumed.

There are various options to control the SAT solver integration in detail [16].
With current configurations, E finds about 1% more proofs on the TPTP when
PicoSAT is enabled. While this number seems low, it is significant among prob-
lems that are hard for E without SAT support. (Overall, 90% of solutions are
found before the first run of the SAT solver, and thus are easy for E.)

Strong Rewriting Unfailing completion [1] allows rewriting (with some restric-
tions) by all orientable instances of equations. This carries over to the superpo-
sition calculus. However, to our knowledge, most provers only approximate this
rewrite relation. They simplify with orientable equations (or rules). For equa-
tions, they compute a match from one side onto the target term and check if
the resulting instance is orientable. This has the effect that equations with free
variables in the potentially smaller side can never be used for rewriting. With
E 2.5, we have introduced strong rewriting, where such free variables (which are
implicitly universal) are instantiated with the smallest constant of the proper
sort. This results in small but significant improvements [18].

Internal Proof Objects With E 1.8, we finally found a way to use the in-
variants of the given-clause procedure to very compactly represent the relevant
parts of the derivation graph internally [21]. The core insight is that nearly all
inferences involve at most one non-processed clause, while the other premises are
processed clauses. Processed clauses are only rarely back-simplified, so we can
keep a complete record by archiving only those few clauses, and otherwise store
all side premises (and inferences) with the main premise of an inference. With
this, the overhead in time and memory turned out to be negligible, so E now
always builds an internal derivation graph. In addition to efficiently providing
a checkable proof object in TPTP syntax [28], the presence of the derivation
information enables the detection of vacuous proofs (based on an inconsistent

axiomatization). It also enables an elegant lazy implementation of orphan clause
deletion, i.e. deletion of clauses which have lost one of their parents to simplifi-
cation and hence are also redundant.

In addition to the generation of proof objects, the system supports the pro-
posed TPTP standard for answers [29]. An answer is an instantiation for an
existential conjecture (or query) that makes the conjecture true. E can supply
bindings for the outermost existentially quantified variables in a TPTP formula
with type question.

3.3 System Configuration and Search Control

Provers for first-order logic search for proofs in an infinite search space. Practical
performance depends critically on making the right choices. E supports a large
number of options for controlling preprocessing and actual search control.

The main parameters for the saturation are the calculus’s term ordering
and literal selection strategy as well as the clause evaluation heuristics. Term
orderings primarily determine in which direction equations can be applied (and
as a consequence, which terms are overlapped for superposition inferences), and
which literals are maximal and hence available for inferences. Literal selection
can be used to overwrite the default inference literals and restrict inferences to
particular (negative) literals. Finally, clause evaluations determine the order in
which the given-clause procedure processes clauses. In the simplest case, this is a
single value, representing the number of symbols in the clause. E generalizes this
concept and allows the user to specify an arbitrary number of priority queues
and a weighted round-robin scheme that determines how many clauses are picked
from each queue. Each queue is ordered by a particular evaluation function. A
major feature is the use of goal-directed evaluation functions. These give a lower
weight to symbols that occur in the goal, and a higher weight to other symbols,
thus preferring clauses likely connected to the conjecture. We have so far only
evaluated a small part of the possibility space opened by this design [20].

Automatic Prover Configuration Finding good heuristics for a given prob-
lem is challenging even for an experienced user. E supports a number of auto-
matic modes that analyze the problem and apply either a single strategy or a
schedule of several strategies. The selection of strategies and generation of sched-
ules for each class of problems is determined automatically by analyzing previous
performance of the prover on similar problems. While in the past these auto-
modes were represented via generated C code, we have now implemented them
as a combination of a classification module and a strategy- or schedule-selection
module that simply assigns a named strategy or schedule to each class.

All search control options are now collated into a single data structure that is
printable and parsable. All internally used strategies are represented in symbolic
form in the source code. The user can request that the parameters selected by
the auto-mode are printed, and can also now modify these settings, leaving most
decision to the prover, but overriding individual settings.

Multi-Core Strategy Scheduling E has supported (sequential) strategy
scheduling since 2013. However, the current release has switched to a much
more flexible system that also the use of multiple cores processors. On the tech-
nical level, the main instance of the prover forks of clones and connects to them
via UNIX interprocess communication (pipes). It monitors their progress, and
if a subordinate instance reports success, the main instance terminates all other
instances and prints the result (and optional proof object) delivered by the suc-
cessful instance. As usual with a UNIX fork, the children receive a (virtual) copy
of the state of the system, i.e. they can all share in the work done up to the fork.
No forward communication is necessary during proof search. Backward commu-
nication (child to main instance) is done via a pipe and only contains plain text
analysed as such. The approach has shown itself as simple and robust.

E’s original strategy scheduling shared parsing, axiom selection, clausifica-
tion, and some preprocessing before starting starting the saturation with differ-
ent search parameters. However, for higher-order logic we believe that there is a
stronger dependence on different clausification and preprocessing steps. Hence,
the current scheme allows diversification at two levels — after the preliminary
analysis step, the prover can use various preprocessing strategies, and after the
CNF analysis, each of these can create multiple saturation strategies. Each pre-
processing strategy is assigned a fraction of available CPU time that it can
further subdivide for its individual saturation schedules.

4 Experimental Evaluation

We have performed an evaluation of E 3.0 on the 22 237 non-arithmetic problems
of the TPTP problem library [25], release 8.1.1. Experiments were run on the
Miami instance of the StarExec cluster [23], i.e., on machines with an Intel Xeon
CPU E5-2620 v4 @ 2.10 GHz processors and 256 GB of main memory. Each
machine had two processors with 8 cores per processor. In normal usage, only
one job is scheduled to each machine at a time.

We compare E compiled without higher order-support and λE, the version
with support for higher-order logic. For both variants we present results for the
simple automatic mode, the strategy-scheduling mode with strategies scheduled
sequentially on a single core, and a strategy-parallel version scheduling different

Table 1. Proofs and (counter-)saturations found within 300 seconds

Configuration All HO FO CNF FOF TFF

Class size (22237) (3832) (18338) (8344) (9091) (903)

E (auto) 11415 0 11415 5441 5739 235
E (schedule) 11992 0 11992 5692 6052 248
E (8-core) 12552 0 12552 5871 6421 260

λE (auto) 13807 2397 11410 5438 5738 234
λE (schedule) 14470 2502 11968 5682 6038 248
λE (8-core) 15192 2659 12533 5858 6416 259

strategies onto (up to) 8 cores (i.e. all the cores of one processor). For the sequen-
tial versions, we imposed a CPU time limit of 300 seconds, for the multi-core
version a wall-clock limit of 300 seconds and a CPU time limit of 300 seconds
per core (for a theoretical limit of 2400 seconds). The prover was configured to
optimize memory usage to at most 2 GB per process..

Table 1 shows the number of successes – proofs and countersaturations – for
the six different prover configurations. We show results for all problems, and
separately for higher-order and first-order problems. For first-order we show a
further breakdown into clause normal form (CNF), (unsorted) first-order (FOF)
and many-sorted first-order (TFF) problems. We can see that the first-order
version solves between 62% and 68% of all first-order problems, while λE solves
between 62% and 69% of the higher-order version. Since the higher-order version
is incomplete, all of these successes are proofs. On first-order problems, the first-
order version of E is marginally stronger than λE, demonstrating that integration
of the higher-order features incurs very little overhead indeed. Both versions fare
much worse on TFF problems than on other problems.

The full data, including the exact command-line options, are available at
http://www.eprover.eu/E-eu/E_3.0.html.

5 Conclusion and Future Work

E is a mature and yet still developing fully automated theorem prover for first-
order logics and some extensions. It has good performance, as demonstrated in
the yearly CASC competitions [24]. In the 2022 CASC-J11, it won first place in
the SLH division and second places in THF, FOF, and UEQ.

The prover is available as free and open source software, and has been used
and extended by a large number of parties. We hope and expect that this success
will continue through the third decade of its lifetime.

While E is quite mature and widely used, there are several projects for further
improvement — concerning data structures, logical language, and search control.
In particular, the priority queues can be more efficiently realized with lazy heaps.
Feature vector indexing works very well for classical theorem proving problems,
but is less than optimal for problems with very large and sparsely used signatures.
We plan to develop it into a more adaptive and efficient variant. In addition,
there are various minor data structures that can be improved. On the language
side, we plan to add at least basic support for interpreted arithmetic sorts.

With respect to search control, we plan a further simplification and unifica-
tion of the multicore scheduling mode and sequential operation. We also want to
expose full schedules to the user via suitable command-line options and config-
uration files. We also plan to improve problem classification (using the presence
of significant patterns and structural properties of terms and formulas).

Finally, a lot of recent improvements have only been evaluated in isolation,
not in concert. A major project is such a large-scale evaluation and a regeneration
of the automatic modes to make better use of the new features.

http://www.eprover.eu/E-eu/E_3.0.html

References

1. Bachmair, L., Dershowitz, N., Plaisted, D.: Completion Without Failure. In: Ait-
Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. vol. 2,
pp. 1–30. Academic Press (1989)

2. Bachmair, L., Ganzinger, H.: Rewrite-Based Equational Theorem Proving with
Selection and Simplification. J. Log. Comput. 3(4), 217–247 (1994)

3. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirovic, P.: Superposition for
Higher-Order Logic. J. Autom. Reason. 67(1), 10 (2023)

4. Biere, A.: PicoSAT Essentials. J. Satisf. Boolean Model. Comput. 4, 75–97 (2008)

5. Charguéraud, A.: The Locally Nameless Representation. J. Autom. Reason. 49(3),
363–408 (2012)

6. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT: A Distributed and Learn-
ing Equational Prover. J. Autom. Reason. 18(2), 189–198 (1997)

7. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) Proc. of the 23rd CADE, Wroclav, Poland.
LNAI, vol. 6803, pp. 299–314. Springer (2011)

8. Korovin, K.: Inst-Gen — A Modular Approach to Instantiation-Based Automated
Reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics — Essays
in Memory of Harald Ganzinger, LNCS, vol. 7797, pp. 239–270. Springer (2013)

9. Löchner, B., Schulz, S.: An Evaluation of Shared Rewriting. In: de Nivelle, H.,
Schulz, S. (eds.) Proc. of the 2nd International Workshop on the Implementation
of Logics, Havana, Cuba. pp. 33–48. MPI Preprint, Max-Planck-Institut für Infor-
matik, Saarbrücken (2001)

10. McCune, W.: Experiments with Discrimination-Tree Indexing and Path Indexing
for Term Retrieval. J. Autom. Reason. 9(2), 147–167 (1992)

11. Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I,
chap. 5, pp. 335–367. Elsevier and MIT Press (2001)

12. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, A.P., Mid-
deldorp, A. (eds.) Proc. of the 25th CADE, Berlin, Germany. LNAI, vol. 9195, pp.
399–415. Springer (2015)

13. Schulz, S.: E – A Brainiac Theorem Prover. AI Commun. 15(2–3), 111–126 (2002)

14. Schulz, S.: Fingerprint Indexing for Paramodulation and Rewriting. In: Gramlich,
B., Sattler, U., Miller, D. (eds.) Proc. of the 6th IJCAR, Manchester, UK. LNAI,
vol. 7364, pp. 477–483. Springer (2012)

15. Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics:
Essays in Memory of William W. McCune, LNAI, vol. 7788, pp. 45–67. Springer
(2013)

16. Schulz, S.: Light-Weight Integration of SAT Solving into First-Order Reasoners —
First Experiments. In: Kovács, L., Voronkov, A. (eds.) Proc. of the 4th Vampire
Workshop, Gothenburg, Sweden. EPiC Series in Computing, vol. 53, pp. 9–19.
EasyChair (2018)

17. Schulz, S.: E 2.4 User Manual. EasyChair preprint no. 2272 (2019), https://

easychair.org/publications/preprint/RjDx

18. Schulz, S.: Empirical properties of term orderings for superposition. In: Konev, B.,
Schon, C., Steen, A. (eds.) Proc. of the 8th PAAR, Haifa, Israel. CEUR Workshop
Proceedings (2022), http://ceur-ws.org/Vol-3201/

https://easychair.org/publications/preprint/RjDx
https://easychair.org/publications/preprint/RjDx
http://ceur-ws.org/Vol-3201/

19. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, Higher, Stronger: E 2.3. In:
Fontaine, P. (ed.) Proc. of the 27th CADE, Natal, Brasil. LNAI, vol. 11716, pp.
495–507. Springer (2019)

20. Schulz, S., Möhrmann, M.: Performance of Clause Selection Heuristics for
Saturation-Based Theorem Proving. In: Olivetti, N., Tiwari, A. (eds.) Proc. of
the 8th IJCAR, Coimbra. LNAI, vol. 9706, pp. 330–345. Springer (2016)

21. Schulz, S., Sutcliffe, G.: Proof Generation for Saturating First-Order Theorem
Provers. In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proofs for
All, Mathematical Logic and Foundations, vol. 55, pp. 45–61. College Publications,
London, UK (January 2015)

22. Steen, A., Benzmüller, C.: Extensional Higher-Order Paramodulation in Leo-III.
J. Autom. Reason. 65(6), 775–807 (2021)

23. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A Cross-Community Infrastructure
for Logic Solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Proc. of the 7th
IJCAR, Vienna. LNCS, vol. 8562, pp. 367–373. Springer (2014)

24. Sutcliffe, G.: The 8th IJCAR Automated Theorem Proving System Competition —
CASC-J8. AI Commun. 29(5), 607–619 (2016)

25. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure — from
CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

26. Sutcliffe, G., Kotelnikov, E.: TFX: The TPTP Extended Typed First-order Form.
In: Konev, B., Urban, J., Rümmer, P. (eds.) Proc. of the 6th Workshop on Practical
Aspects of Automated Reasoning, Oxford, UK. pp. 72–87. No. 2162 in CEUR
Workshop Proceedings (2018)

27. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-
order Form with Arithmetic. In: Bjørner, N., Voronkov, A. (eds.) Proc. of the 18th
LPAR, Mérida, Venezuela. LNAI, vol. 7180, pp. 406–419. Springer (2012)

28. Sutcliffe, G., Schulz, S., Claessen, K., Gelder, A.V.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Fuhrbach, U., Shankar, N.
(eds.) Proc. of the 3rd IJCAR, Seattle, USA. LNAI, vol. 4130, pp. 67–81. Springer
(2006)

29. Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer Extraction for TPTP.
http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html, ac-
cessed 8 July 2013

30. Vukmirovic, P., Bentkamp, A., Nummelin, V.: Efficient Full Higher-Order Unifica-
tion. Log. Methods Comput. Sci. 17(4) (2021)

31. Vukmirović, P., Blanchette, J., Schulz, S.: Extending a High-Performance Prover
to Higher-Order Logic. In: Sharygina, N., Sankaranarayanan, S. (eds.) Proc. of the
29th TACAS, Paris, France. LNCS, Springer (2023), accepted for publication

32. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a Brainiac
Prover to Lambda-Free Higher-Order Logic. In: Vojnar, T., Zhang, L. (eds.) Proc.
of the 25th TACAS, Prague, Czech Republic. LNCS, vol. 11427, pp. 192–210.
Springer (2019)

33. Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposition
prover. In: Fontaine, P., Korovin, K., Kotsireas, I.S., Rümmer, P., Tourret, S. (eds.)
Proc. of the 7th Workshop on Practical Aspects of Automated Reasoning and
the 5th Workshop on Symbolic Computation and Satisfiability Checking. CEUR
Workshop Proceedings, vol. 2752, pp. 148–166. CEUR-WS.org (2020)

http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html

	New Heights: E 3.0

