Errata of my PhD thesis "Superposition for Higher-Order Logic"

Alexander Bentkamp

Selection of positive literals

The calculi in Chapter 6 and 7 allow selection of positive literals if they are of the form $t \approx \bot$. The completeness theorems does not hold up when using this feature.

Here is where the proof breaks: In case 1.2 of the proof of Lemma 6.21, the conclusion of the indicated superposition inference is not necessarily smaller than the main premise C. For example, rewritten subterm of C might be at the topmost position of the left-hand side of a non-maximal, selected positive literal $u \approx \mathbf{L}$ in C, and D might contain a literal $u \approx u''$ such that $u' \succ u'' \succ \mathbf{L}$.

Moreover, case 5 in the proof of Lemma 6.22 does not work. $R_N^*|_{\prec C} \not\models s \approx \bot$ only implies that s is not reducible to \bot , but does not imply that s is reducible to \top . Also, even if s is reducible to \top by $R_N^*|_{\prec C}$, it does not necessarily follow that it is reducible by R_C .

In short, selection of literals of the form $t \approx \bot$ should not be allowed in Definition 6.2 and 7.17.

Minor Errata

Page 91 The sentence "Neither s nor λw . g(yw) are fluid." should say "Neither s nor λw . $g(db^1 w)$ are fluid."

Page 182 The sentence "We must show that C is true in \mathcal{I} under ξ ." should say "We must show that C is true in \mathcal{I}' under ξ ."

Page 127 The proof of Lemma 6.8 is wrong. The term $s\{x \mapsto u\}$ is not necessarily structural smaller than t so induction hypothesis does not apply. The proof can be fixed as follows:

Lemma 6.8 Under the requirements of Definition 6.6, we have $[t]_R = [t]$ for all $t \in \mathcal{T}_G$.

Proof. By well-founded induction on t using the left-to-right lexicographic order on (n(t), |t|), where n(t) is the number of quantifiers in t and |t| is the size of the term t.

If $t = f(\bar{s})$, then $[\![t]\!]_R = \mathcal{J}(f)([\![\bar{s}]\!]_R) \stackrel{\text{IH}}{=} \mathcal{J}(f)([\bar{s}]) = [f(\bar{s})] = [t]$. The application of the induction hypothesis is justified because for all i, $(n(t), |t|) > (n(s_i), |s_i|)$.

If $t = \forall x. \ s$, then we proceed as follows: Let $\mathcal{T}_{QFG} \subseteq \mathcal{T}_G$ be the set of quantifier-free ground terms. We observe that for all ground terms $u \in \mathcal{T}_G$, there exists a quantifier-free ground term $u' \in \mathcal{T}_{QFG}$ such that $u \leftrightarrow_R^* u'$. This follows from (I1) because any quantifier term is of Boolean type. Therefore, we have

$$\min \{ [\![s]\!]_R^{\{x \mapsto [u]\}} \mid u \in \mathcal{T}_G \} = \min \{ [\![s]\!]_R^{\{x \mapsto [u]\}} \mid u \in \mathcal{T}_{QFG} \}$$
and
$$\min \{ [\![s \{x \mapsto u \}\!] \mid u \in \mathcal{T}_G \} = \min \{ [\![s \{x \mapsto u \}\!] \mid u \in \mathcal{T}_{QFG} \}$$

It follows that

The application of the induction hypothesis is justified because $s\{x \mapsto u\}$ contains less quantifiers than t.

If
$$t = \exists x. s$$
, we argue analogously.

Page 128 The proof of (I1) in part (5) of Lemma 6.10 is incomplete because (I1) requires us to show that $\mathsf{T} \not\leftarrow_{R^*} \mathsf{\bot}$.

Here is why $\mathsf{T} \not\longleftrightarrow_{R^*}^* \mathsf{L}$: For a proof by contradiction, suppose that $\mathsf{T} \longleftrightarrow_{R^*}^* \mathsf{L}$. Since R^* is confluent and T is in normal form, we have $\mathsf{L} \to_{R^*}^* \mathsf{T}$. By the assumption that the heads of the left-hand sides of rules in R are not logical symbols, we know that there is no rule of the form $\mathsf{L} \to t$ in R. By (B1) no rules in Δ_R^s have the form $\mathsf{L} \to t$. Thus, R^* does not contain rules of the form $\mathsf{L} \to t$, a contradiction.

Page 131 The definition of an inference reducing a counterexample should be as follows: An inference reduces a counterexample C if its main premise is C, its side premises are true in R_N^* , and its conclusion D is a clause smaller than C and false in R_N^* . In particular, the conclusion D is not required to be in N, contrary to what the the original formulation suggested.

Page 133 Case 2.4 of the proof of Lemma 6.21 can be simplified: We do not need to inspect the reduction chain of $s \approx t$. By (I3), $s \approx t \rightarrow_{R_N^*}^* \bot$ implies directly that $R_N^* \not\models s \approx t$.

Acknowledgments I would like to thank Yicheng Qian for discovering many of these errata and for suggesting fixes for many of them.