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Abstract

Today, new languages provide a lot of complex structures. This new expressive power
comes with a price, namely it becomes easier to build a compiler that allows bugs.
Therefore, it is really important to be sure that the semantic of those programming
languages is sound. Since this task is always inspired from previous work, I propose to
formalize some chapters of a reference book [1] on type systems Types and Programming
Languages [1] in Isabelle/HOL. Isabelle/HOL is a proof assistant, providing type checking
and thus certifying the consistency of proofs. This environment will allow me to discover
some inconsistency and imprecisions.
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Introduction

Proving correctness of a program is an hard task, even through a lot of tools
already exists. Obviously, for people working in this field, having a lot of tools
is generally not such a great thing. Indeed, it implies most of the time that the
field contains several marginal cases or, in the worst case, that there exists no
generalization. Furthermore, proving correctness of a program is pretty redundant,
so it is more interesting to prove first soundness of our compiler. Then since the
compiler is sound, considering only sound programs helps a lot. A compiler is
based on a language, that can be arbitrarily complex and can then have a lot of
marginal cases. But all languages can be simulated with lambda-calculi. Ironically,
facts about lambda-calculi are studied and well-known since decades, but are not
all formalized. Only intuition and paper works assert that they are correct. Having
a formal definition for certain concepts becomes pretty hard and require a lot of
work, that finally only look like playing hide-and-seek with supposed errors or
imprecisions.

I propose to formalize some of the still unformalized chapters of a famous
reference book: Types and Programming Languages [1] about type systems and
lambda-calculi in order to enrich the background theory of Isabelle/HOL.
Isabelle/HOL is a proof assistant, that provides a formal environment for proving
theories and a verification tool (type-checker) that certifies consistency of the
inputed proofs. Martin Desharnais formalized the chapters 3, 5, 6, 8, 9 in his
bachelor thesis [2] with Isabelle/HOL (other chapters are either introduction or
implementations in ML, which didn’t concern his work).

The main goal of this Master thesis is to investigate some remaining chapters of
this book [1] in search of imprecisions and to develop formal model for different
languages’ features (patterns, referencing, ...).

All the proofs will be available as Isabelle/HOL 2016 files at Martin
Desharnais’ github repository [3].

My work consists in the formalization of proofs and exercises (when they are
proofs) from chapter 11 to 14.

The first section of this thesis will try to explain non-exhaustively what is
Isabelle/HOL and what are the features that played a big role in my work. First, I'1l
go over the notions of types, terms and tactics, which will lead us to the question
of definition (how to define, what kind of definition should be favorised in which
context, ...). Finally, when working with automation, it’s nice to be able to help
others by developping and sharing our own tools, which has become possible with
the ractics’ language Eisbach.



However, only knowing about Isabelle/HOL is not enough as background to
understand the details of this thesis and in particular the difficulties behind such
a work. That’s why, the second section will talk about the informal proofs in the
book [1] and the related notation. Then, in a second time, I will talk about my
predecessor Martin Desharnais and his notations (in Isabelle) and concludes this
second part with an introduction to my work: redundant rules and notations...

In the third section, I will present my work following the chapters of the book
[1]. The only difference will be that I will fragment the chapter 11 since there is
a lot of definitions and subtle works in it. Indeed, in chapter 11, we can found:
easy structures (Tuple, Record, pair, ...), but also elaborated construction (pattern
matching on disjoint sums, pattern matching on
variants, pattern matching, ...).

Chapters Sequence and derived forms (II1.i) and Normalization(II1.iii)
will present some corrections, since the book [1] is either wrong or imprecise.

Chapter IIL.ii.a will explain in details how to build a disjoint sum feature and
the patterns matching for this structure, but also present a common operator
let. Since variants also behave in a similar way, the particularities of this type,
and especially about its pattern matching, will also be explained in this part.

Then, chapter IlL.ii.b will talk about how to naively build a general pattern
matching feature, which is proposed as an exercise in the book [1]. This part will
only give intuition about how to formalize this feature and the difficulties, I have
encountered. It will be mainly inspired by a publication [4] of Wolfram Kahl.

Chapter IlLii.c is the last part about structures of the chapter 11. It will show
what are the requirements to add a native list type to our language. The book
[1] proposes the formalization of this part only as an exercise. It will introduce the
way to formalize lists correctly, while chapter I1L.iv will present a correct language
(type-safe) implementing lists in Professor Pierce’s fashion.

Finally, the chapter IIL.iv will present type-safety of a Java-like
exceptions’ feature (specifying throwable errors’ types in function’ s header), which
was also given as an exercise in the book [1], and type-safety of a language
containing references(pointers).

This will conclude the third section of this thesis and the presentation of my
work. Thus, I will conclude with a small section talking about related works and
a brief summary of my work.



|. Isabelle/HOL and
computer-checked proofs

Isabelle/HOL is an application, commonly called proof assistant since it allows
the user to generate mathematical proofs and check their correctness. It was
originally developed at the University of Cambridge and Technische Universitit
Miinchen. Proof correctness can be checked thanks to the language for
mathematical reasoning (proof are terms of this language) and the rules of
correctness, that are similar to the rules of natural deduction, provided by
Isabelle/HOL. With hand of this small consistent kernel, user will state his proof
(assumption, fixing variable, ...) using a set of provided instructions (lemma,
theorem, inductive, ...).

The set of rules for typing is defined in such a way that everything, that has been
inputed (our proof), is well-typed if and only if our proof is consistent, w.r.t the
rule of logic.

Furthermore, Isabelle/HOL decomposes logical reasoning in two levels of
abstraction:

1. generic logic, based on a type bool and providing the common connectors
(conjunction, universal quantification, ...)

2. metalogic, based on an intuitionistic fragment of Church’s simple type theory
and dealing with a type for predicates (prop)

The relation between the two levels is illustrated by the term Trueprop, that
projects a term of type prop to the corresponding boolean(false, if inconsistent,
and true otherwise).

Obviously, a lot of theories requires far more than only logical reasoning, namely
a background theory. This one already exists in a lot of fields and is included
as library with the application, but extra theories can be found on the Archive of
Formal Proofs, that contains most of the theories proved so far. This thesis and
Martin Desharnais’ work are using some theory file from this archive
(List_index.thy [5]).

Additionally, user is given tools to check if his statement (assumption, lemma)
is correct. They are of 3 kinds:

1. counter-example check commands(quickcheck and nitpick)



2. tactics (auto, meson, metis, ...), they are algorithms that try to derive
correctness, given the built-in logical rule and particular strategies
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3. inference tools (solve_direct, sledgehammer), that try to build a proof for
the current statement given the all lemma and statement already proven.
Indeed, sledgehammer will try to prove the current statement (called Goal)
with the assumption given by the user and will suggest a tactic and the
missing assumptions, that were required for this one to be successful.

Obviously, those tools are not all-mighty and all-knowing programms.
Therefore, they only try to deduce inconsistency or proof scheme, when our goal
belongs to a decidable fragment of logic and the number of assumptions is pretty
small.

The previously mentioned tactics can also be written by users in ML or with the
Eisbach language (see section L.ii1) The next subsection will introduce terms and
typing rules briefly and in see section Lii, I’ll give some explanations regarding
automatically generated lemmas, function definition and termination proofs.

11



l.i. Types, terms and tactics

First, I want to present the different types and related notations proper to
Isabelle/HOL.

Types are either:
e basic types (nat, bool, prop, ...)

e arbitrary types represented by variables (preceded by a single quotation
mark, ’a (replaces generic ML notation for polymorphic type a)

¢ instantiation of polymorphic types (nat set, nat list, ...) and
function type (nat=nat, ...)

Notice that Isabelle/HOL doesn’t implement dependent types.
e recursive types, generated by the user with the instruction datatype

Example: datatype mType = A | C, mType | C, nat mType
Each constructor(bold font) is separated by | and followed by the
types of its arguments.

Here, C, and C, are taking an element of mType (recursion) and a
natural number for C,.

The type bool has the expected connectors: conjunction (A), disjunction (V), existential
quantifier (3), universal quantifier(V).

bool is the type of built-in logical objects, so it’s not the
only way to write down a mathematical statement.

The metalogic of Isabelle will use different constructors
and the type prop (instead of bool). Its constructors will be
explained at the end of this section, when I present tactics.

12



The type system is important for checking validity of terms and proofs
(expressions with prop or Bool type). But users actually deal more with terms than
types. Terms in Isabelle HOL are divided into 4 kinds:

e variables, fixed or schematic.

A schematic variable (begins by a question mark (?x)) can be instantiate with
any term of the same type, while fixed variables are variables

considered as instantiated with some value (namely, proving a property for
all element of type A is the same as proving that the property is true for a
given fixed variable of type A)

e constant (can be a function (sin, ...))

¢ function application, that are presented with parenthesis following the
currying principle.

Namely, every function symbol is considered as left-infix, so f x y is the
same as ((f x) y) and a n-ary function can always be decomposed as an unary
function returning a (n-1)-ary function.

Isabelle also allows different types of notations (infix left, infix right, mixfix),
such that the user can use common operation in the usual way (+, ...).

e A-abstraction, that represents functions.
For example, given f of type A=nat, we can build a function taking two
arguments and returning the sum of their image by f: A xy. (fx) + (fy)

Finally, what interests us is how to prove some theory with Isabelle/HOL. So
we need to understand how to build a goal and how to solve it.
A statement (goal, assumption, subgoal) can be represented as prop term or bool
term. It’s easier to see an example:
Mathematical statement: Vx.(3k.k<x)— x>0
bool term (built-in logic): Vx.(3k. k <x)— x>0

prop term (metalogic): A\ x. (Jk.k < x) = (x > 0)

13



Notice that the bool term is very natural, since it’s the formulation, we are
used to. The metalogic formulation is convenient in the sense that some automatic
checks are quicker with it.

The natural question is why are two levels of abstraction convenient.
The answer is not quiet easy, but intuitively, the metalogic is there to simplifiy
automation. Namely, some tools (tatics) are designed to quickly derive
inconsistency or correctness of a statement in the metalogic, while they are slow
or can’t be applied on the built-in version(derivation rules are different).
Tactics are nothing more that derivations abiding the law of natural deduction
(even through some rules [6] are a bit different). Those derivations are made using
an algorithms implemented in ML. For example, we have the tactic simp, that will
try to simplify the goal with the assumptions(equalities, ...) and the registered
simplification rules. We have then more elaborated tactics like auto(heuristic),
metis(more at ease with rule application(symmetry, associativity, ...) than auto,
but doesn’t automatically simplify), ...

We also need to be able to implement our own constant terms. Indeed, we
may need specific functions (example: substitution, ackermann, ...) and inductive
definitions. Next section will cover this part of Isabelle/HOL and present a small
proof as an example.
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l.ii. Definitions and termination

In the previous section, I mentioned the possibility of defining any arbitrary
recursive type with the instruction datatype. Following the same principle, there
are 3 common ways to define a function:

e primrec, defines a primarly recursive function for which we need to state
every computation rules. Since it is pretty strict, we will most of the time
get an error message like in the example below (only recursion on the first
argument is allowed)

e fun, defines a function in a more global sense (allowing to regroup cases,
add default behavior, ...) and checks for termination (search of a termination
order)

e function, defines a function for which we can add any computation rule
independently from the termination of the function and its completeness.
This allows in particular to define nested-recursive functions or mutually
recursive function (when specified with extra instructions). But, we are
compelled to prove completeness(every recurive pattern corresponds to a
computation rule) and termination(there is a termination order on the function)

For each case, it’s easier to see an example:

primrec Ackermann:

primrec Ackermann::"nat=nat=nat" where

"Ackermann @ n = Suc n"
|"Ackermann (Suc n) @ = Ackermann n (Suc 0)"
|"Ackermann (Suc n) (Suc m) = Ackermann n (Ackermann (Suc n) m)"

primrec error:

more than one non-variable argument in left-hand side
in

"Ackermann (Suc n) @ = Ackermann n (Suc 0)"

fun:

fun Ackermann::"nat=-nat=nat" where

"Ackermann @ n = Suc n"
| "Ackermann (Suc n) @ = Ackermann n (Suc 0)"
| "Ackermann (Suc n) (Suc m) = Ackermann n (Ackermann (Suc n) m)"

I constants
Ackermann :: "nat = nat = nat"
Found termination order: "(Ap. size (fst p)) <*mlex*> (Ap. size (snd p)) <*mlex*> {}"
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function:
@| function Ackermann'::'nat=rnat=nat" where
"Ackermann' 0 n = Suc n"
| "Ackermann' (Suc n) 0 = Ackermann' n (Suc 0)"
|"Ackermann' (Suc n) (Suc m) = Ackermann' n (Ackermann' (Suc n) m)"
by pat_completeness auto

termination Ackermann'
apply @relation "((Ap. size (fst p)) <*mlex*> (Ap. size (snd p)) <*mlex*> {})")I
apply (metis wf_empty wf_mlex fst_conv lessI mlex_less Suc_lel size_nat mlex_leq snd_conv)+
done
end

Auto update Search:
proof (prove): depth 0

goal (4 subgoals):
1. wf ((Ap. size (fst p)) <*mlex*> (Ap. size (snd p)) <*mlex*> {})
2. An. ((n, Suc 0), Suc n, 0) € (\p. size (fst p)) <*mlex*> (Ap. size (snd p)) <*mlex*> {}
3. Anm. ((Suc n, m), Suc n, Suc m) € (Ap. size (fst p)) <*mlex*> (Ap. size (snd p)) <*mlex*> {}
4, An m. Ackermann'_dom (Suc n, m) —
((n, Ackermann' (Suc n) m), Suc n, Suc m)
€ (Ap. size (fst p)) <*mlex*> (Ap. size (snd p)) <*mlex*> {}

The termination order has to be specified by the user if the function is defined
with the instruction function and has to be well-founded. User can define multiple
orders, if required. In the case of the fun and primrec definition, this order is
automatically derived by Isabelle/HOL (multiset lexicographic order(<*mlex*>)
based on size of recursive arguments, most of the time).

But that’s not the only lemmas that Isabelle generates automatically. Indeed, when
a term or a function is defined, the following lemmas are automatically derived
and proved:

e inject, injectivity of constructors of recursive type

e distinct, implied by injectivity of constructors of recursive type (which term
is different from wich other)

e elim, case analysis lemma on each rule of computation (or constructor in the
case of term’s definition) given in premise an equality between an application
of the function (or a term) and some other expression of the same type

e simps, simplification rules (computation rules of function oriented from left
to right) for the function automatically registered for tactics

¢ induct and case, respectively, induction principle and case analysis
corresponding to the recursive structure

e and a lot of other lemmas : discrimation, nchotomy, ...
(see Isabelle documentation [7])

16



Finally, user wants to be able to define his own recursive predicates. That’s
possible with the instruction inductive. In the next example, I use the notation #,
which stands for the constructor cons of lists.

Example:

Inductive OddSubset::"nat list = nat set = bool"

Even_case: "x mod 2 =0 => OddSubset (x#L) O =
OddSubset L O"

|Odd_case: "x mod 2 = 1= OddSubset (x#L) O =
OddSubset L ({x} U O)"

For inductive predicates, the generated lemmas are the expected one, namely
induction principle, monotonicity, introduction and eliminates rules, simplification
rules (similar to inversion).

Now, with all those nice features, we can do for example the proof on next
page(original proof [8] proposed by Kunihiko Chikaya).

17



lemma sample:
fixes a b c::real
shows "a=b A b=c = a*b+b*c+c*a < a¥*a+b*b+c*c"
proof -
assume H: "a=b A b=c"
then have "a * b + b *c+c *a<a*a+h*hb+c#*c"
by blast

The goal could have been
checked automatically

from H have "a-(b+c)/2=0 A b-c = 0" by simp

moreover have "a *a+b *b +c *c - (a*b+b*c+c*a)=a*a- (b+tc)*a + b*b - b*c + c*c"
using mult.commutelof a b] distrib_left[of a b c¢] mult.commute[of "b+c" al by simpl
(* Used lemmas:
a*b=D>b*a
a*(b+c)=a*b+a*c
(b +c) *a=a* (b +c)
have a *a+b *b+c*c-(a*b+b*c+c*a)=a*a-(b+c)*a+hb*b-b=*c+c*c
proof (state): depth @

this:
a*a+h*b+c*c-(a*b+h*c+c*a)=a*a-(b+c)*a+b*b-b*c+c*c

goal (1 subgoal):
l. a=bAb=c=a*b+hbh*c+c*xa<a*a+hb*hb+ct*c
*)

(*... means take the right hand side of previous statement and
algebra is a tactic specialized in algebraic problems (used in priority lemmas like
those used before) *)

moreover have "... = (a-(h+c)/2)*(a-(b+c)/2)+(3/4)*(b-c)*(b-c)"
by algebra

ultimately show "a * b + b * c+c *a<a*a+hb*b+c*c"

by force
qed
using this:
ma-(b+c)/2=0Ab-c=0
sa*a+b*b+c*c-(a*b+b*c+c*a)=a*a-(b+c)*a+b*b-b*c+c*c
sa*a-(b+c)*a+b*b-b*c+c*c=(a-(b+c)/2)*(a-(b+c)/2)+3/4*(b-c)*(b-c

goal (1 subgoal):
1. a*b+b*c+c*a<a*a+b*b+c*c

Figure 1: Isar Proof samples in Isabelle/HOL
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See also below how Isabelle notifies the user, that it can’t apply a tactic (namely
here, because the goal is inconsistent).

Lemma False by autolj

lemma False
Failed to apply initial proof methoda:
goal (1 subgoal):

1. False

As remark, I should mention that two styles are allowed, the first one, called
apply style, is a backward reasoning, going from goal to premises, while the second
one, Isar style, looks more like the mathematical reasoning, we are used to, with
similar notations (then, thus, assume, have, hence ...). My development will be
entirely done in Isar style. Since Isabelle provides so much automation, we also
would like to do as less copy-paste as possible. Therefore, when we always use
the same reasoning (contraposition, contradiction or something more specific) we
would like to be able to give this reasoning a name and call it (like a tactic) instead
of copy pasting the whole proof.

This can be done and will be describe in the next section.
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lili. Eisbach, tactics’ language

Given an abitrary statement, in a lot of case, one tactic will not be sufficient to
solve the goal. For example, when we have a inductive predicate as premises, we
cannot solve the goal directly, but maybe it goes through by using induction and
then by a tactic like auto.

In same fashion, we might have 4 subgoals and we need 3 different tactics to solve
them, but if a tactic fails to solve the goal, we need to tell Isabelle that it has to try
the others that we specified.

Therefore, Isabelle provided tactics combinators for abitrary tactics t1 and t2:
"tl ,t2" which is for sequential application(example: induction, auto in previous
case), "t1;t2", which is for sequential application of t2 on each subgoals generated
by t1, "t1[n]", which apply t1 to the n first actual subgoals, "t1?", that try to apply
t1 and finally "t1|t2", which apply t1 or t2, if t1 fails.

As we can imagine, a very long string composed of tactics and combinators can
appear often and for similar reasoning. Thus, Isabelle/HOL proposes a language
of tactics. Indeed, with the instruction method, we can define any combination of
basic tactics and give it a name like in the example below.

Example: method test = (simp, meson;((metis?)|force))

We can then call test which will exactly apply the combined tactics specified.
Furthermore, tactics like meson or metis, but also auto, can take arguments (lemmas
or assumptions) which leads to more complicated tatics. This kind of behavior can
be emulated for our own method as well.

Example: method test uses myintros myelims = (auto intro:myintros elim:myelims)

We can then call test like we would have done it for auto (test myintros: (put
there our introduction) lemmas myelims: (put there the elimination lemmas)).
Finally, we could easily understand that redundancy in reasoning comes from
similitude in proof context form.

By context form is meant premises (assumptions) and goal(s). That’s why we
would like to be able to match on those structures and Eisbach allows we to.
Indeed the second really nice feature of Eisbach is that we can use the instruction
match on goal and premises to extract elements.

20



Namely, we get:

match premises in (some name): "(some statement with variables like A and B)"
for A::"(put here type of A)" and B::"(put here the type of B)" = <(some tactics
using lemmas, that can be instantiate with A and B)>

match conclusion in (some name): "(some statement with variables like A and
B)" for A::"(put here type of A)" and B::"(put here the type of B)" = <(some
tactics using lemmas, that can be instantiate with A and B)>

In this example, I mention instantiation of lemmas. In fact, Eisbach proposes
attributes that allows instantiation and formatting of lemmas and assumptions.
Here are some short examples:

e We have le_Suc : 7x < Suc ?x, which says that any arbitrary natural number
x is less than its successor.
So we can instantiate it with a fixed variable N, taken from our context,
which is le_Suc[of N].
The result is a lemma stating: N < Suc N.

e We have some lemma le_imp_leq: 7x <y = 7x < y.
If we know as assumption or by a lemma H, that A<B, we can instantiate
le_imp_leq: le_imp_leq[OF H].
The result is a lemma stating: A < Suc B. If some schematic variables not
mentioned in the instantiated premise(s) exist, they can because instantiated
le_imp_leq[OF H, of (my variables separated by a space)]

¢ unfolding and simplifying, any assumption of lemma can be followed by the
attributes unfolded or/and simplified.
unfolded will simplify using the lemma(s)/assumption(s) put behind it, while
simplified will try to use all registered simplification rules

There are a lot of other attributes, namely for theorems’ registering (auto, simp,
sym, elim, ...). Example: lemma f_map[simp[, for simplification.

This concludes the introduction to Isabelle/HOL and its feature, every
information from this section and further explanations can be found in
Isabelle documentation [7] [6] [9]. This report will contain some notations of
the Isabelle development. Next part will introduce the background of this thesis
(reference book [1], Martin Desharnais’ bachelor thesis) and the actual common
parts and notations, that will be required for the understanding.
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Il. A-calculus, background and
common notations

ll.i. Pierce’s rules and notations

Benjamin C. Pierce describes, in his book [1], paper proofs ruled by common
mathematics as we know them. That’s why, we need to understand the particular
mathemical object(s) we want to study and the axioms, that will be used.

First of all, a calculus is defined by four important parts:

1. a type for terms, that are either basic elements (variables, unit, true, false,
...) or higher structures recursive on term (application, abstraction, record,
o)

For example, a record is built with a list of string (field’s label) and a list of
terms (field’s content): (Record [x, y] [0, 1]), (Record [] [0, 1]), ...

2. atype for types of terms, that are arbitrary types (A, B,...) or values’ types
(Unit, Bool, Nat, ...) or higher types (function type, disjoint sum, pair, record
type, ...)

For example, a function type form abritrary type A (T 1) to arbitrary type B
(T2):(T1)—>(T2)

3. evaluation rules, that state explicitely how the calculus must behave.
For example, applying a function to a value replace the first argument in the
body of the function by the given value: (4 a. a+b) 5 evaluates to 5+b

4. typing rules, that restrict the considered set of terms to only well-behaved
terms.
Well-behaviour is some abstract concept, that is commonly used but never
named.
For example, each field of a record should have a label:
(Record [x, y] [0, 1]) is correct, while (Record [] [0, 1]) is clearly wrong.

This structure needs to be implement for any language and is combined with the
following axiom:

a-renaming: Equality of terms is equivalent to equality up to
variable renaming.
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Example: Aa. a= Ab. b, since it’s equal up to the renaming that replace b by
a or the other way around.
Same goes for (4 a. a+b) cand (A y. y + d) f, with renaming that
associates a with y, b with d and ¢ with

Evaluation rules defines a transition system, that simulates the behaviour of a
program (A-term) during the execution.
Example: If True then t1 else t2 reduces to t1, for t1 and t2, two arbitrary A-terms.
Pierce use the notation "t1 — 2" to express the fact that a term t1 reduces to a term
t2.

Now, we know that our programs need to terminate at some point, SO A-terms
should not have an infinite reduction path. Therefore, our calculus need an endpoint
for evaluation, which is commonly called a value in programming.

Professor Pierce defines the new values inductively, each time he adds a new
construction to the set of terms (add a new instruction to the programming language).
For example, any function is a value, since its behavior will depend on the
arguments parsed to it and we want to be able to call a function that takes a function
as argument.

Those values are also canonical forms of their type: "If we have a value and
its type, then we know which constructor is used as top of the term, if we consider
a term as a syntactic tree".

Formally, we get lemmas of the form: is_valuev=1 F v : Bool = v=
True v v=False, where is_value is a predicate only true if v is a value. The type
Bool is a typical example, but that’s not the only one.

Finally, for the typing rules, we need to keep track of the type of each variables.
Therefore, we use a set, called context, containing pairs of variable’s name and

type.

Example: {(x,A)} F x : A, means that variable x has type A,
knowing that x has type A.

F A(x : A).x : A — A, means that a function, taking an
argument x of type A and retruning x, has functional type A into
A, without any previous knowledge, empty set will always be
omitted.

After defining all those structures, Pierce starts his real study of the
programming language. In fact, all that has been done until now is just a premise
to the real work, proving Type Safety of our language.

If this theorem is correct, then it means informally that:

"Our language is convergent and a correct program never becomes corrupted
during execution (no bugs)". Then, we can guess that since we speak about two
different concepts: convergence and bug-freeness, we will prove this theorem in
two parts: Progress and Preservation.
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The first part, Progress, is a lemma, that states informally: "If a program is correct
without prior knowledges about it, then either it has a next execution step or it
reached a value and terminates".

The formal version is the following:
VtA. Ft : A= is_valuetv (3tl. t - tl).

The second part, Preservation, states informally that: "If a program is correct
with arbitrary prior knowledges about it and it evaluates in one step to another
program, then this new program is correct given the same prior knowledges".

The formal version is the following:
VI'Attl. ' 1 A=st—>tl=T F 11 @ A

Furthermore, in order to prove Preservation, we will three important facts. First,
it’s obvious that given a correct program in a context I, we can deduce the following
two facts:

e Weakening: We can add to the context any new consistent knowledge, i. e.
any pair of variable name and type, if there is not already another pair with
the same variable name in the context.

e We don’t need to care about the order of the context (set). Thus, the judgment
{(x,A),(y,B)} F y : Biscorrect. This reasoning only applies to for the
set representation and has to be translated to a different structure, when done
on a computer (see next part)

Finally, Professor Pierce describe the last important lemma required for proving

Preservation. Namely, the question is what happens when we do susbtitution
(function application case).
The lemma Substitution states that: "Given a context, any variable n and two
terms s and t, such that n and s have the same type in the context and t is well-
typed in the same context, substituting the variable n by s in the term t doesn’t
modify the type".

Professor Pierce uses the notation (¢)? to represent the term t,in which the
variable n is substituted by s. The substitution operator abides the non-exhaustive
rules’ set below (given the fact that x, y and n are always variables and s, t, u are
always terms):
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(x)? = X if x#n (n)’g’ =s
(s, = () (@)

Ax.0) = (Ay. ((t)ﬁ)'s’) given y a fresh variable (not contained in t) and
y#n

The formal version of the substitution lemma states:

VICABnstT ¢t : A=TkFks: B=TFn:B
=T+ @ : A

All those concepts(see book [1] for more precision) have to be reformulated, if
we want to check the proof correctness with a computer, for the reasons that will
be given in next section. I’ll also present briefly the work of Martin Desharnais,
who started the formalization for his bachelor thesis [2].
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[l.il. Martin’s work and notations

In this part, I will present the important results, that Martin formalized. All
pictures in this part are screenshots of the original Isabelle files, written by Martin
Desharnais and that I updated (copy-paste, get rid of some apply code, replace
some tactics by new ones). These files can be found on the repository [3], that
belongs to Martin Desharnais.

From previous section, we know how to formalize a calculus. Indeed, we first
need to define the types of our language. Martin formalized a language, called
Simplify Typed Lambda Calculus or STLC.

STLC is based on a really easy language with a base type and a recursive type
constructor. In the book [1], Professor Pierce chooses to use the type Bool for the
base type. The recursive constructor helps to build function types.

Therefore, Martin defined in Isabelle the type as an inductive structure:

datatype_new ltype =
Bool |
Fun (domain: ltype) (codomain: ltype) [ﬁnfixr nn 225”

The terms are defined as follows:
datatype_new lterm =

LTrue |

LFalse |

LIf (bool_expr: lterm) (then_expr: lterm) (else_expr: lterm) |
LVar nat |

LAbs (arg_type: ltype) (body: 1lterm) |

LApp lterm lterm

Notice that functions are represented in a different way compared to Pierce’s
definition. The main reason resides in the @-renaming axiom.

Indeed, if we give to a computer 2 terms with different binded variables and
same content up to @-renaming: A X. x and 4 y. y, the computer will consider 2
cases:
x=y, then both terms are equal and x#y then both are different.

If Martin would have assumed a-renaming as an axiom, then we could prove 1=0
from A 0. LVar 0 = A 1. LVar 1, which is inconsistent.
Therefore, we need some ingenious term representation, that implies a-renaming.
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This technic is called De Bruijn representation and was proposed by Nicolaas
Govert de Bruijn in 1972 [10]. Since we need a infinite type for the naming of
variables, choosing natural number is obvious and common. But then, the problem
of a-renaming arises. De Bruijn proposed to index the A binder in a term.
Namely, for an expression like 4 x. x+1, there is one lambda, so it has index 0 and
each occurence of the binded argument (x) should be replaced in the binded term
(x+1). So A x. x+1 becomes A. (LVar 0) + 1.

But other problems occur:

e Indexing order: A x. Ay. x+y becomes 4. A. (LVar 0) + (LVar 1), which
lambda bindes the variable 0?7
For convenience, when we need to give a type to such an expression, it’s
easier to index the lambdas beginning from the deeper one.
So, in the previous example, A.(has index 1) A.(has index 0) (LVar 0) +
(LVar 1).

e Substitution problem: (4. (LVar 0) + (LVar 1)) (LVar 1) represents (4 x. x
+ y) z. But if we apply naively the susbtitution, we get that (LVar 1) +
(LVar 1) represents z + y, which is wrong generally since z could be different
fromy.

In order to get rid of these problems, De Bruijn proposed to modify the
substitution operation and to add a new operator, called shifting.

Before going more into details with shifting and substitution (functions
shift-L and subst-L), we need now to think about evaluation rules and typing rules.
At this point, once more, problems arise. We could use set-like structures to
represent the context like Professor Pierce did, but then formally speaking, we will
be using something that is like a dictionnary (since we have to impose unique key
(variable index, here)). This could become really painful and annoying, and that’s
why Martin implemented the common version of typing with lists.
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This is convenient since the indexation allows know to easily check the type of
each variable (type at the index position in the context). The context will behave
like a stack. That’s the reason for indexing from the deeper lambda to the shallower
one.

Example: fromI" = LAbs (B — A)(LAbs B ((LVarl)(LVar0))) |:| A,
we can retrieve the type of the second argument and push on the stack

(B— A# = (LAbs B (LVarl)(LVar0))) |:| A

B#((B — A)#I') = (LVarl)(LVar0) |:| A,
now it is easy to determine that LVar O has type B and
LVar 1 hastype B —» A

Martin has defined an inductive judgment for typing, annoted like in the previous
example. Martin use a special notation |€|, which means for (x,A)|€| T" that the
type A is at the index x in the list I'. The actual predicate is illustrated in the figure
below.

LIf_False xA)le|T

LIf True -
I' = LFalse |:| Bool LvarFI—LVarxl:lA

I' v LTrue |:| Bool

A#T -t |:| B Lapp P F il A=B T4

LAbS =T Abs A1 | A= B T - LApptl2 || B

IT'Fecl:]Bool THrHt1]:]A TFRI|:]A
TF LIfcti2 ;] A

LIf

Figure 2: Typing rules for STLC

The operator |€| check wether the first projection of a pair(left-hand side) is
inferior to the length of the context (right-hand side) and if the element at this
position in the context is the second projection.

Martin also defined a predicate for evaluation (predicate is named evall_L) and
declared a predicate is_value_L, that is true for values only, see below.
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value_True value_False value_Abs

is_value_L LTrue is_value_L False is_value_L (LAbs A t)

LI True -0 1 L (LIf LTrue (1 ©2) tI LIt _False ~ 01 L (Lif LFalse t1 2) t1 LIf evall Lec’
evall_L (LIfc tl 22) (LIf ¢’ t1 2)
evall L tltl’ is_value_L v evall L t21t2’
LAPP -0l T (LApp 11 2) (CApp (1" ©2) LAPP2 ~ a1 L (LApp v 2) (LApp v 22°)

is_value_L v
evall_L (LApp (LAbs A t1) v) (shift-L. (—1) O (subst-L O (shift-L. 1 0 v) t1))

LApp_LAbs

Figure 3: Evaluation rules and values for STLC

At this point, substitution was a real problem, since we need to shift variables
of the term, that we want to substitute, and the variables in the substituted term.
Furthermore, we want to shift variables depending of their index. That’s why shift-
L takes as first argument the span of the shifting and as second argument a number,
which indicate the least index that has to be shifted, any variable with an index
below it will not be shifted.

Why? Answer is in this example:

Pierce’s notation: {(tNat— 4), (x.Nap} F (dg.gx) f © A

After one step of {(fNat— A), (x, Na)} + fx : A

execution:

With De Bruijn [Nat, Nat— A] + (A.(LVar 0) (LVar1))1 |:| A
representation:

[Nat, Nat— A] + (LvVar1) (LVar1l) [:| A
semantically, x x or f f, which is wrong

Naive substitution:

With shifting: [Nat, Nat— A] + (LVar 1) (LVar 0) |:| A
(gx)% 2 shift-L (-1) 0 (subst-L O (shift-L 1 0 (LVar 1)) (LVar 0) (LVar 1))

In the same fashion, the naive substitution of Professor Pierce had a rule for
function, that avoided the binded variable to be captured, i. e. to be replaced. The
function subst-L has an easy rule for this case:

subst-L j s (LAbs A t) = LAbs A (subst-L (Suc j) (shift-L 1 0 s) t).

Since application of such a term to another yields shift-L (-1) 0, we need to increment
the variables in s, so that the result ends up to be the expected one.
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The design of such rules for shifting and substitution is really important for
the reasoning, since the free (not binded) variables of a term are relevant in a lot
of case. The set of such variable is also implement as a function FV returning a
set of natural number (free variables index). For this function FV, it matters to
understand that, for example, FV (LAbs A t) is not FV t but the image of FV t
without O (binded variable) by the function (4 x. x-1). This change comes from
the fact that we have to deal with shifting and substitution.

Indeed, when we shift a variable, we will apply a function like

(Ax. if x>x then x+d else x). In order to generalize this notation, namely to show
that FV(shift-L d c t) is the image of FV t by (ix. if x>c then x+d else x), we
need to do something for the case LAbs, since the shifting modify the condition
c. That’s why FV(LAbs A t) is an image and not FV t without O only. This
fact is critical, when we want to prove Preservation (evaluation of application).
Furthermore, we end up with a lot of cases with beta reductions(rules leading to
substitutions), which obviously requires knowledges on free variables. Since we
want to type some term of the kind: "shift-L. (-1) ¢ (subst-L j ...)", we have no
choice but to apply Shift_down, which has a precondition on free variables of
"subst-L j ..." in this case. Martin created two lemmas that will be useful in those
cases:

e FV_shift: Vtdc. FV(shift-L d ¢ t) = (if x>c then x + d else X)) @FV t, @
means taking the image of the right-hand side by the left-hand side (see next

part).

e FV_subst: Vntu. FV(subst-L ntu) = (ifne FVuthen FVu-{n} UFV t
else FV u)

The definitions of subst-L and shift-L will not be described in details for STLC.
Please check Appendix B for the formal definition (LVar, LTrue, LFalse, LApp,
LAbs and LIf definitions are due to Martin Desharnais and were copy-pasted).
The evaluation and typing rules for terms of STLC (variable, lambda, application,
boolean and if term) can be found in Martin’s file
(Typed_Lambda_Calculus.thy).

Martin proved then Progress and Preservation of STLC. In order to archieve
this, he had to reformulate Weakening and Substitution and to create some
formalism to deal with context order(the function insert-nth k s L, inserts s at the
kth position in L (the head of the list has position 0)):

e Weakening:

VInStA.I' -t |:] A= n<length "
= insert-nthn S I" Fshift-L 1 nt|:| A
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e shift-down is a lemma formulated by Martin, that will allows to restructure
our context. Indeed, Professor Pierce stated that order is not relevant in the
context, but since we use a list now, this is not true anymore. So, the idea is
to say: "we may get rid of all unrelevant types and restructure our term such
that it corresponds to the changes in the context".

Example: [A, B, C] + LVarl |:| B means also that
[A, Bl = LVarl |:| B
or [B] v LVar0O |:| B.

This property becomes really important when we want to prove the
substitution lemma.
(see Martin’s development, Typed_Lambda_Calculus.thy [3])

Formal version:

VInStA.insert-nthn ST F ¢ |:| A= n<length T’
= (V x. X€FV t — x#n)
=T FshiftL(-I)nt|:] A

e Substitution:
VI ABnstI' 1t |:] A=T F s |:| B

=0+ LVarn |:| B
=1 F subst—Lnst |:| A.

Finally, the canonical forms’ lemmas for STLC are the following:

is_value Lv=1T F v |:| Bool = v =LTrue VvV v = LFalse

is_value Lv=>T F v |:|] A—» B= JAt. v=LAbs At
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[l.ili. New notations and rules

This part will describe all rules about evaluation of terms, typing of terms and
the De Bruijn representation for classic and easy term.
For convenience, examples will often use the type Nat and natural number directly.
But to be completely rigorous, we actually need to define them as terms using a
wrapper, which is a constructor that maps a type directly to elements of another
one (here nat to terms) and we have to define associated rules for typing and
evaluation (addition and other operators needed as terms and simplification as
evaluation rules). Such a definition can be found in the book [1] and the formalized
version in Martin’s files.

ii.a. My notations and abbreviations

In previous part about Martin’s work, a lot of Isabelle notations were already
used and this will continue in main part about my work. Furthermore, when it
comes to present, in a readable fashion, shifting and substitution rule (with De
Bruijn representation), it will be quite impossible or too long. Therefore, this
subpart will summarize first all Isabelle/HOL notations and then my abbreviations
(namely for substitution and shifting operator).

List and set operations:

(] : empty list

[X{5 -es X,,] : list containing X, ... and X,

a#l : constructs a list with a as first elements and then
the elements of L (in the same order)

L@L1 : appends the elements of the list L1 to the list L
([L,3]@[2] = [L,3,2])

length L : the number of elements in list L

L the ith elements of L (undefined if 1> length L)

([1,3]10=1)

L[i:=v] replaces the ith element of L by v
replaceiv L ([1,3][0:=5] = [5,3)
taken L returns the list containing the nth first element of

msert-nthn A L

L (in the same order)
inserts A at the nth position in L

set L returns the set, containing all elements of L

f@S the image of the set S by the function f

map f L applies the function f to all elements of L

foldl fr L iterator on L, applies f to r (accumulator) and the

elements of L
Sum of elements: foldl (A xr. x+r1r)0[1,3] = 4
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Partial functions and pairs:

(a,b) pair composed of a and b
fst first projection of a pair (fst (a,b) = a)
snd second projection of a pair (snd (a,b) = a)
empty partial function with empty domain
o++ol partial function expansion
Example: [1 = a]++[2— b] = [1 = a, 2 b]
But[l = a]++[1+~ b] = [1+ b].
o(a:=b) partial function update, adds the mapping a to b, if

OF
Or F

a doesn’t already belong to the domain of o, else

changes the result for a

Example: [1 — a](1 :=b) = [1 — b]
[1—a]l2:=b) = [l a, 2+ b]

composition of all functions in F, (F!0)o(F!1)o...

partial function expansion of all functions in F,

(F10)++(F!1)++...

Abbreviations:
sLdct shift-L dct
suLdct subst-L j s t
sVac (if a>c then a+d else a)
sCac (if a<c then (Suc c¢) else ¢)
ifabc (if a then b else ¢)

ii.b. My work and first incrementation of STLC

My work always started by some copy-paste of Martin’s proofs. Then, I
incremented the different datatypes (Iterm, Itype) and functions (shifting, ...) based
on his definitions.

In this part, we will increment the feature of SLTC with different structures.
The most easy ones are pairs and the associated projections. In the same direction,
we will also add records and tuples with their projections, which will introduce
some difficulties in proofs.

Below, I present the types, term constructors and rules for a language extended
from STLC with unit, pairs, records and tuples.

Let start quickly with unit and pairs, since the definitions are the same as in the
book [1], except for the De Bruijn representation:

e Types: Unit and A| X | B, where A and B can be any arbitrary types
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e Terms: unit, {{t1,t2]}, z, tl, first projection and 7, t1, second projection,
with t1 and t2 arbitrary terms

e De Bruijn representation: shift-L and subst-L are just recursively called on
the subterms (example: t1 and t2 are subterms of {{t1,t2]}).
We will go back to this notion of subterms later. Free variable (FV function)
just gives back the union of the recursively calls on the subterms.

. is_value_L vl is_value_L v2  yalue_unit — i
value_Pair is_value_L ({{vl, v2]}) is_value_L unit
. is_value_L vl is_value_L v2 . is_value_L v1 is_value_L v2
PairBetal == 01T 1 (z, {ol, 02]) v1 PairBeta2 == 01T L (x, {ol, 02]) v2
Proil evall Ltltl’ Proid evall Ltltl’
1 evall_L (n, t1) (m, t1) 1= evall_L (n, t) (m, t1)
Pairl evall _L t1tl Pair? is_value_L v evall _ Lt2t2

evall_L ({¢1,22]) ({¢1',22]}) evall_L ({u,2]) ({v,12']})

Figure 4: Evaluation rules and values for pair and unit

b TEALIA TER2EIB L Tkt AIX|B
A L) 1] Al x| B T R A

T rt|:] Alx|B Unit S
Proi2 I' = unit |:| Unit

T F 4 1| B g

Figure 5: Typing rules for pairs and unit

The canonical forms’ lemmas for unit and pairs are the following:

is_value Lv=1T F v |:| Unit=> v =unit

is_value Lv=T F v |:|] A| x| B= 3vlv2. is_value_L vl Ais_value_Lv2 Av= {vl,v2]

The different proofs: Weakening, Substitution, shift-down, Progress,
Preservation are really easy for these cases. Indeed, Isabelle’s automation takes
care of it without any problem, since it suffices to use the induction hypothesis in
each case and do some simplification and/or some easy instantiation.

34



Other interesting, but a little more annoying structures are tuples and record.
Why annoying? Well, because those structures are built upon some collection of
terms (therefore, on list or sets of terms) and this will make the proofs and the De
Bruijn representation a bit more complicate.

Indeed, the next constructions, except for the references(pointers), will
require some new operators on lists and sets with related lemmas. New means
that there is nothing similar defined neither in the common library for lists of
Isabelle/HOL nor in the AFP archive (or I might have missed them). Therefore, I
proved in the process of my work a lot of useful facts (also some that ends up to
be not necessary at end). Those are in the file called, List_extra and a list of all
lemmas, with a proof in Isabelle for some of them, is provided in Appendix A.

The global framework for records and tuples is as stands below. The definitions
are similar up to list operators to the definitions in the book [1].

e Types: ( TL ) for tuples and ( L. |:| TL | for records,
where L is a list of strings (fields’ name) and TL is a list of arbitrary types

e Terms: Tuple LT, ITi t1, the projection operator for tuples,
Record L LT and ProjR Ltl, the projection for record,
where t1 is a term, i a natural number, L a string (field name), L a list of
strings and LT a list of terms

e De Bruijn representation: shift-L and subst-L replace the lists of terms by
its mapping with the function
(example: shift-L d ¢ (Tuple L) = Tuple (map (shift-L. d c) L)) and are
recursively called on subterms for the projections
Free variables are also mapping with FV of the lists of terms for records
and tuples and free variables of of subterms for the projections.

The predicate distinct on a list L, used in next rules, means that any value in the
list is unique (no duplicates).
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V i<length L. is_value_L (L!i)
is_value_L (Tuple L)

value_Tuple

. 1<j<length L is_value_L (Tuple L)
ProjTuple —= 01 L (1T (Tuple L) (LIG-1)
ProjRCD lesetLT  is_value L (Record L LT)

evall_L (ProjR L (Record L LT)) (LT!(index L L))

V i<length LT. is_value_L (LT!i)
is_value_L (Record L LT)

value_record

Pro; evall Ltltl’
) evall L (Iitl) (Iitl)

evall L tltl’
evall_L (ProjR Ltl) (ProjR Lt1”)

ProjR

Tuple 1<j<length L evall_L (L!(j-1)) t1 is_value_L (Tuple (take (j-1) L))
p evall_L (Tuple L) (Tuple (replace (3-1) t1 L))
RCD m<length LT evall_L (LT!m) tl is_value_L (Record (take m L) (take m LT))

evall_L (Record L LT) (Record L (replace m t1 LT)

Figure 6: Evaluation rules and values for tuples and records

. length L # [] length L = length TL

Vi<lengthL.T  Lli |:| TLi

Tupl
P T F TupleL |:|(TL )
.. 1gj<lengthL T F ¢ |:|(TL)
ProfT T - iz |:] TLY
RCD length L # [] distinct L length L = length TL length LT = length TL Vi<length L.I" = LT!i |:| TL!i
I F Record LLT |:|(L[:|TL)
ProjR distinct L le setL length L = length TL I' -t |:] redTLTL

I' = ProjRIt |:| TL!(indexL I)

Figure 7: Typing rules for pairs and unit

The canonical forms’ lemmas for unit and pairs are the following:

is_value Lv=T F v |:| (TL ) = 3 L.is_value_L (Tuple L) A v = Tuple L A length TL = length L

is_value Lv=T F v |:|(L|:]TL ) = 3 LT.is_value_L (Record L LT) A v = (Record L LT)
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The common lemmas goes as followed (IH stands for induction hypothesis):

e Weakening, shift-down and Substitution:

These cases only consist in applying the induction hypothesis and
some extra lemma:
Vi < length L. (map (shift-L 1 n) L)!i = shift-L 1 n (L ! 1)

e Progress: For tuple and record, progress can be proved by a nested
induction on the list of term.
For the projections, we need the canonical forms for tuple
and record, in order to show that the term evaluates.

e Preservation:

For these cases, preservation is quite easy since we don’t have any
substitution.

Namely, we only need to use inversion on the evaluation

predicate and we get all the information we need to determine the
type of the next step.

Since we are dealing with replace, I proved a sublemma nth_replace
using some facts about the take and drop functions:

Vi < length L. (replace n t L)!i = (if i=n then t else L!1)

Finally, all definitions of FV, shift-L, subst-L. and other functions related to
the De Bruijn representation of terms can be found in Appendix B.
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l1l. Formalization

This part will present the main formalization results of my thesis.
All subsections will follow the same structure. I’1l start by explaining the informal
ideas and then I'll show its formal version. Since we are dealing with A-calculi,
all redundant rules will be omitted. To find those rule, please refer to the New
notations and rules and Martin’s work and notations sections.

Furthermore, the global structure of my work for each chapter will follow the
pattern below with some optional entries:

[S—

. new term(s) and type(s)

2. De Bruijn representation’s changes (shifting, substitution, free variables)
(optional)

3. new operators (filling, pvars, ...) (optional)

4. evaluation rules (inspired from the book [1] with some changes due to the
representation)

5. typing rules (inspired from the book [1] with some changes due to the
representation)

6. theorems and lemmas (not written down in the book [1], using Martin’s
proof for the cases already proven)
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lll.i. Sequence and derived forms

In this subpart, we want to add sequence of instructions to our language (STLC
with unit). Notice that we can already simulate the behaviour of a sequence, i. e.
execute an instruction tl then an instruction t2. In A-calculus, a program is just a
game of giving values to functions and repeating it until we don’t have any function
on the left-hand side any more.

(Aa.c)(Au. b)a=(4a. c)b=cis the general picture.
An instruction should, in the same fashion, give some kind of information to the
next one. We will use the notation t1 ;; t2 for a sequence of two instructions tl
and t2. Furthermore, in order to have the simpliest behaviour, we will use unit as
final value returned by an instruction.
Now the first instruction reduces to unit and unit is given as argument to a function
executing the second instruction.
This way to implement sequence is called derived form, since we don’t define any
new term and only formulate its behavior with the current terms.

Formally speaking, we get the following definitions:

e Derived form: tl ;;t2 £ LApp (LAbs Unit (shift-L. 1 0 t2)) t1
Since we use De Bruijn representation, we have to adapt the function
(executing t2), so that the evaluation behaves as expected. That is t1 reduces
to unit: unit ;; t2 and this reduces to t2.

e Other option is to add a new term: Seq t1 t2, with all new rules and
definitions below

When we define the new term constructor Seq, we need to increment our rules’
set:

e shift-LE: shift-LE d ¢ (Seq t1 t2) = Seq (shift-LE d c t1) (shift-LE d c t2)
e subst-LE: shift-LE d ¢ (Seq t1 t2) = Seq (shift-LE d c t1) (shift-LE d c t2)

e Evaluation:

Seq unit 2 - 2 tl >Et1’ = Seqtl t2 -F Seqtl’ 2
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e Typing: a sequence has type A if the first instruction has type UnitE and the
second one has type A

I FEtl || UnitE=T FE 22 |:]| A>T FE Seqtl 2 || A
F'Htl ;| Unit=>TFR2 || AT Rl 2 |:] A

Finally, assuming equivalence between a language with internal sequence (using
derived forms) A’ and one with external sequence (new term Seq) A seems to be
correct. But this is not completely true. Indeed, the Af language contains more
terms than A’, which also implies more information. Therefore, translating a term
from AF to A brings up ambiguities (Seq and derived forms in A¥ become derived
forms in A’). This translation is represented by a function e that converts terms
from AF to A! (replacing recursively Seq by corresponding derived form).

Remark : all terms of Af are built with the same constructor as A/ with E at the
end or with the constructor Seq

(example: LVar becomes LVarE).

Then, we define e:

et := matchtwith
| LVarE x = LVarx
| LAppEtl 2 = LApp (etl) (e t2)
| LAbsEAt = LAbsA(et)
| unitE = unit
| Seq tl 2 = (etl;;et2)

Now the expected results are:

I.Vttl. et =Fetl) < (t—>tl)

2VtAT HFE et )| A=T 1] A

Well, that’s a shame but No, because it has an easy counter-example:

Let t1, t2 be arbitrary terms such that:

e (Seq unitE (LAppE (LAbsE Unit (shift-LE 1 0t1)) t2)) - e tl ;;et2 2
unit ;; (e tl;; e t2) — (e tl;; e t2),

but e t1 ;; et2 can be either e (LAppE (LAbsE Unit (shift-LE 1 0 t1)) t2) or
e (Seq t2 tl)

Seq unitE (LAppE (LAbsE Unit (shift-LE 1 0 t1)) t2) doesn’t reduce to the
second possibility.
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The fact 2 can be proved without any difficulties, but even through we have 2, we
can’t derive 1.
With 2 and Preservation, we could have tried to prove:

3Vitl.T FE et |1] A= (et—=Fetl) = (t—>tl)

But once more, in the previous counter-example,

LAppE (LAbsE Unit (shift-LE 1 0 t1)) t2) and Seq t2 t1 have the same type by
definition, so the type doesn’t give us any further informations, that could make e
injective in this particular case.

Namely, e being a bijection is required (since it would justify the existence of
an equivalence). But if we consider both languages as sets of terms, they have
obviously different cardinalities, which means that no bijection exists between
them. The only hope would be to come up with a clever restriction.

This concludes this introducing parts, we will now dive into the biggest part of my
work (the long chapter 11 of the book).
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lll.Ii. From let to lists

In this part, I will present the lemmas and formalisms, that I developped in
details. Namely, the biggest part is obviously about the changes in the context for
typing and the new predicates. This part of my work corresponds to the chapter
11 in the original book [1]

But, the De Bruijn representation and the proofs associated FV_subst, FV_shift,
. still remain pretty tricky and required some thinking. Furthermore, Isabelle
seems not so at ease with complex set theory (replacement,
set comprehension, | J, ...), which leads to horrible proofs (more than 200 lines).

In this part, I will also introduce some leads to solve an exercise in the book
[1] (without solution), asking to add a particular pattern feature to the language.
For convenience, the language definition(includes the De Bruijn representation
and associated functions (shift-L, ...)) is in a different file Lambda_calculus.thy.
This subpart will present incrementially all required features, while the Isabelle
file proves that all features are compatible(simulation of some small language).

Normalization chapter of the book [1] introduces inconsistency with some
unprecise definitions, that I replaced by correct ones. The proof sketch remains
pretty much similar, but I will explained the main differences.

Finally, formalizing references(pointers) was some piece of cake compared to
some structures, that I expected to be easy(example: pattern matching on disjoint
sums). Last part also presents a formalization of exception handling(Java-like
structure, exercise) with some limitations and the development based on the results
in the book (dummy term error).

For the moment, let us start with Let binder and some surprisingly vicious
structures(pattern matching on sum and variant types).
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ii.a. Let binder, disjoint sums and variants

In the popular languages like ML, there is always a system that allows us to
do some pattern matching on terms. This goes from simple example, like the
instructions let: let f = 142 in f — 5 + f, to more advanced matchings (pairs,
record, ...): let (a,b) = (f 5,g 3) in (b+a), b—a).

Even through the difference between the two previous examples is subtle, there is
one. Indeed, the first let only does some replacement in another term (no structural
analysis). For this reason, it can be modelled with a derived form:
(Ax. t1) 2 £ let x = 2 in t1. But for the second one, we need to make sure that
the term on the right-hand side of the = has the expected structure.

Let us begin with the easier case, the Let instruction, which behaves like its
derived forms. Therefore, the rules for Let are similar to the rules for
the abstraction and the beta rule (apply a function(abstraction) to an argument).
Now, with the De Bruijn representation, there is a difference, since we don’t give a
name to variables anymore. That’s why the binder index x will be more important.

Formal definitions:
e Types: no changes

e Terms: Let var x := tl in t2, with x an index (natural number), t1 and t2
arbitrary terms

e De Bruijn representation:
shift-L:

sL. d ¢ (Let var x:=tl in t2) = (if (x>c) (Let var (x+d):=sL dctl insL d c t2)
(Let var x:=sL d c tl in sL d Suc c t2))

subst-L:
sulL j s (Let var x:=tl in t2) = (Let var x := (suL j s t) in (suL (if (j> x) (Suc j)j) (sL 1 x s) t1))
FV:
FV (Letvarx :=tl int2) = (Ay. if (y>x) theny - l else y)@(FV {2 - {x}) UFV tl
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evall_L t1 tl’
evall_L (Let var x :=tl in t2) (Let var x :=t1’ in t2)

Let

is_value L v

LetV = Vall L (Let var x = v in 2) (Shift-L (-1) x (subst x (shift-L 1 x v) 12))

Figure 8: Evaluation rules for Let

| I 8 O e | insert-nthx AT + 2 |:| B

Let I' - Letvarx :=tlint2 |:| B

Figure 9: Typing rules for Let

Since the instruction Let doesn’t add any value, there is no new canonical
form. Now, everything seems easy. But that’s only the case for Weakening and
Progress. Indeed, when we need to use statements about free variables, things
become a bit more complicate.

The first case is in shift-down. Since we have two subcases to study, thanks
to the shifting function: x<c¢ and x>c. In the case x>¢, we need to show that a
lemma H1: V yeFV t2. x#n, which is not difficult, if we have the right equation
for Let terms in the definition of FV.
Now, our goal is to show:

I' + Let var (x-1) := (shift-L (-1) n t1) in (shift-L (-1) nt2) |:| B

To prove it, we will use the induction hypotheses, that requires H1 and
V y€eFV tl. x#n, which is derived by simplification of our hypothesis:
V yeFV (Let var x :=tl in t2). x#n. Finally, we only apply the introduction rule
Let of the typing’s predicate.

We would hope the other case to be symmetric, which is almost the case.
Indeed, we will need another lemma H2: V yeFV (2. x#Suc n, since our goal
1S now:

I' v Letvar x := (shift— L (—=1)ntl)in(shift— L (—1)(Sucn)t2) |:| B

At this point, everybody would expect the definition of FV to be: FV(Let var
x:=tlint2) =FV t1 U (FV t2 - {x}), but then there is now way to prove H2.

To be more precise, H1 is direct and H2 unprovable, because we don’t have
any information about the correlation between FV t2 and x. The same problem
occurs in the LAbs case, if we don’t take the image by the predecessor operator.
Now, in our case, we have x, that is binded, not 0. So, we need to shift our free
variables depending on x.
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FV (Letvarx:=tlint2) = (Ay. if (y>x) theny - 1 else y)@(FV 2 - {x}) UFV tl.
@ is used as notation in this report, but in Isabelle, the notation for the replacement
operator is different. It can be found in the Appendix B, containing the Isabelle
version of the functions’ definition.

This intuition comes from the LAbs case. Actually, we could have written (4
y. if (y>0) then y - 1 else y) as predecessor function. Since natural number are
always greater or equal than 0, this will let the case 0, but we apply this function
to FV t - {0}, so everything is fine.

From the previous proof description and explanation, it becomes clear that the
biggest difficulty comes from doing proofs with sets and replacement. Actually, it
is not so hard on paper, but if we want to formalize it, that’s painful. It takes more
than 250 lines to formalize a generalized version of the reasoning. This lemma can
be found in the corresponding theory file(check picture after the table of contents)
under the name Binder_FV_shift. This generalization is pretty helpful, since next
pattern matching on disjoint sums use exactly the same reasoning with two pairs
index, term, instead of one in the case of Let. The same process is done to prove
FV_subst with Binder_FV_subst, which requires as much effort.

These lemmas are required to be able to prove preservation. Indeed, when we want
to prove that the type is preserved a function application, for example, we will have
to prove that an expression of the form: shift-L (-1) ¢ (subst-L ¢ (shift-L 1 c t1)
t2, for some c tl t2, has the same type as the term before application. Now, we
know that we can get the type of substituted term with the lemma Substitution.
So what is left is proving shift-L (-1) ¢ t’, where t’ is a substitution, has the correct
type. For this task, we need the lemma Shift-down, but remember that it requires
knowledges about the free variables contained in the term:

V yeFV t. y#£c.

But we don’t know the form of t’, outside the fact that it is subst-L a ta tb, for
some a ta tb. So we need arbitrary knowledges about free variables in shifted and
substituted terms. That’s the detailed reason why we need FV_shift and FV_susbt,
even through it consists in most of the workload (interactions between definitions
of FV and shifting, substitution functions imply that changing the rules of one
function might help to prove one lemma, but makes the next one unprovable most
of the time). It delays obviously the formalization process a lot.

We can then remove the head of the context, most of the time (also what we
need to do). For the case Let, we get by induction hypotheses and the lemma
Substitution, that the subst-L part of the term is well-typed in some arbitrary
context I" with a type A inserted at the xth position, but our goal is to have a proof
that after applying shift-L (-1) x to it, the new term obtained is well-typed in I'.
With FV_shift and FV_subst, we can easily check that x is not free in the subst-L
part and then apply Shift-down.
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The previous reasoning can also be applied to more specific matchings, namely
for disjoint sums and variants. Sum elements are term that may store a term
from two different types. That is, for example, a boolean and a natural number:
inl LTrue and inr 5 may have the same type. Well, since we can only infer one
information about the type of such term, we would loose, as described in the book
[1], uniqueness of types: "every well-typed term has a unique type". Why?

Just have a look at the previous example: inl LTrue, contains a boolean, but we
could put any other type as second part. To get rid of this ambiguity, Professor
Pierce introduces Ascription: 1 as Bool is not well-typed while 1 as Nat would be.
So, inl LTrue as Bool| + |Nat can only be typed as a sum of boolean and natural
number and then inr 5 as Bool| + |Nat has the same type. With this type, we know
that we can do some branching (pattern distinction):

Case t of Inl x = t1 | Inr y = t2, for arbitrary t, t1, t2 terms and x,y indexes(N).
The formal definition follows the same principle as Let with the same difficulties.
For instance, proofs for FV_shift and FV_subst are pretty short thanks to the
generalized lemmas quoted in the Let case (Binder_FV...).

To make the implementation of the De Bruijn representation more readable, the
case constructor above is replaced by CaseS (that takes the same arguments).

Formal definitions:
e Types: A| + |B with arbitrary types A and B

e Terms: tas A,inltas A, inrtas A,
CasetofInlx = tl | Inry = t2,

with t, t1, t2 arbitrary terms and x,y arbitrary indexes(N) and A
an arbitrary type.

e De Bruijn representation:

shift-I.: sLdc(tasA)=(sLdct)as A
sLdc(inltas A)=inl (sLdct)as A
sLdc(inrtas A)=inr(sLdct)as A

sLdc(CaseStxtlyt2)=CaseS(sLdct)(sVxc)(sLd(sCxc)tl)
(sVyc)(sLd(sCyc)t2)

subst-L: sLdc(tasA)=(sLdct)as A
sulLjs (inl tas A) =inl (suLjst)as A
sulLjs (inrtas A) =inr (suLjst)as A

sul.js (CaseS t x tl y t2) = CaseS (suL jst) x (suL (sC xj) (sL 105s) tl)
y (suL (sCy) (sL 1 05)t2)
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FV: FV(tasA)=FVt
FV (inltas A)=FV t
FV (inrtas A)=FV t

FV (CaseStxtl yt2)={x,y} UFVtU (4z. if (z>x) thenz - 1 else z)@(FV tl - {x})U
(Az.if (z>y) thenz - 1else z)@(FV t2 - {y})

Ascribel evall Ltltl’ Ascrib is_value L v
scribe evall_L (t1 as A) (t1’ as A) scribe evall_L(vasA)v
Val_Inl - is_value L v Val_Inr is_value L v

is_value_L (inl v as A) is_value_L (inr v as A)

evall_L t1 tl’ . evall_L t1 tl’
evall_L (inl t1 as A) (inl t1° as A) 1nr evall_L (inr tl as A) (inr t1° as A)

inl

is_value L v
evall_L (CaseS (inl v as A) x t1 y t2) (sL (-1) x (subst-L x (sL 1 x v) t1))

Caselnl

Casel is_value_L v
aseint evall_L (CaseS (inr vas A) x tl y t2) (sL (-1) y (subst-L y (sL 1 y v) t2))

evall Ltt

CaseS Va1 T. (CaseS t x t1 y 2) (CaseS € x t1 y ©2)
Figure 10: Evaluation rules for As and disjoint sums
Aeeribe L E 11 A
SCOC T s A 1] A
Il 1+ A I 'kt B
T FinlitasA|+|B |:| A|+|B "M FinrtasA|+|B ;| A|+|B
'kt A|l+|B insert-nthx A" F ¢1 |:| C insert-nthy BI' + 2 |:| C
CaseS

I' FCaseStxtl112 |:] C

Figure 11: Typing for As and disjoint sums

The canonical forms’ lemmas for disjoint sums is the following:
is_value Lv=>TF v || A|+ | B=

(Fvl. is_value Lvl Av=inlvlas Al + [B)v(3vl. v=inrvl as A| + |[B A
is_value_L v1)
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Proofs for the cases As and disjoint sums are really easy. In contrast to these
cases, the matching on disjoint sums CaseS follows the same reasoning as Let, but
with two indexes, this time.

Finally, the last structure of this kind is called variant. It’s a structure that can
store any element of an arbitrary list of types. Actually, it looks like a record, that
contains only one value among all possible ones and it is a more general version
of disjoint sums. Therefore, there is also a structure, that matches on a variant and
return some term depending on the actual content of the variant.

Example: <’x’:=5> as < ['x’,’cdt’] |, | [Nat, Bool] > and
<’cdt’:=LTrue> as < [’x’,’cdt’] |, | [Nat, Bool] > are both variants.

This kind of element is really helpful, when we want to use only one element that
changes along the execution. Money conversion is an example presented in the
book [1] (page 139). The matching structure will be abbreviated as CaseV.

Formal definitions:
e Types: <L|, |TL> with arbitrary types’ list L and types’ list TL

e Terms: <l:=t> as A where | is an arbitrary string (field’s name), t an
arbitrary term and A an arbitrary type

Case t of <L=>B>

with t, an arbitrary term, L an arbitrary strings’ list and B an
arbitrary list of pairs composed by an index and a term.

e De Bruijn representation:

shift-L: sL dc(<li=t>as A)=<l:=(sLdct)>as A
sL dc (CaseV tL B) =CaseV (sL dct)L (map (4 p. (sV (fst p) c, shift-L. d (sC (fst p) ¢) (snd p))) B)
subst-L: sul js (<l:=t>as A) = <l:=(suLjst)>as A
sul. j s (CaseV t L B) = CaseV (suL j s t) B (map (4 p. (fst p, suL (sC (fst p) j) (sL 1 (fst p) s) (snd p))) B)
FV: FV(<li=t>asA)=FVt

FV (CaseVtLB)=FVtu
foldl (A x r. x U ) @ (map (Ap. image (A y. if (y>(fstp)) (y- 1) y) (FV (snd p) - {(fstp)})) B)
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1s_value L v
1s_value_L (<l:=v> as A)

Val_Variant

evall Ltltl’
evall_L (<l:=tl>as A) (<l:=t]’>as A)

Variant

i<length L 1s_value L v

CaseVar -~ 011 L (CaseV (<Lli=v> as A) L B) (sL (-1) (fst(B1i)) (subst-L (fst(B 1)) (sL 1 (fSt(B 1)) v) (snd(B'D))))

evall Ltt
evall_L (CaseV tL B) (CaseV t' L B)

CaseV

Figure 12: Evaluation rules and value for variants

i<length L distinct L length L=length TL I' =« |:] TL
' -<(LY):=tl>as <L|,|TL>|:|<L|,|TL>

Variant

P abbreviates V i<length L. insert-nth (fs#(B!i)) (T L!i) " & snd(B!i) |:| C A fst(B!i)<length I"

'zt |:|<L|,|TL> distinct L length L=Ilength B A length L=length TL P

CaseV L'k CaseVtLILT |:| C

Figure 13: Typing for variants

Professor Pierce doesn’t define a value for the variant type. But in this case,
then we can’t prove Progress. Indeed, when t is a a variant, if the inner term is
a value, the term t doesn’t evaluate anymore and with Professor Pierce setting, it
can’t be a value. So we have to define a value of type variant and the following
canonical form:

is_value Lv=TF v |!|<L|,|TL>=
(A vli is_value_L vl Av=<Lli:=vl>as <L|,|TL> A i<length L)

Once more, the statement is the same, there is a big contrast in term of difficulty
between proofs for the variant and for its matching. Namely, the matching has
even longer and harder proofs than the disjoint sums. The reason is obvious,
we deal with a list of possibilities and the set obtain with (foldl ...) is some
kind of | over smaller sets, which introduces a lot of existential quantifier in our
proofs. Unfortunately, since we end up with | J operator, we cannot use our lemmas
(Binder_FV...). Actually, we have a goal that contains (({ ] ...) U ...) on both sides
of the equality. So we can’t just push the part after the U sign under the | J. So the
only solution is to start back from scratch.
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To make the problem even more annoying, since we have to reduce to first-
order premises and goals, when we deal with big sets equality, we are confronted
to DNF-factorisation problems. Namely, when confronted to equality between
unions of sets, human will try to associate sets together without unfolding all
definition until reaching a first-order statements where the only set operator
remaining is membership.

To win time, I chose to go down to the deeper simplifications (complete first-order
formula, with only membership remaining (from set theory)). But, even with this
method, the work is long and painful.

This will conclude this part on expected easy structures, that ends up with
having complicate proofs on computer, namely thanks to their De Bruijn
representation. In next section, I’ll present an exercise proposed by the book [1]:
general pattern matching, that generalizes what has been done in this part. Well,
we would expect it, since the generalization from disjoint sums to variants brings
up a lot of difficulties, further generalization will bring up further
troubles (namely a lot of new formalisms).
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ii.b. Patterns

General patterns follows all the same principle, so why don’t define it once
and then add new patterns(separated definition) only?
The answer is that it is indeed a possibility. This is given as exercise in the book.
Wolfram Kahl presented a solution with a slightly different definition in one of his
publication [4]. In order to have an intuition of what we want to do, let us first have
a look at some example.

Let (a,b)=(d,c) in a + b is a classic pattern matching on pairs, but what are
we doing in the most general sense. First we have a pattern (a,b), which always
mimics the constructor of the matched structure(pairs, in this case). Then we
analyse a term namely (d,c), which is a pair, but could have been anything else
(it would only be well-typed if it reduces to a pair of values). Finally, we have a
term containing or not references to the term matched (patterns variables). The
evaluation will only determine some filling function, a substitution function, and
apply it to a + b.

So if we want to generalize, a pattern matching is composed of so-called
pattern constructors and will substitute variables. The instruction Let is a good
example and the easiest one. But, the naive intuition is to say: let us use variables
and we will extend the definition of Let or disjoint sum. That’s probably a good
idea, but we end up then with pretty long term with a lot of index and furthermore,
shifting and substitution rules are going to be really complicate. The trick is to
say, what about doing something like inlining in C++. The goal is to have tokens
in the code, that will be only affected by pattern filling.

Let us have a look at the previous example, but with this strategy:

Let (x1,%2)=(d,c) in %1 + 2.

Now, %1 and *2 are not variables in the sense of the language(term), but
only in the sense of the matching system. Shifting this term is easy, because like
mentioned before, pattern variables are not affected by all operations except filling.
How can it work? The pattern variables will only be filled when the matched term
is a value and this term is affected by all operations.

To summarize, a pattern matching can be formalized as a type for patterns,
a wrapper for pattern variables and a predicate to determine the filling function
to apply. Even through this method seems easy, it requires a lot of work and
especially a lot of attention when it comes to how to handle the filling function. In
this sense, the version with variables of the language is certainly unreadable, for
really complicate terms, but is based on an already clearly defined framework, so
some tricks can be copied from already known cases (Let, disjoint sums, variants).
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The cost will also be the same, while this method might avoid some really
unpleasant proofs (FV_shift, FV_subst cases, remember more than 200 lines for
CasesV).

Formally, we define first the type Lpattern:

Lpattern =  V kas A (with k a natural number and A a type)
| RCD L PL (with L a list of strings (fields’ name) and
PL a list of Lpattern)

We could have used the same formulation as Wolfram Kahl in his paper [4],
with an abstract constructor, but the exercise was to define a pattern matching for
variables and records.

Then we need a wrapper(reminder: new constructor taking only one argument):
<| p |>, where p is a Lpattern.

The pattern matching structure is defined as follows: Let pattern p: = tl in t2, with
tl, t2 terms and p a Lpattern. Finally, the wrapper is not affected by shifting and
substitution and it is applied recursively with same arguments to the subterms in
the case of the new matching structure.

But, we need some way to determine the substitution to apply during the reduction,
based on a Lpattern p, a matched term tl and a substitution partial function for
indexes o

1s_value_L t1
Lmatch (Vkas A)tl [k 1]

P1 abbreviates length L = length LT A length F = length PL A
length PL = length LT and
P2 abbreviates V i<length PL. Lmatch (PL!i) (LT!i) (F!i)

M_ Var

distinct L P1 is_value_L (Record L LT) P2

M_RCD
-RC Lmatch (RCD L PL) (Record L LT) (O F)

Furthermore, we need to define a new context to track the type of each pattern
variable, which is also a partial function. Then, it is easy to deduce that we
need some other predicate to extract this context from the pattern specified in the
branching term:

M_Var

Lmatch_Type (V k as A) tl [k — A]

P1 abbreviates length Tx = length PL A length L = length PL.
P2 abbreviates V i<length PL. Lmatch_Type (PL!i) (Tx!i)

distinct L P1 P2
M_RCD
- Lmatch_Type (RCD L PL) (O, Tx)
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The rules for evaluation and typing are then defined, such that only pattern variables
can be instantiated in terms (RCD should only appear after Let pattern). Since
Lmatch provides a substitution function for index, we defined a function fill that
applies it properly on terms. See Appendix B for more details.

evall_L t1tI’
evall_L (Let pattern p:=t1 in t2) (Let pattern p:=t1’ in t2)

LetP

Lmatchpvo 1s_value L v
evall_L (Let pattern p:=v in t2) (fill o t2)

LetPV

Figure 14: Evaluation rules for Let pattern

coherent p B is a predicate stating that all pattern variables in p are distinct and if
p is RCD L PL for some L and PL, then all patterns p’ in PL are such that
coherent p” (TL!i)and B = ( L |:| TL ), for some list of types TL.

coherent p B Lmatch_Type ptl ol 'k (1] o) |:| B ' (2;] co++0cl) |:| B

LetPattern I' = ( Let patternp :=tlint2|;| o)) |:| B

k € dom o ck=A
I' - (<|VkasA|>|;] o) || A

Figure 15: Typing for Let pattern and pattern variables

PatternVar

This is unfortunately unfinished work, since now we need to come up with
lemma for Substitution (find a precondition such that you can substitute some
term s, well-typed with ¢ in some term t well-typed with o1, such that the result is
well-typed with o1). The same goes for Weakening, since we need to know that
we can use some other context with a bigger domain, but we need to be careful,
since it must not coincide with the context generated by Let pattern. I propose
my development until this point, allowing someone to try to prove it with some
lemmas.

This concludes this subpart on pattern matchings, we will know talk about lists.
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ji.c. List

List is among the most common features in our favorite programming
languages today, but it remains a bit tricky when we look at its implementation in
details. Especially, the best way to define lists is to use more advanced language
(with recursive types), in which it is only a recursion with parameter a on a disjoint
sum of Unit and the product of the type of elements of the list and the
parameter «. I won’t go into details, but just know that @ can be replaced by
the whole expression, recursive pattern. The formal definition: list A £ y a.

Unit| + |(A] X | ).

Obviously, recursive types should be defined formally first. In an attempt
to avoid using those advanced technics, Professor Pierce proposes the following

definitions:
— B List Extends A (9-1) with booleans (8-1)
New syntactic forms t — trl -
£ ferms; TsnillT] t; — isni1[T] t, S
nil[T] empty list
cons[T] tt Tist constructor head[S] Ccons[T] vi vz) — v
isnil[T] t test for empty list S
o (E-HEADCONS)
head[T] t head of a list
tail[T] t tail of a list Lo .
= F-HEAD
head[T] t; — head[T] t; [ )
Vo= values: -
nil[T] empty list tail[5] (cons[T] vy va) — va
cons[T] vwv list constructor (E-TarLCons)
T I Eilils (E-TAIL)
= s VPes: n 5 7 ol I "
. L tail[T] £, — tail[T] t
ListT tvpe of lists LR (1t
New tvping rules 't :T
New ew ] 2 — 1 . -
ew evaluation rules t t [enil [Ty] : ListT (T-N1L)
bt (E-CoNs1)
- 51 " N 3
cons[T] t; tz — cons[T] trl tz Fr=t;: T -ty : List Ty (T-CONS)
I'-cons[T;] t; t2 : List Ty ) o
tz — 1t .
—  (E-Comns: .l
cons[T] vi tz — cons[T] v; ty 2 Tet:ListTu (T-ISNIL)
=disni1[Ty;] t; : Boal R
isnil1[5] (ni1[T]) — true (E-ISNILNIL)
=1t : List Ty
P {T-HEAD)
isni1[S] (cons[T] vy v2) — false I+ head[T;] t; = Ty
(E-ISNILCONS)
=1t : List Ty
5 5 T-TalL
I-tail[T;;] &y @ List Ty { d

Figure 11-13: Lists

Figure 16: List implementation scanned from the book [1]
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Since there are no substitutions, there is actually no change due to the De Bruijn
representation and functions like shift-L are just called recursively on subterms,
see Appendix B.

But now, this definition is obviously not intend for proving type safety. Why?
Because there is some problem that might occur during execution. What happens
when we have term head or tail of a term nil? Well, no further step and it’s not a
value, so Progress can’t be proved.

A solution would be, like it is done in all programming language, to use exceptions’
managing: head A (nil A) reduces to some predefined exception error of the
language and same goes for tail A (nil A). Then since an exception appears, all
upper-terms will reduce to the exception’s raise, i. €. given any constructor C of
the type term, C (head A (nil A)) will reduce to C (raise e) and then to (raise e),
with e some predefined exception. See chapter on Referencing and exceptions, for
more intuition.

This conclude this part on new structures and the formalization of chapter

11. We will now make a break in the improvement of our language to talk about
normalization.
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lll.iii.  Normalization

In this part we are going to reformulate the chapter 12 of the original book
[1]. An important property of a programming language is that it should ensure
termination. That’s not completely true, since we can write silly well-typed
programs, that never ends (loops). What is meant by termination is convergence
of evaluation for the well-typed terms of our call-by-value language.
This convergence is defined as the existence of a so-called normal form (the
state reached during evaluation where we cannot reduce a term any more).In the
previous chapter A-calculus, background and common notations, I talked at some
point about the reason why we are using values (endpoint of computation). That’s
also the reason for this name call-by-value.

There are several ways to prove this fact, but Professor Pierce tried to explain
some short and elegant technic, called logical relation [11] due to William Walker
Tait in the 1967. This part will follow the sketch of Professor Pierce, but use a lot
of lemmas not mentioned in the book [1]. We will suppose that the common facts
like preservation or canonical forms are valid. Required sublemmas will always
be precised. We will use the STLC language, without LIf and booleans. Bool type
is replaced by some generic type A, that should contain at least one value (valA,
in my formalization). Otherwise, since we have only variables, applications and
abstractions, termination is obvious: beta reduction (function application) never
happens (since there exists no value in our language), so there is no computation.

First, we need some easy vocabulary:

e closed term refers to a term with free variables (FV t= @)

e multiple step computation or star evall_L, the transitive reflexive closure
of evall L
(computes in several steps(0 or more) to):
star evall_L t t (reflexivity) and if (evall_L x y) and (star evall_L y z) then
star evall_L x z

e halts t is a predicate stating that t computes until some endpoint (no further
computation) or already doesn’t compute:
dt. starevall_Ltt’ A(Vtl. mevall_Lt tl)

Our goal is to show: VtT. ¢ |:| T < halts t. But we want to use relations
to prove this fact.
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In mathematics, relations are often characterized by sets. So, let start by defining
our elements. We are reasoning on closed terms, since we can prove by induction
ontthat - ¢ |:| T is equivalent to closed t.

We define then (C T), the set of closed terms of type T with empty context. We
will start our reasoning on this set. Now, our goal is to show that the elements of
(CT) halt for any arbitrary T (can only be a function type or A).

We define those elements as a set as well. This set is R T and it contains all
elements of (C T) that halts. We can define R T as a set or a function, but it will not
be possible in Isabelle to define it as a predicate, since this relation is not monotonic
(P A <P B, with < a well-founded order).

The final recursive definition (functional definition giving back a boolean,
closed to an inductive predicate) on the type T is :

teg A=(te CA Ahaltst)
tex (T1-T2)=(te C(T1->T2) Ahaltst A (Vs. s € T1 = (LApp ts) €; T2))

Notice that we have a special rule for function types (reason why the predicate
would not be monotonic).
Informally, the second equation means: "t is in the realtion of (T1—12) if and only
if it is of type (T1—T2) with empty context and given any term s in the relation of
T1, (LApp ts) is in the relation of T2".

Why such a definition? Because we can only consider termination for a function
if its arguments have to terminate. In the book [1], we can find a definition (page
150): "R ,(t) <= halts t". This is clearly not what we want, since it implies that,
for example, (LAbs A valA) would fulfil R,, which is the same as saying t €,
A. But this means that (LAbs A valA) should have type A, contradiction. At the
end, assuming such a definition is the same as assuming that we can prove falsity,
which means that our proofs would be wrong.

Now, we have only the terms that interest us, 1. e. t€zT. What we want is that
those terms always terminate (halt predicate).

Lemma R_halts: Vt T. t€; T = halts t.
Proof.
Let t and T, be respectively a term and a type.

Let us proceed by induction on T. Since both equation of t€z T
contains halts t as clause and are CNF (conjunctive normal form).
We get halts t for free.

Qed.
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Since R is a function, we need some kind of inversion lemma
R_def: te,T=>closedt A F ¢ |:| Tand R_A:tEz A= halts t.

With this lemmas, we can now start the main reasoning. We first know that a
term t, such that te T, halts (but we need to prove it) and our final goal is to show
that a well-typed term in empty context halts. So we need to show that well-typed
terms t in empty concepts are such that t€;T.

Reasoning with empty context is not a good idea, because our hypothesis
becomes too weak.

What happens then if we consider an arbitrary context? Let us go back to the
definition of a context: a stack of pairs (variable’s name, type of the variable), with
De Bruijn representation we don’t have names any more, just type correponding
to an index but the idea is the same. So given a context I and any set of values
V, such that each values in V corresponds to the type at the same position in I, if
we substitute all variables by the corresponding value in V, the obtained term is
closed and well-typed in empty context.

Example: I' = [Nat, Bool] and V=[5, LTrue]
' = LIf (LVarl)(LVar0)10 |:| Nat
Now if we substitute V, = LI f (LTrue)510 |:| Nat.

From this observation, we notice that we can prove a more general lemma than
the one using empty context, but we need to define first an operator for simultanous
multiple substitution:

Definition subst-all(n:N)(V: list of terms)(t:term).

Equations defining the function:

Recursion on t,

"subst-all n V ValA = ValA"

"subst-all n V (LApp s t) = LApp (subst-all n V s) (subst-all n V t)"

"subst-all n V (LAbs T t) = LAbs T (subst-all (Suc n) (map (shift-L 1 0) V) t)"
"subst-all n V (LVar k) = (if (k>n A (k-n)<length V) then (V!(k-n)) else LVar k)"

Since Isabelle is defined in a classical setting, excluded middle is assumed, which
allows such definiton (condition on proposition). For instance, since order on
natural numbers is decidable, this function can also be defined in a constructive
setting without excluded middle.

The common usage of this function is namely subst-all 0, since we want to
substitute the elements that have the same index as those in V. To complete this
definition, we need to prove two extra facts, namely the simplification when V is
empty and the simplification of composition with single substitution subst-L.
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Lemma subst_all_empty: Vnt. subst-alln [] t =t.
Proof.

Let t and n be respectively a term and a natural number.
Obvious by induction on t, since in the case LVar, no natural number is
less than O (reason for this extra condition (staying within the list V)).

QOed.

The lemma subst_comp_subst_all:

V n V t. subst-L n v (subst-all (Suc n) (map (shift-L (n + 1) 0) V) t) =
subst-all n (v#map (shift-L (n + 1) 0) V) t

can be proved using the fact that: V x t t1. X¢FV t = subst-L x tl t =t.

Then, we can state our lemma subst_R:

VItVT.T' -t |:] T=lengthV=lengthI' =
(V1. i<length V = is_value_L (V!i) A (V1) €, ITT)) =
subst-all0 Ve, T

Since we are once more dealing with substitution and typing, there is no real
surprise. We need a lemma like Substitution but for subst-all, substitution_all (be
careful @ stands for list concatenation in this lemma and not replacement of set
theory):

VItkVT.I' -t |:| T= k+length V =lengthI' =
Vi. i<length V= + Vi || Tli+ k)=
take kI @ drop (k + length V)I" Fsubst-allk Vt|:| T

The only difficulty encountered in the proof of this fact, done by induction on the
typing predicate, is that we need to show at some point F shift-L. 1 0 (V!i) |:]
I''(i + k) and we don’t have any lemma or information allowing us to prove it.
Now, remember that we that (V!i) €, (I''1), so we know that = V'!i |:| T'li. This
will be enough, since we can correlate free variables and context length, thanks to
indexation.

In fact, justprove: VI'tT.T' - ¢ |:| T=FVtC {k. k<lengthI'}. Now since
we have some term well-typed in empty context, it means that it doesn’t contains
any free variable. This can be proved by induction on the typing predicate.

Well, everything seems fine, but there also other lemmas required to prove
subst_R, namely in the only long case (LAbs), we will need to know that multiple
step computation (star evall_L) preserves the fact of being in a relation (€, T, for
some type T). To prove these facts, we will need the previous lemma about FV
and context, but also preservation and others (see file Normalization.thy for more
details).
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Finally, the proof of Normalization is then really easy:

Lemma Normalization: VtT.§ + ¢ |:| T = halts t.
Proof.

Let t and T, be respectively a term and a type.
Assume @ + ¢t |:| T.

By applying the lemma subst_R to the assumption, we get that t€ ;T and
so we can conclude by applying R_halts.
Qed.

This conclude this part on Normalization, next chapter in the book [1] and in
this report is about referencing and exceptions, which will conclude my work.
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lll.iv. Referencing and exceptions

This section will corresponds to chapter 13 and 14 in the book [1]. In all
generic programming languages, references (pointers) are critical elements, since
they are deeply related to the memory model of our language as well. The
memory model is also a formalism that aims at reproducing what really happens
in term of allocation and deallocation. This part will not focus on it, since our goal
is only to show Progress and Preservation, while memory model would bring up
problems like memory corruption (writting on already allocated space). Therefore,
we will suppose that we have a perfect model (infinite memory). The memory
will be represented as a partial function that gives back a term for each allocated
address. Since we are on a computer, once more using function is probably too
large. Since we only care about the domain of the function and its values, we will
replace the function by a list. Since we use infinite memory, the memory addresses’
representation should be infinite as well. Therefore, we will use natural number
as memory adress or more specifically location. All the theoretical results of
this part follows the book [1], but the representation with a list, is inspired from
the De Bruijn representation. It is already mentioned in the book [1] that garbage
collection can produce problem and since it is only quoted in the book [1], it will
not be formalized in this thesis.

Furthermore, for convenience, we will restrict our study to a language
containing only: unit, variables, applications, abstractions (functions) and the
memory related features: referencing (ref t), dereferencing (!t) and assignment
(t1::=t2).

Since we can allocate memory, we need to keep track of the memory change

during evaluation. So the current statement "evall_L t t1" becomes "evall_L t
u tl ul", with u a list of terms. It is not strange, that both sides don’t have the
same list, because an allocation will modify it. We will keep Pierce’s notation for
allocation in the memory "y < t" but it will correspond to inserting t at the end
of the list p.
In the same way, typing will also differ since now we need to track the types
of elements in memory. For this purpose, we add another stack X to the typing:
I';|12 F ¢ |:] T.1define the same kind of membership operator as Martin (|€|)
for this new context, using notation |€,|.
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With all this element, we will then define formally our language (like in the previous
part, the STLC part and unit part (variables, abstraction, applications and unit) of
the rules are omitted:

e Types: Ref T with arbitrary type T

e Terms: ref t, with t an arbitrary term
It for dereferencing, with an arbitrary term
t1::=t2 for assignment, with t1 and t2 arbitrary terms
L n for location, with n is an arbitrary index(N)

e De Bruijn representation:

shift-L: shift-L d ¢ (ref t) = ref (shift-L d c t)
shift-L d ¢ (!t) = !(shift-L d c t)
shift-L d ¢ (t1::=t2) = (shift-L d c t1)::=(shift-L d ¢ t2)
shift-Ldc(Ln)=Ln

subst-L: subst-L j s (ref t) = ref (subst-L j s t)
subst-L j s (!t) = !(subst-L j s t)
subst-L j s (t1::=t2) = (subst-L j s t1)::=(subst-L j s t2)
subst-Ljs(Ln)=Ln

FV: FV (reft)=FV t

FV (1) =FV t
FV (t1::=t2) = (FV t1) U(FV t2)
FV (Ln)=¢
Val_Loc — evall_Ltl utl’ ul
is_value_L (L n) Ref ~Vall L (ref t1) p (ref t17) pil
is_value_L v evall_Ltl ptl’ ul
RefV " CVall L (ref v) 4 (L (length ) 11 Deref “Vall L (1t1) p (1t1°) al
n<length u . evall_Ltl putl’ ul
Assignl
DerefV = Call T A n) 1 (uln) g SN "ovall L (th=02) p (t1:=2) pil
Assign2 is_value_L v evall_L 2 ut2’ ul Assignl is_value_L v

evall_L (vi:=t2) u (vi:=t2’) ul evall_L (L n::=v) p (unit) p[n 1= 0]
Figure 17: Evaluation rules and value for references

Please be careful !t is dereferencing, while p!n is taking the nth value of the list

u. Furthermore, the notation u[n := v] means replacing the nth element by the
value v.
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m,TD) |g,| = Derep LEIE F 212 Ref T1
CTLIZ F Ln |:| Ref T1 TR F o T

L

TLIS -1 || T1 Assign TS 1 |:] RefT1 TlIZ F 2 |3 Tl

Rl FSF refil 1| Ref T1 TLIS F o1 =12 |:| Unit

Figure 18: Typing for references

Since locations are values, we have a new canonical form:
is_value_ Lv=T];|Z F v || RefT1= (In. n<lengthXAv=LnAZn=T1)

Notice that the context for memory is never modified, namely since it is specified
directly and then combined with the following proposition, named welltyped_store:

I'[;|ZE u2(engthX =length p) A (Vi<length . T|;|Z F uli |:] =)

Since we have now to consider the state of the memory, our main theorems (Progress
and Preservation are going to change:

Progress: VI' ZtTI. |;|Z F v |:] Tl =is_value_LtV
Vu.T'ZE py = @¢C ul.evall_Ltut ul))

Preservation: VI Z y uyltt TT|;|Z Ft || T=>T;|Z2F u =
evall Ltut ul = 3IZ1L.T|;|Z@Z1FE ul AT|;|Z@XZ1 ¢ || T

Now, we will need some lemmas involving welltyped_store:

e store_updt:
VIZuitvT.T|}|2F p=ilengthX=Xli=T=
IM;IZF o |l T=T | ZFE uli i=10]
e store_weakening:

VIEISItT.TS F ¢ 1| T=T};|2@Z1 - ¢ || T

store_weakening can be prove by induction on the typing predicate and
store_updt requires some simple lemma about replacement(in lists).
All proofs are pretty much straightforward, so please refer to the book [1] and the
file (Referencing;thy). For instance, Weakening and Substitution are the same
with the extra context(X) in the typing predicate.

This concludes the referencing part of this chapter. We will now look quickly
at exceptions and error managing.
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The book [1] presents two kinds of error managing, once more in a restricted
language (STLC without Bool). The first one is a language with an instruction
error. This language is well-suited to define and prove that Lists can be added to
our language, without breaking Progress and Preservation. Therefore, by adding
the following evaluation rules and the rules presented by Professor Pierce in the
book, we can still prove type safety:

Ltailnil = T (il A (Lnil B)) error

Lhead_nil evall_L (Lhead A (Lnil B)) error

Figure 19: Additional evaluation rules for lists

The evaluation rules are trivial, namely error stops the evaluation, i. e. each
time it appears under a constructor, the term reduces to error. This behaviour can
be generalized to a language with more instructions and abide programming rules.
When it comes to typing, having an error in our program doesn’t mean that it is
not well-typed. Since we want to be able later to use this information (there was
an error somewhere), error should be able to take anytime (rule proposed by
Professor Pierce).

The Progress and Preservation for this language is easy, but Progress means that
"either t is a value or it evaluates or it is an error". Well now we have an error,
but we cannot do anything with it, so let us formalize the try and catch structure
(here try t1 with t2).

But now, like presented in the book [1], we just end up doing copy paste and
adding the following rules for an exception type Texn, which must contain at least
one value. I will omit rules for the De Bruijn representation, because the function
are only applied recursively for shifting and substitution and we take the union of
the recursive calls of FV for the free variables.

The formal rules and the terms’ definition are the following (given a fixed Texn,
with at least one value):

Terms: raise t, raises an exception, with t an arbitrary term
try t1 with t2, with t1 and t2 arbitrary terms
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is_value L v 1s_value L v is_value L vl

AppRaisel evall_L (LApp (raise v) t2) (raise v) AppRaise2 evall_L (LApp v (raise v1)) (raise v1)
Rai evall L t1tl’ RaiseRai is_value_L v

aise evall_L (raise t1) (raise t1’) alsekaise evall_L (raise (raise v)) (raise v)
tryV is_value_L v tryE evall_L tl tl

evall_L (try v with t2) v evall_L (try t1 with t2) (try t1” with t2)

is_value_L v
evall_L (try (raise v) with t2) (shift-L (-1) O (subst-L 0 (shift-L 1 0 v) t2))

TryRaise

Figure 20: Evaluation rules and value for try and raise

' -t |:] Texn
I' - raiset || T1

Raise

'+« || T1 ' 2 || Texn - T1
I' = trytl witht2 |:| T1

Try

Figure 21: Typing for try and raise

If Texn fulfils the requirements: having one value at least and well-typed
expressions fulfilling Progress, then we can prove Progress and Preservation for
such a language. Since the exercise proposed in the book is a generalization of this
language, I formalized a slightly stricter version.

The exercise consists in proving type safety for a Java-like setting (exceptions
are variant types and LAbs takes an additional variant type as argument). I didn’t
manage to finish this exercise, since I restricted the try catch behavior and the LAbs
definition. Indeed, my language don’t allow functions with a set of raisable errors
E to call other functions with a set of raisable errors El, if E£AE1. Furthermore,
try is considered to capture only errors of specified type.

Example: LAbs T < [Err],[Nat>] (try (LAbs T1 < [ErrO],[Nat>] ...)) with ... is
not allowed.

The reason is easy, in the definition above, Texn is a static type, that the user
can’t define. In my language, the only difference is that it can change for each top
lambdas. Let us have a look how to formalize the rule, then we will discuss the
difficulty of trying to be larger with the definition (try can catch any errors, while
the with part raises only allowed errors and takes arguments with the same type as
raised errors).

65



We know that we need somehow to retrieve the type of allowed exceptions
with the typing predicate, in the LAbs case. So the conventional idea is to add a
new context. Since we are only caring about one type of exceptions (variant type),
there is no need to use a list. We can stick with a single variant type, i. e. a pair L
TL of lists of strings and types, respectively. The rule for typing LAbs looks then
like:

VItLTLAB.< L,TL> | * |A#T F ¢ |:| B=
<[L0>|*|T - LAbsA <L,TL> 1t |:| A> B

Problem: In Java, void A(int a, int b) throws ArithmeticException is a correct
syntax. But in lambda-calculus, we have a binder for each argument: LAbs Nat
<L1,TL1> (LAbs Nat <L2,TL2> (body of the function)). We cannot force in
the term construction (L1=L2 and TL1=TL2), which is what I avoided with my
restriction.

There is a solution to solve this problem:

e subtyping:

If our type system supports subtyping, then we can define a rule with
<L2,TL2>C<L1,TL1> as premise, where L is the types’ ordering
relation.

The rule will looks like:

VItLTLAB.< L1, TL1 > | % |[B#A#T + ¢ |:| B=<LTL>C<L1,TLI>=
<LI,TL1> |« |A#T - LAbs A <L,TL>t |:| A— B

But this solution is time-expensive and requires a lot of work
(introducing subtyping and checking correctness of the system).

In conclusion, my restricted version is type-safe, but pretty restrictive. But
it requires a lot of extra definitions and lemmas, if you want to formalize a nice
version with subtyping and probably other features. The main difficulty is probably
designing the typing rule of the try with structure. To be completely rigorous, we
know that t2 is only allowed to raise exceptions that have the type specified in the
exception context. But it could take any arbitrary exception’s type(variant type)
as argument(like mentioned above), and t1 could raise any type of exception if it
corresponds to the type of the argument of (2.

Furthermore, t1 is allowed to be LAbs or some code converging to a raise
instruction of arbitrary type. This allows differences between the exception
context for typing t1 and type of argument of t2.
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Formally, we would like to write:

VI QLTLL TL A. < L',TL' > | % | ¢l || A=
<LTL>|%|T 122 |:|<L,TL >> A=
<LTL>|%|T F trytl with2 |:| A

But that’s clearly not working this way, there are some preconditions missing.

This concludes the report of my work, I will give some further conclusion remark
after talking about related works and relevance of this subject.
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Related work

After explaining my own work, I will now explain the pertinence of such thesis by
describing related works. Namely, just formalizing a book [1] in itself is not the
endpoint.

The first related work is the POPLmark challenge [12], proposed in 2005. The
purpose of this challenge was to have a look at formalization of concrete
programming languages (challenges) and try to prove them on a computer. The real
aim is obviously to see what kind of formalisms is used and if we can managed
depending on the tools (proof assistants, provers, ...) to give a solution, that any
user (who doesn’t even know about automation of proof checking) would be able
to find with a small introduction to tool.

Well, that’s probably not realistic, but the questions were why and what has to be
done, so that it becomes possible.

This is an example of what has been done before, but the idea of having a
tools fitting for any user still remains. Yearly, another conference is given on
subjects related to improvement of interactive theorem provers. Called ITP, this
conference will gather researchers around the world to discuss of the current results
and improvement of tools. But researchers are not the only one, who contributes
to improvement.

It is true, that development of the tool itself and new mechanisms is pretty
much the privilege of researchers. But what will always be needed is background-
theories. While lambda-calculus is then a good example of formalized background
theory, the formalizations are restricted and most of the time belongs only to one
proof assistant library. Furthermore, commonities develop a lot of theories, that
before remains in the dark. Nowadays, AFP or Coq website allow to check theories
and publish them, so that anyone can profit from the background-theories of others.
This contributes to avoid unnecessary and/or tedious work and to the development
of the proof assistant.

Why? Because Coq proposed since a long time and Isabelle since 2015, a language
for tactics allowing to develop methods for other users. Given those specific
automations, some common user may be able to prove difficult theorems easily.
The difficulties, that is mentioned here, is unfortunately not a theoretical one. It’s
the difficulty coming from lack of experience with the tools.

A lot of mathematicians feel hesitant about trying to do proofs on computer since
it requires to learn a new language, while they are well-versed in the mathematical
one.
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Even through Isabelle proposed a syntax closed to the mathematical language,
usage of automation imposes to know the language of tactics. For those people,
having nice automatic tactics, like inversion on inductive definition, like tower
reasoning for ZF set theory and others, is a blessing. They know what kind of
proof is being done, and the computer does it without showing it or asking for
some specific tactics or instruction.

To go back on the main topic: programming languages’ formalization, there
are new language with powerful feature that would require some background or
generic methods to be formalized easily. For example, there is a project:
"RustBelt: Logical Foundations for the Future of Safe Systems
Programming" [13] on formalization of the language Rust in Coq, started in 2015
under the direction of Derek Dreyer. But there is also what we could call the ghost
of the past that also emerges like unsoundness of java and scala’s type system
[14]. Furthermore, some groups in Paris works on formalization of data model and
associated languages (SQL and IEEE) in Coq. They published in particular a paper
about javascript specification [15]. Finally, Mezzo has also a partial formalization
in Coq (see the paper [16]).

To conclude, formalization of programming languages and tools to make this
task easier are the main subjects of a lot of workshops like:

e CogPL on a yearly base (last on the 21th January 2017)
e POPL, which was quoted as first example, still exists (last on January 2017)

e PiP, Principles in practice, which is about applying current formalisms to
real-world languages for testing, analysis and verification

e N40AI Next 40 years of Abstract Interpretation is about impact of Abstract
Interpretation during the last 40 years and new challenges involving it

e OBT, Off the Beaten Track is about unfamiliar problems in conferences but
that shows up a lot in practice

Obviously, this list is not exhaustive, but this just show that the subject is
monochrome. It is subdivided first between famous problems and practical
problems, then into semantic models’ impact and automation of tasks(here is meant
proving soundness of a language, checking correctness of a program and
investigating behaviour of a program). New languages don’t appear so frequently,
but research in the field is what makes them appear, since investigation and
especially formalization put us in front of theoretical problems and solutions that
may have different and really challenging applications.
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Conclusion

This master thesis allowed me to deepen my understanding of programming
languages and the proof assistant Isabelle/HOL. Now, I know a lot of useful technics
and touch a bit to the backstage of the application (ML programming), even through
it was not mentioned in this report (no concrete result).

Furthermore, being confronted with all kind of proofs and reasonings helped me
to mature as a person. Indeed the difficult parts of this formalization allows us
to realize the limitations of our tools(proof assistants), but also the difficulty of
the task of designing such languages consistently. The De Bruijn representation
is obviously some nightmare, you can’t escape from, and using nominals would
probably have pushed difficulties on a different side (reason why it wasn’t used
in this work). Therefore, I suggest greatly to try it out and verify my words.
There is still a lot of aspects of programming languages described in the book
written by Professor Pierce and probably some imprecisions and misleading parts
(normalization part), that will show up during formalization. But this remains
eventual future work for my successors, together with the incomplete parts(general
Java-like exceptions and general pattern matching). Finally, what will remain
from my work is a formalization of a language with a lot of interesting structures
(exceptions, disjoint sum, ...) and some Eisbach methods that can be reused easily.
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Appendix A: Extra list functions and lemmas

This theory contains all references to list iterators and extra functions.
Please see original file List_extra.thy for not displayed proofs.

fun list-iter ::("Ta='b = 'b) = 'b = 'a list = 'b where
list-iter fr [ =r|
list-iter f r (a#txs) = f a (list-iter f r xs)

fun replace ::nat = 'a = 'a list = 'a list where
replace n x s =
(if length xs < n then zs
else (take n zs) Q [z] @ (drop (Suc n) xs))

abbreviation fst-extract::('ax’b) list = ’a list where
fst-extract L = (list-iter (Ap r. fst p # r) [] L)

abbreviation snd-eztract::(‘ax’b) list = 'b list where
snd-extract L = (list-iter (Ap r. snd p # r) [ L)

abbreviation update-snd::('b = 'c) = (‘ax’d) list = ('ax’c) list where
update-snd f L = zip (fst-extract L) (map f (snd-extract L))

fun BigCirc::(‘a="a) list = ('a="a) (O (-) [75] 55) where
O =]
O (#fs) = [ (O fs)

fun BigCircT::("a—'b) list = (‘a—'d) (O (-) [75] 55) where
Or [ = empty |
Or (f#fs) =f ++ (O fs)

lemma replace-inv-length|simp):
length (replace n z S) = length S

by (induction S arbitrary: x n, auto)

lemma nth-replace[simp):
i<length L = (replace n x L)li = (if i=n A n<length L then x else (L'7))
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lemma insert-nth-comp:

n< length L = n<nl = insert-nth n S (insert-nth n1 S1 L) = insert-nth (Suc
nl) S1 (insert-nth n S L)

n< length L = n>n1 = insert-nth (Suc n) S (insert-nth n1 S1 L) = insert-nth
(n1) St (insert-nth n S L)

lemma rep-ins:
n<nl = n< length W = insert-nth n S (replace n1 A W) = replace (Suc
nl) A (insert-nth n S W) (is P— ?R = ?Q))
proof —
assume H: 7R ¢P
have 1:n1> length W = 2Q
by (simp add: min-def)
have ni1< length W = 20Q)
proof —
assume HI: ni<length W
have (Suc (Suc n1) — n) = Suc (Suc nl — n)
using H
by fastforce
with H show ?thesis
by (simp add: H1 min-def)(simp add: H Suc-diff-le take-drop)
qed
with 1 show ?Q by linarith
qed

lemma rep-ins2:

n<nl = n1< length W = insert-nth n1 S (replace n A W) = replace n A
(insert-nth n1 S W) (is ?P—= %R = ?Q)
proof —

assume H: 7R 7P

have Suc n < ni

by (metis (no-types) H(2) Suc-lel)
with H show ?2()
by (simp add: drop-Cons’ drop-take take-Cons’ min-def)

qed

lemma len-fst-extract[simp]:
length (fst-extract L) = length L
by (induction L, auto)

lemma len-snd-extract[simp]:

length (snd-extract L) = length L
by (induction L, auto)
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lemma fst-extract-zip1:
length L = length L1 = fst-extract (zip L L1) = L
proof (induction L arbitrary: L1)
case (Cons a L)
obtain b L1’ where L1 = b#L1’
using Cons(2)
by (metis length-Suc-conv)

with Cons
show ?case
using fst-conv length-Cons list-iter.simps(2) nat.simps(1) zip-Cons-Cons
by auto
qed auto

lemma zip-comp:
L = zip (fst-extract L) (snd-extract L)
by (induction L,auto)

lemma inset-find-Some:

x € set (fst-extract L) = Ip. find (Xe. fst e = z) L = Some (z,p) A (z,p) €
set L
by (induction L arbitrary: z, auto)

lemma incl-fst:
set L C set L1 = set (fst-extract L) C set (fst-extract L1)
using zip-complof L1]
set-zip-leftD[of - - fst-extract L1 snd-extract L1]
by (induction L arbitrary: L1, auto)

lemma incl-snd:
set L C set L1 = set (snd-extract L) C set (snd-extract L1)
using zip-comp[of L1]
set-zip-rightD[of - - fst-extract L1 snd-extract L1]
by (induction L arbitrary: L1, auto)

lemma find-zip1:

distinct L = length L = length L1 = length (LQL8) = length L2 — j<
length L = find (Ap. fst p = k) (zip L L1) = Some ((zip L L1) ! j)

= find (Ap. fstp = k) (zip (LQL3) L2) = Some ((zip (LQL3) L2) ! j)
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lemma list-iter-nil:
list-iter op @ [| L = [| = i<length L = Lli = ||
proof (induction L arbitrary: 1)
case (Cons a L)
show ?case
proof (cases i>0)
case True
from this obtain j where i = Suc j
by (metis Suc-pred)
thus ?thesis
using Cons(1)[of j]
Cons(2,3)
by force
next
case Fulse
thus ?thesis
using Cons(2)
by auto
qed
qed auto

lemma list-map-incl:
set (list-iter op Q [] (map f L)) C S = i<length L = set(f (L)) C S
proof (induction L arbitrary: f S i)
case (Cons a L)
from Cons show ?case
by (induction i arbitrary: L', auto)
qed auto

lemma list-map-incl2:
(Ni. i<length L = set(f (L)) C S) = set (list-iter op Q [| (map f L)) C S
proof (induction map f L arbitrary: L [ S)
case (Cons a L)
obtain b L1 where L = b#L1
using Cons(2)
by blast
thus Zcase

lemma fst-extract-app[simp]:
fst-extract (LQL1) = fst-extract L Q fst-extract L1
by (induction L arbitrary: L1, auto)
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lemma snd-extract-app[simp]:
snd-extract (LQL1) = snd-extract L @ snd-extract L1
by (induction L arbitrary: L1, auto)

lemma fst-extract-fst-index[simp):
i< length L = fst-extract L1 i = fst (L)
proof (induction L arbitrary: i)
case (Cons a L)
thus Zcase
by (induction i arbitrary: L', auto)
qed auto

lemma snd-eztract-snd-indez|[simp):
i< length L = snd-extract L'! i = snd (L ! i)
proof (induction L arbitrary: i)
case (Cons a L)
thus “case
by (induction i arbitrary: L', auto)
qed auto

lemma fst-updt-snd-is-fst[simp]:
fst-extract (update-snd f L) = fst-extract L
by (induction L arbitrary:f, auto)

lemma fst-ext-com-list-it-app:
fst-extract (list-iter op Q [] L) = list-iter op Q [| (map fst-extract L)
by (induction L, auto)

lemma snd-ext-com-list-it-app:
snd-extract (list-iter op @Q [| L) = list-iter op Q [] (map snd-extract L)
by (induction L, auto)

lemma map-com-list-it-app:
map F (list-iter op @Q [| L) = list-iter op @Q [] (map (map F) L)
by (induction L arbitrary: F, auto)

lemma zip-com-list-it-app:
(ALZL. length (f L1) = length (g L1)) = zip (list-iter op Q [| (map f L)) (list-iter
op @[] (map g L)) =
list-iter op @ [| (map (Ap. zip (f p) (9 p)) L)
by (induction L arbitrary: f g, auto)

lemma list-it-map-app-map:
list-iter op Q [| (map (update-snd F') L) = update-snd F (list-iter op Q [| L)
using fst-ext-com-list-it-applof L] snd-ext-com-list-it-app[of L]
map-com-list-it-app|of F map snd-extract L]
zip-com-list-it-app|of fst-extract map F o snd-extract L]
by force
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lemma update-snd-subset:
set L C set L1 = set (update-snd F' L) C set (update-snd F' L1)
proof (induction L arbitrary: L1 F)
case (Cons a L)
obtain j where H:j<length L1 L1 !j = a
using Cons(2)
set-conv-nth[of L1]
by auto
have (fst a, F (snd a)) € set (update-snd F L1)
using H in-set-zip
by force
then show ?case
using Cons
by simp
qged auto

lemma set-foldl-app[simp]:
set(foldl op @ L1 L) = (UN [ : set L. set 1) U set L1
by (induction L arbitrary: L1, auto)

lemma set-foldl-union[simp):
foldlop U SL=(UNIl:setL l)US
by (induction L arbitrary: S, auto)

lemma update-snd-rewrite-fun:

(Vi<length L. f (snd (L'i)) = g (snd (Li))) = update-snd f L = update-snd g
L
by (induction L, force+)

lemma update-snd-comp:
(update-snd F o update-snd G) L = update-snd (F o G) L
by (induction L, force+)

lemma fst-map:
fst-extract L = map fst L
by (induction L, auto)

lemma snd-map:
snd-extract L = map snd L
by (induction L, auto)

lemma count-rem1:

z € set L = count-list L © = count-list (removel x L) x + 1
by (induction L arbitrary: x, auto)
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lemma count-Suc:
count-list L x = Sucn => z € set L
proof (induction L arbitrary: n x)
case (Cons a L1)
have z ¢ set Ll — z = a
using count-notin|[of © L1]
Cons(2)
by (cases a=z,auto)
then show ?case
by (cases x € set L1, auto)
qed auto

lemma count-inset:
x € set L = An. count-list L x = Suc n
proof (induction L arbitrary: )
case (Cons a L1)
then show ?case
by (cases x € set L1, auto)
qed auto

lemma count-rem1-out:
z#ll = count-list (removel l1 L) x = count-list L x
by (induction L arbitrary: 11, auto)

lemma same-count-eq:
(Vazeset L U set L1. count-list L © = count-list L1 ©) = length L1 = length L
= (set L1 = set L)
proof —
assume count:V z€set L U set L1. count-list L x = count-list L1 x
and len : length L1 = length L
have 1:Az. z€ set L = = € set L1
proof —
fix z
assume H: z€set L
have H1: count-list L © = count-list L1 z
using count H
by auto
with len H show z€ set L1
proof (induction L arbitrary: L1 z)
case (Cons a L)
obtain b L1’ where H:L1 = b# L1’
using Cons(2) length-Suc-conv
by metis
have C:z =a Ve =bV (z#a ANz # D)
by auto
have z#a4 = 2#b = z€ set L1
using Cons(2—4) H
Cons(1)[of L1' z]
by fastforce
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with C show z€ set L1
using Cons(3,4) count-Suc H
by fastforce+
ged auto
qed
have Az. = € set L1 =z € set L
proof —
fix z
assume H: zeset L1
have HI: count-list L x = count-list L1 z
using count H
by auto
with len H show z € set L
proof (induction L1 arbitrary: L x)
case (Cons b L1
obtain a L' where H:L = a#L’
using Cons(2) length-Suc-conv
by metis
have C:z =aVz=bV (z#a Nz #b)
by auto
have z#a = 1#b = z€ set L
using Cons(2—4) H
Cons(1)[of L' x]
by fastforce
with C show z€ set L
using Cons(3,4) count-Suc H
by fastforce+
qged auto
qed
with 1 show ?thesis
by auto
qged

lemma count-conv-length:

(Vzeset L. count-list L © = count-list L1 ) = set L C set L1 = length L <
length L1

proof (induction L arbitrary:L1)
case (Cons | L)
have A:Vzeset L'. count-list L' x = count-list (removel | L1) x
using Cons(2,3) count-rem![of I L1] count-remI-out

by (metis add-diff-cancel-right’ count-rem1 removel .simps(2) set-subset-Cons
subsetCFE)

have set L' C set (removel | L1)
using Cons(3) A count-notin count-reml1
by fastforce
then show ?case
using Cons(1)[of removel | L1] A length-removel [of I L1]
subsetD[OF Cons(3), of I, simplified)
by (metis One-nat-def Suc-le-mono Suc-pred length-Cons length-pos-if-in-set)
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qged force

lemma same-count-set-length:

(Vzeset L. count-list L © = count-list L1 ) = set L = set L1 = length L =
length L1
by (metis order-refl count-conv-length le-antisym)

lemma count-list-app[simp]:
count-list (LQL1) z = count-list L x + count-list L1 x
by (induction L arbitrary: L1, auto)

lemma distinct-fst-imp-count-1:
distinct (fst-extract L) = (Vx€set L. count-list L ¢ = 1)

lemma same-count-swap:
Vazeset L. count-list L © = count-list L1 v —> set L1 C set L — Vzeset L1.
count-list L x = count-list L1 x
proof (rule+)
fix z
assume hyp: V yeset L. count-list L y = count-list L1 y set L1 C set L x€set L1
thus count-list L x = count-list L1 x
by auto
qed

lemma inset-rem1:
z€ set L= 3L1 L2. L = L1Q[z]QL2 A removel v L = L1QL2
proof (induction L arbitrary: )
case (Cons z1 L)
have z € set L' = z#x1 = ?case
proof —
assume H:z€ set L' z#xl
obtain LI L2 where HI:L'= L1 Q [2] @ L2 A removel z L' = L1 @ L2
using Cons(1)[OF H(1)]
by auto
have x1 # L' = (z14#L1) Q [z] @ L2 A removel x (x1 # L') = (z14#L1)
QL2
using removel-append H(2) H1
by auto
thus “case by blast
qed
thus ?case using Cons(2) by auto
qed auto
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lemma in-set-conv-card-Suc:
finite L=z € L =3k. card L = Suc k
proof —
assume H:zelL finite L
have 1:L = insert z (L — {z}) A ¢ ¢ (L — {z}) using insert-Diff [OF H(1)]
by blast
have card (L — {z}) = 0 — (L — {z}) = {}
using card-eq-0-iff [of L—{z}] finite-Diff [OF H(2), of {z}]
by meson
with 7 show 3k. card L = Suc k
using card-Suc-eqlof L card(L—{xz})]
by metis
qed

lemma set-zip-subset:
set (zip L TL) C set (zip L' TL") = length L' = length TL' = length L =
length TL
= set L C set L' A\ set TL C set TL'
proof (induction L arbitrary: TL TL' L)
case (Cons [ L)
obtain ¢t TL1 where TL = t#TL1
using length-Suc-conv Cons(4)
by metis
then show ?case
using Cons(1)[OF - Cons(3)] Cons(4,2)
in-set-zip[of (1,t), simplified]
by auto
qed auto

lemma set-zip-subset-app:
length L=length L1 = length L'=length L1’ —
set (zip L L1) C A = set (zip L' L1") C A = set (zip (LQL") (L1QL1"))
cA
proof (induction L arbitrary: L1 L' L1’ A)
case (Cons I’ La)
obtain /1 Lla where L1 = [1#Lla
using Cons(2) length-Suc-conv
by metis
then show ?case
using Cons(1)[OF - Cons(3) - Cons(5),0f L1a]
Cons(2,4)
by simp
qed auto
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Appendix B: Extended calculus functions

fun shift-L :: int = nat = lterm = lterm where

shift-L d ¢ LTrue = LTrue |

shift-L d ¢ LFalse = LFalse |

shift-L d ¢ (LIf t1 t2 t3) = LIf (shift-L d ¢ t1) (shift-L d c t2) (shift-L d ¢ t3) |

shift-L d ¢ (LVar k) = LVar (if k < c then k else nat (int k + d)) |

shift-L d ¢ (LAbs T' t) = LAbs T' (shift-L d (Suc ¢) t) |

shift-L d ¢ (LApp t1 t2) = LApp (shift-L d ¢ t1) (shift-L d ¢ t2) |

shift-L d ¢ unit = unit |

shift-L d ¢ (Seq t1 t2) = Seq (shift-L d c t1) (shift-L d c t2) |

shift-L d ¢ (t as A) = (shift-L d c t) as A |

shift-L d ¢ (Let var © ==t in t1) =
(if x> c then Let var (nat (int x + d)) := (shift-L d ¢ t) in (shift-L d c t1)
else Let var x := (shift-L d ¢ t) in (shift-L d (Suc ¢) t1)

) |
shift-L d ¢ ({t1,t2}) = { shift-L d ¢ t1 , shift-L d ¢ t2 |} |
shift-L d ¢ (1 t) = w1 (shift-L d ¢ t) |
shift-L d ¢ (2 t) = w2 (shift-L d c t) |
shift-L d ¢ (Tuple L) = Tuple (map (shift-L d ¢) L) |
shift-L d ¢ (ILit) =114 (shift-L d ct) |
shift-L d ¢ (Record L LT) = Record L (map (shift-L d ¢) LT) |
shift-L d ¢ (ProjR 1 t) = ProjR 1 (shift-L d c t) |
shift-L d ¢ (<|p|>) = <|p|> |

shift-L d ¢ (Let pattern p := t1 in t2) = (Let pattern p := (shift-L d ¢ t1) in
(shift-L d ¢ t2)) |
shift-L d ¢ (inl t as T') = inl (shift-L dct) as T'|
shift-L d ¢ (inr t as T') = inr (shift-L d c t) as T' |
shift-L d ¢ (Case t of Inl x = t1 | Inr y = t2) =
(Case (shift-L d c t) of
Inl (if x> ¢ then (nat (int © + d)) else x) = shift-L d (if < ¢ then Suc ¢
else ¢) t1
| Inr (if y> c then (nat (int y + d)) else y) = shift-L d (if y< ¢ then Suc ¢
else ¢) t2) |
shift-L d ¢ (<l:=t> as A) = <l:= shift-L d c t> as A |
shift-L d ¢ (Case t of L = B) =
(Case (shift-L d c t) of L =
map (Ap.(if (fst p) > c then (nat (int (fst p) + d)) else fst p , shift-L d (if
(fst p)<c then Suc c else ¢) (snd p))) B)|
shift-L d ¢ (Fizpoint t) = Fizpoint (shift-L d c t)
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function subst-L :: nat = lterm = lterm = lterm where

subst-L j s LTrue = LTrue |

subst-L j s LFalse = LFalse |

subst-L j s (LIf t1 t2 t3) = LIf (subst-L j s t1) (subst-L j s t2) (subst-L j s t3) |

subst-L j s (LVar k) = (if k = j then s else LVar k) |

subst-L j s (LAbs T’ t) = LAbs T' (subst-L (Suc j) (shift-L 1 0 s) t) |

subst-L j s (LApp t1 t2) = LApp (subst-L j s t1) (subst-L j s t2) |

subst-L j s unit = unit |

subst-L j s (Seq t1 t2) = Seq (subst-L j s t1) (subst-L j s t2) |

subst-L j s (t as A) = (subst-L j s t) as A |

subst-L j s (Let var x := t in t1) =

((Let var x := (subst-L j s t) in (subst-L (if j > x then Suc j else j) (shift-L 1 x
5) 1)) |

subst-L j s ({t1,t2]}) = {subst-L j s t1, subst-L j s t2]} |

subst-L j s (w1 t) = w1 (subst-L jst) |

subst-L j s (w2 t) = 7r2 (subst-L j s t) |

subst-L j s (I i t) =11 ¢ (subst-L j s t) |

subst-L j s (Tuple L) = Tuple (map (subst-L j s) L) |

subst-L j s (Record L LT) = Record L (map (subst-L j s) LT) |

subst-L j s (ProjR 1 t) = ProjR | (subst-L j s t) |

subst-L j s (<|p|>) = <|p|> |

subst-L j s (Let pattern p := t1 in t2) = (Let pattern p := (subst-L j s t1) in
(subst-L j s t2)) |

subst-L j s (inl t as T") = inl (subst-L j s t) as T'|

subst-L j s (inr t as T') = inr (subst-L jst) as T'|

subst-L j s (Case t of Inl x = t1 | Inr y = t2) =

(Case (subst-L j s t) of
Inl v = (subst-L (if j > x then Suc j else j) (shift-L 1 z s) t1)
| Inr y = (subst-L (if j > y then Suc j else j) (shift-L 1y s) t2)) |
subst-L j s (<l:=t> as T') = <l:=subst-L jst> as T'|
subst-L j s (Case t of L = B) =
(Case (subst-L j s t) of L = map (Ap. (fst p, subst-L (if 7 > fst p then Suc j

else j) (shift-L 1 (fst p) s) (snd p))) B) |

subst-L j s (Fizpoint t) = Fizpoint (subst-L j s t)
by pat-completeness auto

termination
proof (relation measure (A(j,s,t). size t), simp-all)
fix ¢ :: lterm and B :: (nat x lterm) list and z :: nat x lterm
assume z € set B
then have — Suc (size-list (size-prod (An. 0) size) B + size t) < size-prod
(An. 0) size
by (meson less-add-Sucl not-less size-list-estimation’)
then have — Suc (size-list (size-prod (An. 0) size) B + size t) < size (snd z)
by (simp add: size-prod-simp)
then show size (snd z) < Suc (size-list (size-prod (An. 0) size) B + size t)
using not-less by blast
qed (metis size-list-estimation’ lessI not-less)+
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fun Pvars :: Lpattern = nat list where
Pvars (Vn as A) = [n] |
Pvars (RCD L PL) = (foldl (Az r. x @Q r) [] (map Pvars PL))

fun patterns::lterm = nat list where
patterns (<|p|>) = Pvars p |

patterns (LIf ¢ t1 t2) = patterns ¢ @ patterns t1 Q patterns t2 |
patterns (LAbs A t1) = patterns t1 |

patterns (LApp t1 t2) = patterns t1 @ patterns t2 |

patterns (Seq t1 t2) = patterns t1 @ patterns t2 |

patterns (t1 as A) = patterns t1 |

patterns (Let var x := t1 in t2) = patterns t1 Q patterns t2 |

patterns ({t1,t2]}) = patterns t1 Q patterns t2 |

patterns (Tuple L) = foldl (Ae r. e Q1) [] (map (patterns) L) |
patterns (Record L LT) = foldl (Aer. e @r)[] (map (patterns) LT) |
patterns (w1 t) = patterns t |

patterns (w2 t) = patterns t |

patterns (I1 4 t) = patterns t |

patterns (PTO]R [t) = patterns t |

patterns (Let pattern p = t1 in t2) = patterns t1 Q patterns t2 |

patterns (inl t as T') = patterns t |

patterns (inr t as T') = patterns ¢ |

patterns (Case t of Inl x = t1 | Inr y = 12) = palterns t @ patterns t1 Q patterns

t2 |

patterns (<l:=t> as T') = patterns t |

patterns (Case t of L = B) = patterns t Q foldl (Ae r. e Q r) [| (map (patternsosnd)
B) |

patterns (Fizpoint t) = patterns t

inductive is-value-L :: lterm = bool where

VTrue : is-value-L LTrue |

VFalse: is-value-L LFalse |

VAbs :is-value-L (LAbs T t) |

VUnit :is-value-L unit |

VPair :is-value-L vl = is-value-L v2 = is-value-L ({v1,02}) |

VTuple:(\i. 0<i = i<length L = is-value-L (L'i)) = is-value-L (Tuple L)
|

VRCD :(\i. 0<i = i<length LT = is-value-L (LT'i)) = is-value-L (Record
L LT)|

VSumL :is-value-L v => is-value-L (inl v as A)|

VSumR :is-value-L v = is-value-L (inr v as A)]

VVa  :is-value-L v = is-value-L (<l:=v> as A)
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function F'V :: lterm = nat set where
FV LTrue = {} |
FV LFalse = {} |
FV (LIft1 t2t3) = FV t1 U FV 12 U FV £3 |
FV (LVar z) = {z} |
FV (LAbs T1t) = image (Az. x — 1) (FV ¢t — {0}) |
FV (LApp t112) = FV t1 U FV 12 |
FV unit = {} |
FV (Seq t1t2) = FV t1 U FV 2 |
FV (tas A) = FV ¢ |
FV (Let var z := t in t1) = image (Ay. if (y>z) then y—1 else y) (FV t1 —{z})
UFVt|
FV (Jt1,62)) = FV t1 U FV 12 |
FV (r1t)= FVt|
FV (r2t) = FVt|
FV (Tuple L) = foldl (Az r. z U r) {} (map FV L) |
FV(ILit)=FVt|
FV (Record L LT) = foldl Az r. z U r) {} (map FV LT) |
FV (ProjR 1t) = FV ¢ |
FV (Pattern p) = {} |
FV (Let pattern p := t1 in t2) = FV t1 U FV t2 |
FV (inlt as A) = FV t |
FV (inrtas A) = FV t |
FV (Case t of Inl z = t1 | Inr y = t2) = image (\y. if (y>z) theny — 1 else
y) (FV il —{z}) U
image (Az. if (z>y) then z — 1 else z) (FV
t2 —{y}) U

FV (<L:=t> as A) = FV t |

FV (Case t of L= B) = FV t U foldl (Az r. z U r) {} (map (Ap. image (\y.
if (y>Jst p) then y — 1 else y) (FV (snd p) — {fst p})) B) |

FV (Fizpoint t) = FV ¢

by pat-completeness auto

FVit |

termination
proof (relation measure (At. size t), simp-all)
fix ¢ :: lterm and B :: (nat X lterm) list and z :: nat X lterm
assume z € set B
then have — Suc (size-list (size-prod (An. 0) size) B + size t) < size-prod
(An. 0) size x
by (meson less-add-Sucl not-less size-list-estimation’)
then have — Suc (size-list (size-prod (An. 0) size) B + size t) < size (snd z)
by (simp add: size-prod-simp)
then show size (snd z) < Suc (size-list (size-prod (An. 0) size) B + size t)
by (meson not-less)
qed (metis size-list-estimation’ lessI not-less )+
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fun p-instantiate::(nat — lterm) = Lpattern = lterm where
p-instantiate ¥ (V k as A) = (case ¥ k of Some t' = t'| None = <|V k as A|>)|
p-instantiate ¥ (RCD L PL) = <|RCD L PL|>

fun fill::(nat — lterm) = lterm = lterm where

fill ¥ (Pattern p) = p-instantiate ¥ p |

fill S (LIf ¢ t1 t2) — LIf (il £ ¢) (fill S t1) (fill S 12) |

fill S (LAbs A t1) — LAbs A (fill S t1) |

fill X (LApp t1 t2) = LApp (fill ¥ t1) (fill ¥ ¢2) |

fill ¥ (Seq t1 t2) = Seq (fill ¥ t1) (fill ¥ 2) |

fill ¥ (t1 as A) =(fill X t1) as A |

fill ¥ (Let var z := t1 in t2) = (Let var z = (fill ¥ t1) in (fill X t2)) |
fill's ({t1,¢2]) = J(fill £ t1), (fill £ t2)} |

fill X (Tuple L) = Tuple (map (fill ¥) L) |

fill ¥ (Record L LT) = Record L (map (fill ¥) LT) |

fill X (w1t) =71 (fill ¥t)]

fllS (72 ) — 2 (il £ 1) |

fill'S (i ) — i (il S¢) |

fill S (ProjR 1 t) — ProjR 1 (fill 1) |

fill ¥ (Let pattern p := t1 in t2) = (Let pattern p := (fill ¥ t1) in (fill ¥ t2)) |
fill Y (inl t as A) = inl (fill X t) as A|

fill ¥ (inr t as A) = inr (fill © t) as A|

fill ¥ (Case t of Inlx = t1 | Inry = t2) = (Case (fill ¥ t) of Inl x = (fill ¥ t1)
| Inr y = (fill ¥ 12))|

fill E (<l:i=t> as A) = <l:=(fill  t)> as 4]

fill ¥ (Case t of L = B) = (Case (fill ¥ t) of L = map (Ap. (fst p, fill ¥ (snd
») B)

fill ¥ (Fizpoint t) = Fizpoint (fill ¥ t) |

ISt =t
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