
Universität des Saarlandes

Master’s Thesis

in partial fulfillment of the requirements for the degree of
M. Sc. Language Science and Technology

An Isabelle Formalization
of the Expressiveness
of Deep Learning

Alexander Bentkamp

Supervisors: Prof. Dr. Dietrich Klakow and Dr. Jasmin Blanchette

November 2016

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Declaration

I hereby confirm that the thesis presented here is my own work, with all assistance

acknowledged.

Lübeck, den 14.11.2016

Alexander Bentkamp

iii

Abstract

Deep learning has had a profound impact on computer science in recent years,

with applications to search engines, image recognition and language processing,

bioinformatics, and more. Recently, Cohen et al. provided theoretical evidence for

the superiority of deep learning over shallow learning. I formalized their mathe-

matical proof using the proof assistant Isabelle/HOL. This formalization simplifies

and generalizes the original proof, while working around the limitations of the Isa-

belle type system. To support the formalization, I developed reusable libraries of

formalized mathematics, including results about the matrix rank, the Lebesgue

measure, and multivariate polynomials, as well as a library for tensor analysis.

iv

Contents

1. Introduction 1

2. The Expressiveness of Deep Learning 3

2.1. Sum-Product Networks . 3

2.2. Convolutional Arithmetic Circuits 4

2.3. Mathematical Background . 7

2.3.1. Lebesgue Measure . 7

2.3.2. Tensors . 7

2.4. Theorems of Network Capacity . 9

2.5. Discussion of the Original Result 10

2.5.1. Null Sets and Approximation 10

2.5.2. ReLU Networks . 11

2.6. The Restructured Proof of the Fundamental Theorem of Network

Capacity . 12

2.6.1. Proof Outline . 12

2.6.2. Tensors and Sum-Product Networks 13

2.6.3. The Restructured Proof . 14

2.7. Analogous Restructuring for the Generalized Theorem of Network

Capacity . 17

2.7.1. The “Squeezing Operator” ϕq 17

2.7.2. CP-rank of Truncated SPN Tensors 18

2.7.3. The Restructured Proof . 18

2.8. Comparison with the Original Proof 22

2.8.1. Proof Structure . 22

2.8.2. Unformalized Parts . 23

2.9. Generalization Obtained from the Restructuring 23

2.9.1. Algebraic Varieties . 23

2.9.2. Tubular Neighborhood Theorems 23

2.9.3. Calculation of the Bounds 25

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic 29

3.1. Isabelle’s Architecture . 29

3.2. The Archive of Formal Proofs . 30

3.3. Isabelle’s Metalogic . 30

3.3.1. Types . 30

3.3.2. Type Classes . 31

v

Contents

3.3.3. Terms . 31

3.4. The HOL Object Logic . 32

3.4.1. Logical Connectives and Quantifiers 32

3.4.2. Numeral Types . 32

3.4.3. Pairs . 33

3.4.4. Lists . 33

3.4.5. Sets . 33

3.5. Outer and Inner Syntax . 34

3.6. Type and Constant Definitions . 34

3.6.1. Typedef . 34

3.6.2. Inductive Datatypes . 35

3.6.3. Plain Definitions . 35

3.6.4. Recursive Function Definitions 35

3.6.5. Inductive Predicates . 36

3.7. Locales . 36

3.8. Proof Language . 37

3.8.1. Stating Lemmas . 37

3.8.2. Apply Scripts . 38

3.8.3. Isar Proofs . 38

3.8.4. An Example Isar Proof . 39

3.8.5. Theorem Modifiers . 40

3.8.6. Sledgehammer . 42

3.8.7. SMT Proofs . 42

3.9. Interactive Proof Development Workflow 43

4. Formalization of Deep Learning in Isabelle/HOL 45

4.1. A Comparison of Informal and Formal Proofs 45

4.2. Available Matrix Libraries . 48

4.2.1. Isabelle’s Multivariate Analysis Library 48

4.2.2. Sternagel and Thiemann’s Matrix Library 49

4.2.3. Thiemann and Yamada’s Matrix Library 51

4.3. Design of My Tensor Library . 52

4.4. Adapting the Formalization of the Lebesgue Measure 54

4.5. Formalization of Multivariate Polynomials 55

4.5.1. Nested Univariate Polynomials 56

4.5.2. Sternagel and Thiemann’s Polynomial Library 56

4.5.3. Lochbihler and Haftmann’s Polynomial Library 57

4.5.4. Immler and Maletzky’s Polynomial Library 58

4.6. Formalization of the Fundamental Theorem 58

4.6.1. A Type for Convolutional Arithmetic Circuits 58

4.6.2. The Shallow and Deep Network Models 60

4.6.3. The Fundamental Theorem 62

4.7. Related Work . 63

vi

Contents

5. Conclusion 65

A. List of Isabelle/HOL Symbols 71

vii

Acknowledgment

I would like to express my sincere gratitude to my supervisors Prof. Dr. Dietrich

Klakow and Dr. Jasmin Blanchette for giving me the opportunity to combine their

respective research areas machine learning and interactive theorem proving in this

master thesis. With their excellent supervision, I have learned a lot about the

process of scientific research and writing.

I am highly grateful to Dr. Johannes Hölzl for his support to understand the

formalization of the Lebesgue measure, for reviewing my thesis, and for helping

me to publish the formalization in the Archive of Formal Proofs.

Dr. Martin Lotz had plenty of patience explaining me his theorems on algebraic

varieties. I am grateful because his advice which fundamentally improved the

mathematical results of this thesis.

Dr. Ondřej Kunčar provided a preliminary version of his implementation of local

typedefs from his dissertation project and helped me to apply it to my formaliza-

tion.

Moreover, I would like to thank Dr. Florian Haftmann, Fabian Immler, Dr. An-

dreas Lochbihler, Alexander Maletzky, Dr. Walther Neuper, and Dr. René Thie-

mann for their helpful advice.

ix

1. Introduction

Machine learning enables computers to perform tasks that seem impossible to teach

them programmatically. Now there are unbeatable artificial intelligences playing

Go, self-driving cars, and practical speech recognition systems. In particular deep

learning algorithms have enabled this breakthrough. However, on the theoretical

side only little is known about the reasons why these deep learning algorithms

work so well. Recently, Cohen et al. [11] presented a theoretical approach using

tensor theory that can explain the power of one particular deep learning algorithm

called convolutional arithmetic circuits.

In this master’s thesis I formalized their results in the proof assistant Isa-

belle/HOL. A proof assistant (also called interactive theorem prover) is an interac-

tive software tool with a graphical user interface for the development of computer-

checked formal proofs. Traditional proofs on paper normally omit smaller proof

steps to increase readability. In contrast a formal proof contains every single ap-

plication of interference rules, and states exactly which axioms, assumptions or

previously deduced statements the rules are applied to. These formal proofs are

difficult to grasp by humans, but computers can easily verify the correctness of

these proofs. But the development of formal proofs can be arbitrarily tedious even

if a traditional proof on paper already exists. Proof assistants facilitate this task

by providing smaller proof steps automatically while letting the user contribute

the larger proof steps and ideas.

Isabelle/HOL is a natural choice for this task because its strength lies in the

high level of automation it provides. Moreover, it has an active community and

includes a large library of formalized mathematical theories including measure

theory, linear algebra, and polynomial algebra.

This work pursues several objectives: On the one hand, it is a case study of

applying proof assistants to a field where they have been barely used before, namely

machine learning. It shows that modern proof assistants such as Isabelle can

be used in various fields to verify the correctness of results, but also supporting

researchers to find new results. The generalization and the simplifications I found

demonstrate how formal proof development can also benefit the research outside

the world of formal proofs.

On the other hand, such as most formalizations, this project lead to the de-

velopment of generally useful libraries that can be used in future formalizations

about possibly completely different topics. Most prominently, I developed a li-

brary for tensors and their properties including the tensor product, tensor rank,

and matricization. Moreover, I extended several libraries: I added a the matrix

1

1. Introduction

rank and its properties to Thiemann and Yamada’s matrix library [29], adapted

the definition of the Lebesgue measure by Hölzl and Himmelmann [17] to my pur-

poses, and extended Lochbihler and Haftmann’s polynomial library [16] by various

lemmas, including the theorem that zero sets of multivariate polynomials 6= 0 are

Lebesgue null sets. These are topics that are independent of the domain of machine

learning, and they can be build upon in future purely mathematical formalization

projects. In addition to these main motivations, a personal interest is to develop

my expertise with a proof assistant in a larger project.

This thesis is divided into three chapters: Chapter 2 discusses the mathematical

background and the theory of deep learning. Chapter 3 introduces Isabelle/HOL,

and Chapter 4 explains how the theory of deep learning is formalized.

This analysis of deep learning focuses on one particular type of networks called

convolutional arithmetic circuits, which can be realized as shallow, deep or trun-

cated networks (Sections 2.1 and 2.2). The characteristic of the deep network

model is that it has more layers than the shallow network, while this does not nec-

essarily imply more network nodes. The truncated network is a generalization of

the two models, which can realize a network of any number of layers. Section 2.3

introduces the mathematical background knowledge needed to understand the

mathematical theorems.

Section 2.4 explains the theorems of network capacity which essentially state

that deep networks are more expressive than shallow ones. The deep networks are

more powerful in expressing arbitrary functions, assuming that there is a perfect

training algorithm to obtain the correct network weights. More precisely, the

functions that can be expressed by the shallow model form a Lebesgue null set in

the space of functions that can be expressed by the deep model. More generally,

even adding a single layer in the truncated model has this effect. This is the

result obtained by Cohen et al. [11] which I discuss in Section 2.5. To formalize

the results the proofs by Cohen et al. are restructured (Section 2.6 and 2.7). The

differences to the original proof are presented in Section 2.8. In addition to making

the formalization easier the restructuring also leads to a useful generalization of

the result (Section 2.9).

Chapter 3 introduces Isabelle/HOL: Its architecture is designed to ensure trust-

worthiness of the verified proofs (Section 3.1). Isabelle users contribute to an

online library of formalizations called Archive of Formal Proofs (Section 3.2). Isa-

belle/HOL is based on the generic proof assistant Isabelle (Section 3.2), extended

with a formalism of higher-order logic (HOL) (Section 3.4). Sections 3.5 to 3.7 de-

scribe the specification language of Isabelle/HOL, followed by the proof language

in Section 3.8 and the general workflow in Section 3.9.

Chapter 4 presents the Isabelle/HOL libraries relevant for this formalization and

how I extended them (Section 4.2, 4.4 and 4.5). Moreover, I present my newly

developed tensor library (Section 4.3). Section 4.6 then explains how the deep

learning networks and their properties are formalized.

2

2. The Expressiveness of Deep

Learning

Machine learning algorithms are designed to make decisions or predictions without

being explicitly programmed. This thesis focuses on supervised learning. These

algorithms learn from a set of sample data, that specify input and desired output

for each data set. This process is called training. The algorithms generalize this

training data, allowing them to imitate the learned output on previously unseen

input data.

A typical application of machine learning is image recognition, i.e., assigning a

given image to one of several categories, depending on what the image depicts. For

training, a supervised learning algorithm needs a set of labeled pictures, and builds

a model of the features that cause an image to belong to a category. Afterwards,

the algorithm can be used to label unseen pictures.

Deep learning algorithms use graph-like structures with multiple processing lay-

ers to represent the abstraction of the data. Empirically, it is known that more

layers increase performance. Cohen et al. present a theoretic approach to explain

this effect a deep learning architecture called convolutional arithmetic circuits.

These circuits combine the ideas of two other architectures called sum-product

networks and convolutional neural networks.

2.1. Sum-Product Networks

Sum-product networks (SPNs) are a deep learning architecture, also known as

arithmetic circuits. SPNs consist of a rooted directed acyclic graph with input

variables as leaf nodes and two types of interior nodes: sum nodes and product

nodes. The incoming edges of sum nodes are labeled with real weights, which

have to be learned during training. Possible training algorithms are expectation

maximization or gradient descent [25].

The network is evaluated by assigning real numbers to each input variable,

calculating the product at product nodes, and the weighted sum at sum nodes.

The value at the root is the output of the network.

Figure 2.1 shows an example of an SPN. It has four input nodes x1, x2, x3, x4.

Applied to the domain of image recognition, these values represent the pixel data

of the image. The structure of the network has to be crafted manually. For

example, it is reasonable to connect adjacent pixels early in the network. The

3

2. The Expressiveness of Deep Learning

2 ++ + +

+

x x

0.5
3

3 2
-1 -2

1

1 6 -1 1

-6-6

-9
0.5 1

2 0 1 3
x2x1 x3 x4

Figure 2.1.: The evaluation of an SPN

edges leading to sum nodes are labeled with weights, which are learned during

training. The figure shows an evaluation of the network on the data (2, 0, 1, 3),

which represents a possibly unseen picture. Evaluating the weighted sums and

products, the output value −9 is obtained. This value has to be interpreted in

the same way that the training data is coded. For example, negative values could

mean that the algorithm categorizes this data as a landscape picture, whereas

positive values encode animal pictures.

2.2. Convolutional Arithmetic Circuits

Convolutional neural networks (ConvNets) are another deep learning architecture.

ConvNets are structured as a stack of layers, such as convolutional, pooling and

rectified linear unit layers. To evaluate a ConvNet for a data set, the convolutional

layers apply a special system of weighted sums, whose weights have to be learned

in training. Pooling layers are used to reduce the amount of data, usually by

combining groups of incoming values to their average or their maximum value.

Rectified linear unit (ReLU) layers apply the function x 7→ max(0, x) to each

incoming value.

Cohen et al. transfer the structure of ConvNets to SPNs, creating convolutional

arithmetic circuits. They use 1 × 1 convolutions, which amount to multiplying a

matrix containing weights to the incoming values. Instead of maximum or aver-

age pooling, they use multiplication, such that the resulting network is an SPN.

They do not use ReLU layers to preserve the SPN nature of the network. In-

stead, a layer of non-linear function application is inserted before the SPN, called

representational layer.

Although the analysis presented in this thesis is not limited to these, three

models of convolutional arithmetic circuits are studied closely in this thesis:

4

2.2. Convolutional Arithmetic Circuits

• The deep network model which has the largest amount of layers possible

using binary branching

• The shallow network model which has the smallest amount of layers possible

• The truncated network model which is a generalization of the first two,

parameterized by the desired number of layers Lc. For Lc = log2N and

Lc = 1 it is identical to the deep and the shallow network, respectively.

We further assume that the number of inputs N is a power of 2, which simplifies

the proofs, although the analysis is not principally limited to these cases. The

number of output nodes is denoted as Y .

The structure of these networks is illustrated in Figure 2.2 for networks with

eight input nodes (N = 8). The networks take a vector of real numbers as in-

put. In the figures each of the values is represented by a gray square. First,

the representational layer (black arrows) is applied, which consists of non-linear

functions fθ such as gaussians or sigmoids. There are M different non-linear func-

tions fθ1 , . . . , fθM , such that each input value xi yields a vector of M different

values fθ1(xi), . . . , fθM (xi) (the gray bars).

What follows is the SPN. In the language of SPNs we have alternating sum and

product layers, which would be called 1× 1 convolution and pooling layers in the

language of ConvNets, respectively. They calculate the following:

The convolutional layers (white arrows) multiply a weight matrix to the incom-

ing vector. The size of the matrices depends on parameters r0, . . . , rL−1. In layer l,

the matrix has a size of rl × rl−1, where r−1 = M and rL = Y . In the shallow

model, we denote Z = r0. The values of these matrices are denoted as al,j,γα where

α = 1, . . . , rl−1 is the column index, γ = 1, . . . , rl is the row index, l denotes

the number of the layer and j denotes the position in that layer. Expressed as a

formula, the convolution operation performs the following mapping:

(vα)α=1,...,rl−1
7→

(
rl−1∑
α=1

al,j,γα vα

)
γ=1,...,rl

The entries of these matrices are the weights of the network, which must be learned

during training. In this discussion we allow the weights in the branches of the

network to be different. In practice it can be useful to have the branches share

the weights, i.e., the weight matrices must be identical in each branch of the same

layer. Then al,j,γα is independent of j, which results in a reduction of the number

of weights. The proofs for the case of shared weights are analogous to the ones

presented in this thesis.

The pooling layers (gray arrows) multiply the incoming vectors componentwise

and do not contain any weights. So, if the pooling operation has J incoming

vectors, it performs the following mapping:

(v1α)α=1,...,rl , . . . , (v
J
α)α=1,...,rl 7→ (v1α · . . . · vJα)α=1,...,rl

5

2. The Expressiveness of Deep Learning

(a) The deep network

(b) The shallow network

(c) The truncated network for Lc = 2

Figure 2.2.: The network models for N = 8 input nodes. The representational
layer applies non-linear functions (black arrows). The convolutional
layers multiply by a weight matrix (white arrows). The pooling layers
multiply componentwise (gray arrows).

6

2.3. Mathematical Background

The deep network model always merges two branches at a time in a pooling layer,

while the shallow network model merges all branches in the first pooling layer.

The truncated network model starts merging two branches at a time and finally

merges all branches at some layer Lc. The deep and the shallow networks are

special cases of this model with Lc = log2N and Lc = 1, respectively.

2.3. Mathematical Background

In this section I give a brief introduction to the Lebesgue measure, and a more

in-depth discussion to tensors. The explanations presume a basic understanding

of linear algebra.

2.3.1. Lebesgue Measure

The Lebesgue measure is a mathematical description of the intuitive concept of

length, surface or volume. It extends this concept from simple geometrical shapes

to a large amount of subsets of Rn, including all closed and open sets. It is provably

impossible to have a measure that measures all subsets of Rn while maintaining

intuitively reasonable properties. The sets that the Lebesgue measure can assign

a volume are called measurable. The volume that is assigned to a measurable set

can be a real number ≥ 0 or∞. A set of Lebesgue measure 0 is also called null set.

If a property holds for all points in Rn except for a null set, we say the property

holds almost everywhere.

The following lemma is of special significance for the proofs in this thesis [9]:

Lemma 2.3.1. If p 6≡ 0 is a polynomial with d variables, the set of points in Rd

where it vanishes is of Lebesgue measure zero.

2.3.2. Tensors

The easiest way to understand tensors is to see them as multidimensional arrays.

Vectors and matrices are special cases of tensors, but in general tensors are allowed

to identify their entries by more than one or two indices. Each index corresponds

to a mode of the tensor. For matrices these modes are “row” and “column”. The

number of modes is the order of the tensor. The number of values an index can take

in a particular mode is the dimension in that mode. So a real tensor A of order N

of dimension Mi in mode i contains values Ad1,...,dN ∈ R for di ∈ {1, . . . ,Mi}. The

space of all these tensors is written as RM1×···×MN .

We define a product of tensors, which generalizes the outer vector product:

⊗ : RM1×···×MN1 × RM
′
1×···×M

′
N2 → RM1×···×MN1

×M ′1×···×M
′
N2

(A⊗ B)d1,...,dN1
,d′1,...,d

′
N2

= Ad1,...,dN1
· Bd′1,...,d′N2

7

2. The Expressiveness of Deep Learning

Analogously to matrices, we can define a rank on tensors, which is called CP-

rank :

Definition 2.3.1. The CP-rank of a tensor A of order N is defined as the minimal

number Z of terms that are needed to write A as a linear combination of tensor

products of vectors az,1, . . . ,az,N :

A =

Z∑
z=1

λz · az,1 ⊗ · · · ⊗ az,N with λz ∈ R and az,i ∈ RMi

By rearranging the entries of a tensor, the values can also be written into a

matrix, where each matrix entry corresponds to a tensor entry. This process is

called matricization. To make it compatible with the tensor product, we define it

as follows:

Definition 2.3.2. Let A be a tensor of even order 2N . Let Mi be the dimension

in mode 2i − 1 and M ′i the dimension in mode 2i. The matricization [A] ∈
R

∏
Mi×

∏
M ′i is defined as follows: The entry Ad1,d′1,...,dN ,d′N is written into the

matrix [A] at row d1 + M1 · (d2 +M2 · (· · ·+MN−1 · dN)) and column d′1 + M ′1 ·(
d′2 +M ′2 ·

(
· · ·+M ′N−1 · d′N

))
.

This means that the even and the odd indices operate as digits in a mixed

radix numeral system to specify the column and the row in the matricization,

respectively. If all modes have equal dimension M , the indices are digits in a

M -adic representation of the column and row indices.

The CP-rank of a tensor is related to the rank of its matrix in the following

way:

Lemma 2.3.2. Let A be a tensor of even order. Then

rank[A] ≤ CP-rankA

A proof of this is given in the original paper by Cohen et al. [11, p. 21].

An alternative way to look at tensors is as multilinear maps. A map f : RM1 ×
· · · × RMN → R is multilinear if for each i the mapping xi 7→ f(x1, . . . ,xN) is

linear (all variables but xi are fixed). Such a mapping is completely determined if

its values on basis vectors are specified:

f(x1, . . . ,xN) = f(x1,1e1 + · · ·+ x1,M1
eM1

, . . . , xN,1e1 + · · ·+ xN,MN
eMN

)

=
∑

i1,...,iN

x1,i1 · · · · · xN,iN · f(ei1 , . . . , eiN)

Therefore, to determine such a multilinear mapping we need M1 × · · · ×MN real

values that define the values for f(ei1 , . . . , eiN). The tensor that contains these

values is identified with that multilinear mapping.

8

2.4. Theorems of Network Capacity

2.4. Theorems of Network Capacity

This analysis of the networks discusses their expressiveness. A function f can

be expressed by a network if there exists a weight configuration such that the

input x produces the output f(x) for all possible inputs x. The expressiveness of

a network is its ability to express functions with arbitrary weight configurations.

Therefore this analysis does not discuss the training algorithm, i.e., how the desired

weight configuration can be obtained given some training values of the function.

I will call the functions that can be expressed with some given deep network or

some given shallow network deep network functions and shallow network functions,

respectively.

Since the representational layers of all three network models are the same (fixing

the values of N and M), I focus on the lower part of the networks without the

representational layer and I call it the deep, shallow or truncated SPN, respectively.

Accordingly I call the functions expressed by the SPNs alone deep, shallow or

truncated SPN functions.

The central question is whether and to what extend the deep SPN is more

powerful than the shallow SPN. Both SPN models are known to be universal,

meaning they can realize any multilinear function if an arbitrary number of nodes

is allowed, i.e., if there is no limit to the values of rl and Z, respectively. The

models including the representational layer are also universal in the sense that

they can approximate any L2-function for M →∞.

When comparing the deep and the shallow network model, Cohen et al. fix the

number of nodes in the deep network model by fixing the parameters N , M , r0,

. . . , rL−1, Y , and limit the amount of nodes in the shallow network by requiring

Z < rN/2 where r := min(r0,M). The number of nodes in the shallow SPN is

(N + 1) · Z + Y . Effectively, the shallow network is only allowed to use less than

exponentially many nodes w.r.t. the number of inputs. They show that these

“small” shallow networks can only express a small fraction of the functions that a

deep network can express. More precisely they prove the following theorem, which

is a slightly modified version of Theorem 1 from the original work by Cohen et

al. [11]. Note that the representing tensors mentioned in the original theorem are

isomorphic to the SPN functions used here.

Theorem 2.4.1 (Fundamental theorem of network capacity). Consider the deep

network model with parameters M , rl and N and define r := min(r0,M). The

weight space of the deep network is the space of all possible values for the weights

al,j,γα . In this weight space, let S be the set of weight configurations that represent

a deep SPN function which can also be expressed by the shallow SPN model with

Z < rN/2. Then S is a set of measure zero with respect to the Lebesgue measure.

This theorem can be generalized to the following theorem about truncated net-

works, which is a slightly modified version of Theorem 2 from Cohen et al. [11]:

Theorem 2.4.2 (Generalized theorem of network capacity). Consider two trun-

9

2. The Expressiveness of Deep Learning

cated SPNs, one with depth L1 and parameters r
(1)
l , the other with depth L2 and

parameters r
(2)
l . Let L2 < L1 and define r := min{M, r

(1)
0 , . . . , r

(1)
L2−1}. In the

space of all possible weight configurations for the L1-network, let S be the set of

weight configurations that represent a L1-SPN function which can also be expressed

by the L2-SPN model with r
(2)
L2−1 < rN/2

L2 . Then S is a set of Lebesgue measure

zero.

Theorem 2.4.1 is a special case of this theorem, setting L1 = log2N and L2 =

1. Both of these theorems can be expanded quite easily to the entire networks

including the representational layer. Moreover, it can be shown that S is closed,

which means that any deep SPN function with parameters outside S cannot be

approximated arbitrarily well by the shallow SPN model. Since these corollaries

are of less interest for this work, see the original work [11] for details.

2.5. Discussion of the Original Result

2.5.1. Null Sets and Approximation

Although Cohen et al. provided a detailed insight into the mathematical theory

behind deep learning, this result should be studied carefully. What exactly does

it mean that S is of measure zero (also called a null set)? Cohen et al. refer to the

probabilistic interpretation of null sets, which states the following: If one draws

a random point from Rn using some continuous distribution, with probability 1

the resulting point will lie outside of a given null set. The event that the point

lies inside that null set has probability 0, but is still possible (provided that the

null set is not the empty set). This distinction between events of probability 0

and impossible events makes sense theoretically, but whether it applies in the real

world is debatable.

In a corollary Cohen et al. also prove that S is closed. This means that any

point outside S cannot be approximated arbitrarily well using points from S.

This excludes for example sets such as Q ⊂ R, which is a null set, but not closed.

Nonetheless, there are large subsets of Rn that are closed and null sets. For

example consider the set {(x1, . . . , xn) | x1 is a multiple of ε} ⊂ Rn for some fixed

ε > 0, which is a set of hyperplanes with distance ε to each other. The set is a null

set and closed. Any point outside the set can be approximated, not arbitrarily

well, but up to ε. Mathematically this is a difference, but in practice there is no

difference if ε is small.

In implementations of the deep learning algorithm, there will be a limit to how

exact the calculations can be performed and a limit to what values the network

weights can have. Therefore the weight space is a finite set, since the computer

can only store a finite number of different values. With respect to the Lebesgue

measure the entire weight space and all its subsets are then a closed null set. For

these reasons, it would be desirable to find more precise ways to measure the size

10

2.5. Discussion of the Original Result

weight space
of the
deep net

expressible
by small shallow nets

(a) An illustration of
the set S as a line in
the 2-dimensional
space.

weight space
of the
deep net

expressible
by small shallow nets

(b) The set S how
it would look like
in an implementa-
tion.

weight space
of the
deep net

expressible
by small shallow nets

ε-approximable
by small shallow nets

(c) An approximation
of the discretized
set using the ε-
neighborhood of S.

Figure 2.3.

of the set S.

One way to do this is to use a uniform discrete measure on some subset of Rn.

If the line in Figure 2.3a represents the set S, using a discrete measure would

correspond to measuring a set as illustrated in Figure 2.3b. This set is closer

to the discrete weight space in an implementation, in this illustration using fixed

point arithmetic. Since this discrete set is cumbersome to handle mathemati-

cally, an alternative is illustrated in Figure 2.3c. The ε-neighborhood of S is a

good approximation of the set in Figure 2.3b, and it is much easier to describe it

mathematically.

2.5.2. ReLU Networks

Unfortunately, the convolutional arithmetic circuits are easy to analyze, but little

used. They are equivalent to SimNets which have been developed by Cohen et al.,

the same research group that also found this tensor approach to analyze them.

However, Cohen et al. claim that these networks are simply in an early stage of

development and have the potential to outperform the popular ConvNets with rec-

tified linear unit (ReLU) activation. SimNets have been demonstrated to perform

as well as these state of the art networks, even outperform them when computa-

tional resources are limited [10].

Moreover, the tensor analysis of convolutional arithmetic circuits can be con-

nected to the ConvNets with ReLU activation[12]. Cohen et al. provide a transfor-

mation of convolutional arithmetic circuits into ConvNets with ReLU activation,

which allows to deduce properties of the latter from the tensor analysis described

11

2. The Expressiveness of Deep Learning

here. Unlike the convolutional arithmetic circuits, ReLU ConvNets with average

pooling are not universal, i.e., even with an arbitrary number of nodes arbitrary

functions cannot be expressed. Moreover, ReLU ConvNets do not show complete

depth efficiency, i.e., the analogue of the set S for those networks has a Lebesgue

measure greater zero. This leads Cohen et al. believe that convolutional arith-

metic circuits could become a leading approach for deep learning, once suitable

training algorithms have been developed.

2.6. The Restructured Proof of the Fundamental

Theorem of Network Capacity

2.6.1. Proof Outline

The proof of Theorem 2.4.1 by Cohen et al. is a single, monolithic induction over

the deep network structure that contains matrix theory, tensor theory, measure

theory and polynomials. This proof strategy is not appropriate for a formaliza-

tion, since inductions are generally complicated enough already and this approach

does not allow a separation of the different mathematical theories involved. I

restructured the proof to obtain a more modular version, which is presented here.

The restructured proof follows the following strategy:

Step I. We describe the behavior of an SPN function at an output node y by

a tensor Ay that depends on the network weights. We focus on an

arbitrary output node y of the deep network. If the shallow network

cannot represent the output of this node, it cannot represent the entire

output either.

Step II. We show that the CP-rank of a tensor representing an SPN function

indicates how many nodes the shallow model needs to represent this

function.

Step III. We construct a multivariate polynomial p, mapping the deep network

weights w to a real number p(w).

Step IV. We show that if p(w) 6= 0, the tensor Ay representing the network with

weights w has a high CP-rank. More precisely, the CP-rank is then

exponential in the number of inputs.

Step V. Show that p is not the zero polynomial and hence its zero set is a

Lebesgue null set by Lemma 2.3.1.

By steps IV and V, Ay has an exponential CP-rank almost everywhere. By

step II, the shallow network therefore needs exponentially many nodes to represent

the deep SPN functions almost everywhere, which proves Theorem 2.4.1.

12

2.6. The Restructured Proof of the Fundamental Theorem of Network Capacity

2.6.2. Tensors and Sum-Product Networks

The SPNs described before define a multilinear mapping from their input vectors

to their output vectors: The convolutional layers contain a multiplication by a

matrix, which is a linear mapping. The pooling layers contain a componentwise

multiplication, which is linear if all but one of the incoming vectors are fixed.

Therefore, each output value of the network can be represented by a tensor Ay,

which is step I in the proof outline. The tensor’s entries Ayd1,...dN contain the

output value of the network if the input vectors are the basis vectors ed1 , . . . , edN .

The representing tensor can be computed inductively through the network,

where convolutional layers introduce weighted sums of tensors and pooling lay-

ers introduce tensor products. For the deep network this results in the following

equations:

ψ0,j,γ = eγ

φ0,j,γ =

M∑
α=1

a0,j,γα ψ0,j,α = (a0,j,γ1 , . . . a0,j,γM)

ψ1,j,γ = φ0,2j−1,γ ⊗ φ0,2j,γ

φ1,j,γ =

r0∑
α=1

a1,j,γα ψ1,j,α

. . .

φL−1,j,γ =

rL−2∑
α=1

aL−1,j,γα ψL−1,j,α

ψL,1,γ = φL−1,1,γ ⊗ φL−1,2,γ

Ay = φL,1,y =

rL−1∑
α=1

aL,1,yα ψL,1,α

For the shallow network the same principles apply and yield an equation that

is close to the definition of the CP-rank, which will be useful in the proof below:

Ay =

Z∑
α=1

a1,1,yα · a1,γ ⊗ · · · ⊗ aN,γ where aj,γ = (a0,j,γ1 , . . . , a0,j,γM)

This equation shows that for some shallow network with a fixed parameter Z, all

tensors representing this network have a CP-rank of at most Z, which is step II of

the proof outline:

Lemma 2.6.1. Let A be a tensor. If a shallow SPN with parameter Z is repre-

sented by this tensor, then

Z ≥ CP-rank(A)

So when the CP-rank of the tensor representing the deep network is exponential,

the number of nodes needed by the shallow network is exponential.

13

2. The Expressiveness of Deep Learning

The same applies to the truncated SPN and results in these equations:

ψ0,j,γ = eγ

φ0,j,γ =

M∑
α=1

a0,j,γα ψ0,j,α = (a0,j,γ1 , . . . a0,j,γM)

ψ1,j,γ = φ0,2j−1,γ ⊗ φ0,2j,γ

φ1,j,γ =

r0∑
α=1

a1,j,γα ψ1,j,α

. . .

φLc−1,j,γ =

rLc−2∑
α=1

aLc−1,j,γα ψLc−1,j,α

ψLc,1,γ =

N/2Lc−1⊗
j=1

φLc−1,j,γ

Ay = φLc,1,y =

rLc−1∑
α=1

aLc,1,yα ψLc,1,α

2.6.3. The Restructured Proof

As described in the proof outline (Section 2.6.1), we want to define a multivariate

polynomial p (Step III), which maps the network weights w of the deep network

to a real number p(w) and has the following properties:

• If p(w) 6= 0, then the tensor Ay representing the deep network with weights

w has a high CP-rank. More precisely, CP-rank(Ay) ≥ rN/2. (Step IV)

• The polynomial p is not the zero polynomial. (Step V)

By Lemma 2.3.2, the CP-rank of a tensor is greater than or equal to the rank of

its matricization. Therefore, it suffices to show a high rank of [Ay] instead of a

high CP-rank of Ay. As a first step to defining a polynomial p with the desired

properties, we show this rank to be high for one specific weight configuration:

Lemma 2.6.2. There exists a deep SPN weight configuration such that

rank[Ay] = r
N/2

.

Proof. We prove by induction over the deep network structure that there exists a

weight configuration such that

(φl,j,γ)d1,...,d2l =


1 if di < r for all i

and (d1, d3, . . . , d2l−1) = (d2, d4, . . . , d2l)

0 otherwise

(2.1)

for all l ≥ 1 and for all j and γ.

14

2.6. The Restructured Proof of the Fundamental Theorem of Network Capacity

We start with the base case l = 1: In the first convolutional layer, we choose

matrices that contain 1 on their main diagonal, and zero elsewhere. (If the ma-

trix is square, it would be the identity matrix.) Then we obtain after the first

convolutional layer:

φ0,j = (e1, . . . , eM , 0, . . . , 0) if M < r0, or

φ0,j = (e1, . . . , er0) if r0 ≤M

For tensors of order 1, the tensor product is identical with the outer vector product.

Therefore, after the first pooling layer, we obtain

ψ1,j = (e1e
t
1, . . . , eMetM , 0, . . . , 0) if M < r0, or

ψ1,j = (e1e
t
1, . . . , er0e

t
r0) if r0 ≤M

In the second convolutional layer, we choose matrices that have ones everywhere.

As a result we obtain

φ1,j,γ = e1e
t
1 + · · ·+ ere

t
r for all γ, where r = min(r0,M)

This tensor fulfills equation 2.1. This ends the base case of our induction.

For the induction step we assume that

(φl−1,j,γ)d1,...,d2l−1
=


1 if di < r for all i

and (d1, d3, . . . , d2l−1−1) = (d2, d4, . . . , d2l−1)

0 otherwise

for all j and for all γ. After the following pooling layer we obtain ψl,j,γ =

φl−1,2j−1,γ ⊗ φl−1,2j,γ , i.e.,

(ψl,j,γ)d1,...,d2l =


1 if di < r for all i

and (d1, d3, . . . , d2l−1) = (d2, d4, . . . , d2l)

0 otherwise

In the following convolutional layer we choose matrices that contain only ones in

their first column, and zeros in the other columns. Therefore we obtain φl,j,γ =

ψl,j,1 for all j and all γ. So φl,j,γ fulfills equation 2.1 and this concludes the

induction step.

Since φL,j,y = Ay, we have shown that

Ayd1,...,dN =


1 if di < r for all i

and (d1, d3, . . . , dN−1) = (d2, d4, . . . , dN)

0 otherwise

This is equivalent to a diagonal matrix [Ay] that has a 1 on the diagonal position

15

2. The Expressiveness of Deep Learning

k if k has a M -adic representation that contains only digits lower than r, and 0

otherwise. This matrix has dimension MN/2 ×MN/2 and therefore there are rN/2

different M -adic representations that contain only digits lower than r. So [Ay] is

a diagonal matrix with rN/2 non-zero entries and hence rank[Ay] = rN/2 for this

weight configuration.

A well known lemma from matrix theory connects the rank of a matrix to its

square submatrices with non-zero determinant. A submatrix is obtained from a

matrix by deleting any rows and/or columns. The determinants of square subma-

trices are also called minors. The size of the minor is the size of the submatrix

that it corresponds to.

Lemma 2.6.3. The rank of a matrix is equal to the size of its largest non-zero

minor.

We define p as the mapping from the network weights to one of the rN/2 × rN/2

minors of [Ay]. Independently of the minor we choose, by Lemma 2.6.3, rank[Ay] ≥
rN/2 if p(w) 6= 0. By Lemma 2.3.2, it follows that p fulfills the first desired property

that CP-rank(Ay) ≥ rN/2 if p(w) 6= 0, which completes step IV.

Lemma 2.6.2 states that there is a weight configuration w where rank[Ay] = rN/2.

By Lemma 2.6.3, this implies that there exists a non-zero rN/2×rN/2 minor of [Ay]

for this weight configuration w. By choosing one of these minors for the definition

of p, we can ensure the second desired property that p is not the zero polynomial,

which completes step V.

It is not obvious that the mapping from the network weights to this rN/2 × rN/2

minor of [Ay] is indeed a polynomial, though:

Lemma 2.6.4. Any mapping from the deep network weights to one of the minors

of [Ay] can be represented as a polynomial.

Proof. First, we show by induction over the SPN structure that the entries of [Ay]

are polynomials if we consider the weights as variables: The inputs of the SPN

(i.e. after the representational layer) are constant with respect to the weights

and therefore polynomial. The convolutional layers compute a multiplication by a

weight matrix, so only multiplication and addition operations are involved, which

map polynomials to polynomials. The pooling layers involve multiplications only,

so polynomials are mapped to polynomials.

Finally, the resulting tensor Ay has polynomial entries, and therefore the entries

of [Ay] are polynomial. Calculating a minor amounts to picking some of these

polynomial entries and calculating their determinant. The Leibniz formula of the

determinant involves only products and sums. Therefore the minors of [Ay] are

polynomial as well.

We can now prove Theorem 2.4.1:

16

2.7. Analogous Restructuring for the Generalized Theorem of Network Capacity

Proof of Theorem 2.4.1. Let S be the set of weight configurations that represent

a deep SPN function which can also be expressed by the shallow SPN model with

Z < rN/2. We must show that S is a null set.

Let Ay be the representing tensor of the deep SPN for some weight configuration

w. By the discussion above, there exists a non-zero polynomial p with the property

that whenever p(w) 6= 0, then CP-rank(Ay) ≥ rN/2.
Let S′ = {w | p(w) = 0}. Then we have CP-rank(Ay) ≥ rN/2 except on S′.

We consider a shallow SPN with parameter Z that can express Ay as well. By

Lemma 2.6.1 we obtain Z ≥ CP-rank(Ay) ≥ rN/2 except on S′. Therefore we have

S ⊆ S′. Given that p 6≡ 0, S′ is a null set by Lemma 2.3.1, which proves that S is

a null set as well.

2.7. Analogous Restructuring for the Generalized

Theorem of Network Capacity

The proof of Theorem 2.4.2 can be restructured in the same way and is only

slightly more complicated. As stated in the theorem, we compare two truncated

networks, one with depth L1 and parameters r
(1)
l , the other with depth L2 and

parameters r
(2)
l . We assume that L2 < L1. The proof works mostly analogously,

with the L1 network taking over the role of the deep network and the L2 network

taking over the role of the shallow network.

2.7.1. The “Squeezing Operator” ϕq

As in the original proof, we need to introduce the “squeezing” operator ϕq, which

maps a tensor of higher order to a tensor of lower order. It is similar to the

matricization, in that it only rearranges the tensor entries while preserving their

values.

Definition 2.7.1. Let q ∈ N and let A be a tensor of order c · q (for some c ∈ N)

and dimension Mi in mode i. Then ϕq(A) is a tensor of order c where the entry

Ad1,...,dc is written into ϕq(A) at position

d1 +M1 · (d2 +M2 · (· · ·+Mq−1 · dq),

dq+1 +Mq+1 · (dq+2 +Mq+2 · (· · ·+M2q−1 · d2q),

. . . ,

dcq−q+1 +Mcq−q+1 · (dcq−q+2 +Mcq−q+2 · (· · ·+Mcq−1 · dcq)

In other words, blocks of q modes each are squeezed into one mode, using the

mixed radix numeral system of base Mi. This operator is compatible with tensor

17

2. The Expressiveness of Deep Learning

addition and multiplication in the following way:

ϕc(A+ B) = ϕc(A) + ϕc(B)

ϕc(A⊗ B) = ϕc(A)⊗ ϕc(B) for tensors A and B of order divisible by q

We need the squeezing operator only for q = 2L2−1 and abbreviate

ϕ := ϕ2L2−1

2.7.2. CP-rank of Truncated SPN Tensors

Analogously to Lemma 2.6.1, we can also reason about the tensor that is produced

by the truncated SPN of depth L2. However, we cannot estimate the CP-rank

of this tensor directly, but the CP-rank of its “squeezed” version. Recall from

Section 2.6.2 that the final steps in constructing a truncated SPN tensor of depth

L2 are:

ψL2,1,γ =

N/2L2−1⊗
j=1

φL2−1,j,γ

Ay =

rL2−1∑
α=1

aL2,1,y
α ψL2,1,α

Now we apply the “squeezing” operator ϕ and use its compatibility with tensor

addition and multiplication to obtain

ϕ(Ay) =

rL2−1∑
α=1

aL2,1,y
α

N/2L2−1⊗
j=1

ϕ(φL2−1,j,γ)

Since φL2−1,j,γ is a tensor of order 2L2−1, its “squeezed” version ϕ(φL2−1,j,γ) is

of order 1, i.e., a vector. By definition of the CP-rank (Definition 2.3.1), this

shows that the “squeezed” version of any truncated SPN tensor of depth L2 has a

maximal CP-rank of rL2−1:

Lemma 2.7.1. Let A be a tensor. If a truncated SPN with depth L2 is represented

by this tensor, then

rL2−1 ≥ CP-rank(ϕ(A))

2.7.3. The Restructured Proof

As in the proof of Theorem 2.4.1, we construct a polynomial p. This polynomial

maps the weights of the L1-SPN to a real number. However, since we can only

estimate the CP-rank of the “squeezed” tensor, we need p to have the following

properties:

18

2.7. Analogous Restructuring for the Generalized Theorem of Network Capacity

• If p(w) 6= 0, then the tensorAy representing the L1-SPN fulfills the inequality

CP-rank(ϕ(Ay)) ≥ rN/2L2 .

• The polynomial p is not the zero polynomial.

By Lemma 2.3.2, it suffices to show a high rank of [ϕ(Ay)] instead of a high CP-

rank of ϕ(Ay). As a first step, we show this rank to be high for one specific weight

configuration:

Lemma 2.7.2. Let Ay be a tensor representing the L1-SPN. Then there exists

a weight configuration of the L1-SPN such that rank[ϕ(Ay)] = rN/2
L2 where r :=

min{M, r
(1)
0 , . . . , r

(1)
L2−1}.

Proof. Step 1: First, we prove by induction over the first L2 layers of the L1-

network structure that there exists a weight configuration such that

(φl,j,γ)d1,...,d2l =

1 if γ ≤ r and (d1, . . . , d2l) = (γ, . . . , γ)

0 otherwise
(2.2)

for all 0 ≤ l ≤ L2 − 1 and for all j and γ. Note that φl,j,γ and ψl,j,γ here refer to

the corresponding tensors in the L1-SPN.

We start with the base case l = 0: In the first convolutional layer, we choose

matrices that contain an r × r identity matrix in their upper left corner and 0

elsewhere. Then we obtain after the first convolutional layer:

φ0,j = (e1, . . . , er, 0, . . . , 0)

This fulfills equation 2.2 for l = 0.

For the induction step we assume that

(φl−1,j,γ)d1,...,d2l−1
=

1 if γ ≤ r and (d1, . . . , d2l−1) = (γ, . . . , γ)

0 otherwise

for all j and for all γ. After the following pooling layer we obtain ψl,j,γ =

φl−1,2j−1,γ ⊗ φl−1,2j,γ , i.e.,

(ψl,,j,γ)d1,...,d2l =

1 if γ ≤ r and (d1, . . . , d2l) = (γ, . . . , γ)

0 otherwise

In the following convolutional layer we choose again matrices that contain an

r × r identity matrix in their upper left corner and 0 elsewhere. Since ψl,j,γ is a

zero tensor for γ > r anyway we obtain φl,j,γ = ψl,j,γ for all j and all γ. So φl,j,γ

fulfills equation 2.1 and this concludes the induction. In particular we have for

19

2. The Expressiveness of Deep Learning

l = L2 − 1:

(φL2−1,j,γ)d1,...,d2L2−1
=

1 if γ ≤ r and (d1, . . . , d2L2−1) = (γ, . . . , γ)

0 otherwise

Therefore ϕ(φL2−1,j,γ) = 0 for γ > r and ϕ(φL2−1,j,γ) = eiγ for γ ≤ r where iγ

is the 2L2−1-digit number with all digits of value γ in the numeral system of base

M . In particular i1 < i2 < · · · < ir, i.e., the iγ are all different.

Step 2: We prove by induction over the following layers of the L1-SPN structure

that there exists a weight configuration such that

ϕ(φl,j,γ)d1,...,d2l−L2+1
=


1 if di ∈ {iγ}γ=1,...,r for all i

and (d1, d3, . . . , d2l−L2+1−1)

= (d2, d4, . . . , d2l−L2+1)

0 otherwise

(2.3)

for l = L2, . . . , L1 − 1 and for all j and γ.

We start with the base case l = L2: From Step 1 we know that

ϕ(φL2−1,j,γ) = eiγ for γ ≤ r

ϕ(φL2−1,j,γ) = 0 for γ > r

For tensors of order 1, the tensor product is identical with the outer vector product.

Therefore, after next pooling layer, we obtain

ϕ(ψL2,j,γ) = eiγe
t
iγ for γ ≤ r

ϕ(ψL2,j,γ) = 0 for γ > r

In the following convolutional layer, we choose matrices that have ones everywhere.

Since the ϕ-operator is compatible with addition we then obtain

ϕ(φL2,j,γ) = ei1e
t
i1 + · · ·+ eire

t
ir for all γ

This tensor fulfills equation 2.3. This ends the base case of our induction.

For the induction step we assume that

ϕ(φl−1,j,γ)d1,...,d2l−L2
=


1 if di ∈ {iγ}γ=1,...,r for all i

and (d1, d3, . . . , d2l−L2−1)

= (d2, d4, . . . , d2l−L2)

0 otherwise

for all j and for all γ. After the following pooling layer we obtain ψl,j,γ =

φl−1,2j−1,γ ⊗ φl−1,2j,γ . Since l ≥ L2 and therefore the order of φl−1,2j−1,γ and

φl−1,2j,γ is a multiple of 2L2−1, this implies ϕ(ψl,j,γ) = ϕ(φl−1,2j−1,γ)⊗ϕ(φl−1,2j,γ).

20

2.7. Analogous Restructuring for the Generalized Theorem of Network Capacity

Hence:

ϕ(ψl,j,γ)d1,...,d2l−L2+1
=


1 if di ∈ {iγ}γ=1,...,r for all i

and (d1, d3, . . . , d2l−L2+1−1)

= (d2, d4, . . . , d2l−L2+1)

0 otherwise

In the following convolutional layer we choose matrices that contain only ones in

their first column, and zeros in the other columns. Therefore we obtain φl,j,γ =

ψl,j,1 for all j and all γ. So φl,j,γ fulfills equation 2.3 and this concludes the

induction step.

Step 3: In the last pooling layer we have

ψL1,1,γ =

N/2L1−1⊗
j=1

φL1−1,j,γ , i.e., ϕ(ψL1,1,γ) =

N/2L1−1⊗
j=1

ϕ(φL1−1,j,γ)

It follows that

ϕ(ψL1,j,γ)d1,...,dN/2L1−1
=


1 if di ∈ {iγ}γ=1,...,r for all i

and (d1, d3, . . . , dN/2L1−1−1)

= (d2, d4, . . . , dN/2L1−1)

0 otherwise

In the last convolutional layer we then use that matrix again that contains only

ones in its first column, and zeros in the other columns. Then Ay = φL1,1,γ =

ψL1,1,1, i.e.,

ϕ(Ay)d1,...,dN/2L1−1
=


1 if di ∈ {iγ}γ=1,...,r for all i

and (d1, d3, . . . , dN/2L1−1−1)

= (d2, d4, . . . , dN/2L1−1)

0 otherwise

This means that [ϕ(Ay)] is a diagonal matrix that has a 1 on the diagonal position

k if k has only digits from {iγ}γ=1,...,r in the numeral system of base M2L2−1

, and

0 otherwise. This matrix has dimension MN/2 ×MN/2, so in that numeral system

the matrix indices can be expressed using N/2/2L2−1 = N/2L2 digits. Therefore there

are rN/2
L2 different representations that contain only digits from {iγ}γ=1,...,r. So

[ϕ(Ay)] is a diagonal matrix with rN/2
L2 non-zero entries and hence rank[ϕ(Ay)] =

rN/2
L2 for this weight configuration.

For the same reasons as discussed in the proof of Lemma 2.6.4, the minors of

[ϕ(Ay)] can be considered as polynomials with the weights as variables. With

Lemma 2.6.3 it follows from Lemma 2.7.2 that there exists a weight configuration

21

2. The Expressiveness of Deep Learning

such that one of the rN/2
L2 × rN/2L2 minors of [ϕ(Ay)] is not zero. Let p be the

polynomial that represents one of these minors. This polynomial p cannot be the

zero polynomial, as there exists a weight configuration, where it does not vanish.

On the other hand, whenever p(w) 6= 0 for some weights w, then rank[ϕ(Ay)] ≥
rN/2

L2 by Lemma 2.6.3, and therefore CP-rank(ϕ(Ay)) ≥ rN/2L2 Lemma 2.3.2.

This lets us now prove Theorem 2.4.2:

Proof of Theorem 2.4.2. Let S be the set of weight configurations that represent a

L1-SPN function which can also be expressed by the L2-SPN model with r
(2)
L2−1 <

rN/2
L2 .

Let Ay be the representing tensor of the L1-SPN for some weight configuration

w, and p a polynomial with the properties described above. Let S′ = {w | p(w) =

0}. Then we have rank[ϕ(Ay)] ≥ rN/2L2 except on S′. Then we apply Lemma 2.7.1

to obtain r
(2)
L2−1 ≥ CP-rank(ϕ(Ay)) ≥ rank[ϕ(Ay)] ≥ rN/2

L2 except on S′. There-

fore we have S ⊆ S′. Given that p 6≡ 0, by Lemma 2.3.1, S′ is a null set, which

proves that S is a null set as well.

2.8. Comparison with the Original Proof

2.8.1. Proof Structure

Unlike the original proof, the above version is much easier to formalize, for both

the fundamental and the generalized theorem of network capacity (Theorem 2.4.1

and Theorem 2.4.2). The reasons are the same for both theorems; I will discuss

the fundamental theorem (Theorem 2.4.1) here as an example.

The original proof applies one monolithic induction to a large part of the

proof. This induction not only proves the existence of a weight configuration

with rank[Ay] ≥ rN/2 (as in Lemma 2.6.2), but it also proves that this inequal-

ity holds almost everywhere. As a consequence the induction is simultaneously

concerned with tensors, matrices, ranks, polynomials and the Lebesgue measure.

The above version is more modular and can therefore be split in smaller proofs

more easily. The monolithic induction is split into two smaller inductions, namely

Lemma 2.6.2 (involving only tensors) and Lemma 2.6.4 (stating that the minors

of [Ay] are polynomials). The application of Lemma 2.6.3 and Lemma 2.3.1 in the

end can be completely separated from the deep network induction.

Moreover, this restructured proof avoids some lemmas that are used in the orig-

inal proof but are not yet formalized in Isabelle/HOL. For example, the matrix

rank must only be computed for that one specific weight configuration here. To

compute the rank of other weight configurations, the original proof uses the Kro-

necker product (the matrix analogue of the tensor product) and its property to

multiply the rank.

22

2.9. Generalization Obtained from the Restructuring

2.8.2. Unformalized Parts

There are some statements in the original work that I did not formalize due to

lack of time. Only the fundamental theorem of network capacity in the case of

non-shared weights is formalized, i.e., the weight matrices in each branch may be

different. In the original paper the non-shared case is discussed in the proof, and a

note explains how the proof can be adapted to the shared case. Unfortunately, this

is not easy to transfer to a formalization, because it would require to generalize

all definitions and proofs such that they subsume both the shared case and the

non-shared case.

Furthermore, I completely ignore the representational layer in my formalization,

because the transfer of the theorems of network capacity to the network including

the representational layer can be done independently as described in the original

work by Cohen et al.

2.9. Generalization Obtained from the Restructuring

2.9.1. Algebraic Varieties

The restructured proofs as formulated above shows the same results as in the orig-

inal work of Cohen et al. But the restructuring allows for an easy generalization,

of both the fundamental and the generalized theorem of network capacity. I will

discuss the latter as an example here. Looking at the end of the proof again, we

observe that S′ is not only a null set, but the zero set of a polynomial p 6≡ 0,

which is a stronger property. Moreover we know exactly how p is constructed

(by induction over the L1 network). For example we can determine the degree

of p depending on the parameters of the network. This allows us to derive more

properties of the set S′ and hence for S ⊆ S′.
The zero sets of polynomials and their properties are well studied: An entire

mathematical area called algebraic geometry is dedicated to these sets. In the

language of algebraic geometry the zero sets of polynomials are called algebraic

varieties. More generally, an algebraic variety is a set of common zeros of a set of

polynomials:

Definition 2.9.1. A set V ⊆ Rn is a (real) algebraic variety if there exists a set

P of polynomials such that

V = {x ∈ Rn | p(x) = 0 for all p ∈ P}.

2.9.2. Tubular Neighborhood Theorems

Although being the zero set of a polynomial 6≡ 0 is mathematically stronger than

being a null set, the difference is subtle. The following results from algebraic

geometry [8, 23] are helpful:

23

2. The Expressiveness of Deep Learning

Theorem 2.9.1. Let W ⊂ Sm be a real algebraic variety defined by homogeneous

polynomials of degree at most D ≥ 1 such that W 6= Sm. Then we have for 0 < ε:

volm TP(W, ε)

Om
≤ 2

m−1∑
k=1

m

k
(2D)k(1 + ε)m−kεk +

mOm
Om−1

(2D)mεm

where Om := volm(Sm) denotes the m-dimensional volume of the sphere Sm and

TP(W, ε) is the tubular ε-neighborhood of W using the projective distance.

Theorem 2.9.2. Let V be the zero set of homogeneous multivariate polynomi-

als f1, . . . , fs in Rn of degree at most D. Assume V is a complete intersection of

dimension m = n− s. Let x be uniformly distributed in a ball Bn(0, σ) of radius σ

around the origin 0. Then:

P{dist(x, V) ≤ ε} ≤ 2

m∑
i=0

(
n

s+ i

)(
2Dε

σ

)s+i
These theorems need some further explanation about what they mean and how

they can be applied to the convolutional arithmetic circuits. I will discuss them

step by step, starting with Theorem 2.9.1. We consider a subset W of the unit

sphere Sm ⊂ Rm+1. We will see later that the inequality can be extended to the

entire Rm+1, which corresponds to the weight space of the L1-SPN (i.e Rm+1 =

Rn).

W being a real algebraic variety means that it is the zero set of a set of poly-

nomials, i.e., the set where all of these polynomials vanish. In the proof of Theo-

rem 2.4.2 we used the polynomial p to define S′, which will be the only defining

polynomial for W . Although p does have zeros outside of Sm, these are not rel-

evant for Theorem 2.9.1, which completely ignores the surrounding Rm+1. So we

use W := S′ ∩ Sm.

Moreover, Theorem 2.9.1 requires p to be homogeneous, i.e., all terms of the poly-

nomial must have the same degree. This is true for p, because of its construction:

The inputs are constant with respect to the weights, so they are all homogeneous

polynomials. In a convolutional layer they are multiplied by a weight and added

up, so the degree of each term is increased by 1, which results again in homoge-

neous polynomials. In a pooling layer two (or more) homogeneous polynomials are

multiplied, which doubles (or multiplies) the degrees of each term, still resulting

in homogeneous polynomials. So p is homogeneous.

Being homogeneous implies one more useful property: The zero set S′ of p is

invariant under multiplication by any real number λ. If x ∈ Rn is a zero of p, then

0 = λd · p(x) = p(λ · x) where d is the degree of p, because d is the degree of each

term of p as well. So we can describe S′ as

S′ = {λ · x | x ∈W and λ ∈ R}. (2.4)

In particular, W 6= Sp. Otherwise S′ would be the entire Rn.

24

2.9. Generalization Obtained from the Restructuring

Since all conditions are fulfilled, the theorem gives us an upper bound to the

volume of the tubular neighborhood TP(W, ε) of W . Because of equation 2.4, this

bound can be transferred to the set

{x | dist(x, S′) ≤ ε · |x|}.

This set has infinite volume, but the ratio of the volume of W to the volume of

Sm is the same as the ratio of this set to the surrounding space if restricted to

a ball Bm+1(0, σ) ball of arbitrary size σ. This set {x | dist(x, S′) ≤ ε · |x|} is

similar to a tubular ε-neighborhood, but the “tube” becomes larger proportionally

to the distance from the origin. This “tube” becoming larger proportionally to

the distance from the origin is a fairly accurate approximation of the set S′ in the

discrete weight space of a computer with floating point arithmetic. Floating point

numbers have the property that they are proportionally less precise the larger they

are.

Before we calculate the bound in Section 2.9.3, take a look at Theorem 2.9.2.

This theorem is similar to the first one, but it applies to a subset V of the entire

space Rn. We set s = 1 and f1 = p, so V = S′. A main difference is also that V is

assumed to be a complete intersection. I will omit an explanation what this means,

because S′ is definitely not a complete intersection. From personal correspondence

with the author Martin Lotz though, I know that in the case s = 1 this condition

can be avoided. This could be proved using a similar trick as used in the proof of

Theorem 2.9.1, which does not work as nicely for more than one polynomial.

Then Theorem 2.9.2 (or rather a version of this theorem that requires s = 1

but no complete intersection) gives us an upper bound for P{dist(x, V) ≤ ε},
when x is uniformly distributed in Bn(0, σ). This corresponds to the volume of

the tubular ε-neighborhood of V = S′ intersected with Bn(0, σ), which is a good

approximation of the set S′ in the discrete weight space of a computer with fixed

point arithmetic as illustrated in Figures 2.3b and 2.3c.

2.9.3. Calculation of the Bounds

To calculate the bounds we must answer two questions first: What is the degree

of p and what is a reasonable value for ε?

As discussed above degree can be calculated by induction over the network. We

take the truncated network models and obtain the results for the shallow and the

deep network model as special cases. The inputs have degree 0 when interpreted as

polynomials of the network weights. Each convolutional layer increases the degree

by one, and each pooling layer with a two-branching doubles the degree. Before

the L1th pooling layer that merges all branches there are L1 convolutional layers

and L1 − 1 pooling layers. The polynomial representing the network up to that

25

2. The Expressiveness of Deep Learning

layer therefore has a degree of

(. . . ((0 + 1) · 2 + 1) · 2 + . . .) · 2 + 1︸ ︷︷ ︸
L1 ones and L1−1 twos

= 2L1−1 + 2L1−2 + · · ·+ 20 = 2L1 − 1

Then the L1th pooling layer multiplies the degree by the number of branches

that it merges, which is N/2L1−1. Finally the last convolutional layer increases the

degree by 1 again. So any polynomial that represents one of the entries of Ay has

a degree of

(2L1 − 1) · N/2L1−1 + 1 = 2N − N/2L1−1 + 1

The calculation of the rN/2
L2 × rN/2

L2 minors further raises the degree of the

polynomials to the power of rN/2
L2 . This results in a degree for p of

D = (2N − N/2L1−1 + 1)r
N/2L2

This degree is minimal for L1 = log2N and L2 = log2N −1 where it is equal to

D = (2N − 1)r
2

. According to the original work, realistic values are N = 65, 536

and r = 100, which yield a degree of

D ' 2170,000

What is a reasonable value for ε? Since it is more realistic, I discuss the case of

floating point numbers first. A widely used format is the double-precision format,

which occupies 8 bytes (64 bits). It uses 1 bit for the sign, 11 bits for the exponent

and 52 bits for the fraction. The fraction part stores the digits of the number,

while the exponent part determines where to set the binary point (the analogous

of the decimal point). This way of storing numbers leads to high precision for

smaller numbers and less precision for larger numbers. More precisely for some

x ∈ N, numbers between −2x and 2x can be stored with a precision of at least

2x−52, since the fraction contains 52 digits.

Theorem 2.9.1 is a statement about points on the unit sphere, whose coordinates

can only take values between −1 and 1. Therefore a reasonable value would be

ε = 2−52.

If we allow 8 bytes for the fixed point values as well, the ratio between the

highest possible number and the precision is 264. So for Theorem 2.9.2 we can set
ε/σ = 2−64.

These calculations show that the degree of p is extremely high, while reasonable

values for ε are relatively small. Moreover both Theorem 2.9.1 and 2.9.2 are useful

only if the right-hand side is smaller than 1. Otherwise the statements are trivial.

If we want the right-hand sides to be smaller than 1, we need at least d < 1/ε

in Theorem 2.9.1 and D < σ/ε in Theorem 2.9.2, which is completely unrealistic

given the calculations above.

This result lets me conjecture that the shallow network investigated here is more

26

2.9. Generalization Obtained from the Restructuring

expressive than assumed. The set S′ is a null set but it might be still very densely

packed such that it is large from a practical perspective. Unfortunately the entire

analysis is build upon many inequalities, which might be too generous. Therefore a

mathematical result estimating the size of S′ with a lower bound seems to require

a completely different approach.

27

3. Isabelle/HOL: A Proof Assistant

for Higher-Order Logic

Isabelle is a generic proof assistant, which is an interactive software tool with a

graphical user interface for the development of computer-checked formal proofs.

Isabelle is generic in that it supports different formalisms, such as first-order logic

(FOL), higher-order logic (HOL), and Zermelo-Fraenkel set theory (ZF). These

formalisms are based on a built-in metalogic, which is based on an intuitionistic

fragment of Church’s simple type theory. On top of the metalogic, HOL intro-

duces a more elaborate variant of Church’s simple type theory, including the usual

connectives and quantifiers. A list of Isabelle symbols can be found in Appendix A.

Generally, proof assistants have a modeling language to describe the algorithms

to be studied, a property language to state theorems about these algorithms, and

a proof language to explain why the theorems hold. For Isabelle, the modeling

language and the property language are almost identical. For the purpose of this

thesis, I do not differentiate the two and summarize them as Isabelle’s metalogic

(Section 3.3), extended by the HOL formalism (Section 3.4), whereas Isabelle’s

proof language is presented separately (Section 3.8).

3.1. Isabelle’s Architecture

Isabelle’s architecture follows the ideas of the theorem prover LCF in implementing

a small inference kernel that ensures the correctness of proofs. This architecture

is designed to minimize the risk of accepting incorrect proofs. Trusting Isabelle

amounts to trusting its inference kernel, but also trusting the compiler and run-

time system of Standard ML, the programming language in which the kernel is

written, the operating system, and the hardware. Moreover, care is needed to

ensure that a formalization proves what it is supposed to prove, because the spec-

ification of the mathematical statement can contain mistakes.

The inference kernel specifies Isabelle’s metalogic, which is based on a fragment

of Church’s simple type theory (1940), which is also referred to as higher-order

logic. The metalogic contains a polymorphic type system, including a type prop for

truth values. Unlike first-order logic, where formulas and terms are distinguished,

formulas in higher-order logic are just terms of type prop. Likewise, what is called

a predicate in first-order logic, is just a function. Functions can be arguments for

other functions and it is permitted to quantify over them.

29

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

HOL is the most widely used instance of Isabelle, which extends the metalogic

to a variant of Church’s simple type theory by introducing more quantifiers and

connectives, as well as introducing additional axioms such as the axiom of choice

and the axiom of function extensionality.

3.2. The Archive of Formal Proofs

The Archive of Formal Proofs (AFP) [20] is an online library of Isabelle formaliza-

tions contributed by Isabelle users. It is organized in the way of a scientific journal

maintained by the Isabelle developers, meaning that submissions are refereed and

published as articles. An AFP article contains a collection of Isabelle theories, i.e.,

files with definitions, lemmas and proofs. As of 2016, the AFP collected more than

300 articles about diverse topics from computer science, logic and mathematics.

3.3. Isabelle’s Metalogic

All Isabelle formalisms are based on its metalogic, which introduces types and

terms in the style of a simply typed λ-calculus as described by Church in 1940.

3.3.1. Types

Types are either type constants, type variables, or type constructors:

• Type constants represent simple types such as nat for the natural numbers,

or real for the real numbers.

• Type variables are placeholders for arbitrary types. For better readability, I

use the letters α, β, γ for type variables in this thesis instead of the Isabelle

syntax ’a, ’b, ’c.

• Type constructors build types depending on other types, for example the

type constructor list represents lists such as lists of natural numbers nat

list, or lists of real numbers real list. Type constructors with more than

one argument use parentheses around the arguments, e.g., (α,β) fun. Type

constructors are usually written in postfix notation and they associate to the

left, e.g. nat list list the same as (nat list) list, representing lists of

lists of natural numbers.

The type constructor (α,β) fun, which is normally written as α ⇒ β, represents

functions from α to β. Functions in Isabelle are total, i.e., they are defined on all

values of the type α.

All functions in Isabelle have a single argument, but nesting the type constructor

emulates function spaces of functions with two or more arguments, e.g., nat ⇒ nat

⇒ real, which is the same as nat ⇒ (nat ⇒ real). A function of type nat ⇒
nat ⇒ real takes an argument of type nat, and returns a function of type nat ⇒

30

3.3. Isabelle’s Metalogic

real, which in turn takes an argument of type nat, and returns a real number.

This is a principle known as currying.

3.3.2. Type Classes

Types can be organized in type classes. Type classes are defined by constants that

contained typed must provide, and properties that contained types must fulfill.

A type fulfills these requirements can be made an instance of that type class by

specifying the constants and proving that the properties hold.

An example of a type class is the class finite. It requires no constants, and the

defining property of that class is that the type’s universe (i.e., the set of all values

of this type) is finite. The boolean type bool can be registered as an instance of

the class finite because it has a universe of only two values (True and False). The

fact that bool’s universe is finite must be proved to instantiate it, though.

Type variables can also be restricted to a certain type class using the double

colon syntax. The types that this type variable can be instantiated with are con-

strained to that type class. E.g., α::finite can be instantiated by types belonging

to finite.

3.3.3. Terms

Terms are either variables, constants, function applications, or λ-abstractions:

• Variables (e.g., x) represent an arbitrary value of a type. Isabelle distin-

guishes between schematic and non-schematic variables. Non-schematic vari-

ables represent fixed, but unknown values, whereas schematic variables can

be instantiated with arbitrary terms. When stating a theorem and proving

it, variables are usually fixed. After the proof, the theorem’s variables are

treated as schematics such that other proofs can instantiate them arbitrarily.

Syntactically, schematic variables are marked by a question mark, e.g. ?x.

• Constants (e.g., 0, sin, op<) represent a specific value of a type. In particular,

variables and constants can also represent functions.

• Function application is written without parentheses surrounding or commas

separating the arguments, i.e., f x y for a function f and arguments x and

y. In fact, functions are always unary: Applying a function to multiple

arguments is represented by a sequence of unary function application, a

principle known as currying. A function f mapping two arguments of type α

and β to a value of type γ is of type α ⇒ β ⇒ γ, which the same as α ⇒ (β

⇒ γ). Function application associates to the left, i.e., f x y is the same as

(f x) y. Therefore, the first (unary) application in the term f x y invokes f

on x, yielding a value f x of type β ⇒ γ. The second application invokes f

x on y, yielding a value of type γ.

31

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

Using syntactic sugar, some functions can be written as infix operators (e.g.,

x + y instead of plus x y).

• A λ-abstraction builds a function from a term. E.g., if g is of type α ⇒ α

⇒ β, then λx. g x x is of type α ⇒ β.

A term can be marked to have a certain type using a double colon, e.g., x::nat

denotes a variable x that represents a natural number. For terms that are not

annotated the type will be inferred from context using a variant of Hindley-Milner’s

type inference algorithm.

3.4. The HOL Object Logic

The HOL formalism extends the Isabelle metalogic to a more elaborate version

of higher-order logic, introducing additional axioms, the usual connectives and

quantifiers, and basic types.

3.4.1. Logical Connectives and Quantifiers

Isabelle’s metalogic introduces a restricted collection of connectives and quanti-

fiers. It uses unusual syntax for these logical symbols to leave the usual math-

ematical syntax open to the extending formalisms such as HOL. The universal

quantifier is
∧

, the implication is =⇒, and equality is ≡. These connectives and

quantifiers operate on the truth values of type prop.

The implication =⇒ associates to the right such that multiple premises P1, . . . ,

Pn of a conclusion Q can be written as P1 =⇒ ... =⇒ Pn =⇒ Q .

HOL introduces another type bool with values True and False. A constant

Trueprop maps these values to values of type prop. The constant Trueprop is

inserted automatically by Isabelle’s parser and it is usually hidden from the user.

Therefore, I will not write it explicitly in my thesis either.

HOL defines connectives and quantifiers operating on the type bool. The most

important connectives are “not” ¬, “and” ∧, “or” ∨, “implies” −→ and “equiva-

lent” ←→. The existential and universal quantifier are written as ∃ x. and ∀ x.,

respectively, followed by the expression that is quantified over.

The difference between
∧

and ∀ , ≡ and =, as well as =⇒ and −→ is largely

technical, caused by the difference between metalogic’s type prop and the HOL

type bool. For this thesis, the two sets of symbols can safely be thought as being

equivalent.

3.4.2. Numeral Types

HOL supports frequently used numeral types such as nat for natural numbers, int

for integers and real for real numbers.

A natural number in Isabelle is either 0 or Suc n where n is a natural number

(Suc standing for ‘successor’). Hence, the sequence of natural numbers is

32

3.4. The HOL Object Logic

0, Suc 0, Suc (Suc 0), Suc (Suc (Suc 0)), ...

To simplify this construction for the user, it is possible to write 0, 1, 2, 3, . . .

instead.

3.4.3. Pairs

Given two types α and β, one can construct the Cartesian product of the two,

written as α × β. The values of this type are pairs of two values, where the first

one is of type α and the second one is of type β. The pair of two values a and b

is written as (a,b). The same syntax can be used for triples (a,b,c) and larger

tuples.

The components of a pair can be extracted using the functions fst (“first”) and

snd (“second”), e.g., fst (a,b) = a and snd (a,b) = b.

3.4.4. Lists

Lists in Isabelle/HOL are ordered, finite collections of values. All of these values

must have the same type α, the list type is then called α list. Lists are equivalent

to what is called an array (of variable length) in many programming languages.

The most simple list is the empty list, which is notated []. Longer lists can be

constructed using the operator #, which prepends an element to an existing list.

If for example xs is a list and x is a new element, then x # xs is the list xs headed

by x. Accordingly, the list with elements 1, 2, 3 would be represented as 1 # (2 #

(3 # [])).

Some important functions that operate on lists are hd, tl, last, butlast, !,

take and drop. The function hd (“head”) returns the first element of a list. The

function tl (“tail”) returns the remaining list without the first element. Similarly,

last returns the last element, and butlast returns the list without the last element.

The operator ! returns the (n + 1)st element of a list. The function take n will

return the first n elements of a list, while drop n will return the list without the

first n elements. For example if xs is the list 1, 2, 3, then

hd xs = 1

tl xs = 2 # (3 # [])

last xs = 3

butlast xs = 1 # (2 # [])

xs ! 1 = 2

take 2 xs = 1 # (2 # [])

drop 2 xs = 3 # []

3.4.5. Sets

The type α set denotes sets of elements from type α. Sets are often described

using set comprehensions, e.g., {x. P x} is the set of all x for which P x is true.

33

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

Instead of P x more complex expressions are possible, whereas x must be a simple

variable in this syntax. The empty set is written as {}.

The infix operator ∈ tests whether a value is contained in a set, i.e. the ex-

pression a ∈ {x. P x} is equivalent to P a. Set comprehension and the ∈-operator

map the types α set and α ⇒ bool isomorphically to each other.

Sometimes it is useful to have more complex terms in the front part of a set

comprehension. For these cases there is the syntax {f x | x. P x}. For example

the set of all squared prime numbers is {x * x | x. prime x}. If there is no side

condition, one can use the constant True, e.g., the set of all square numbers is {x

* x | x::nat. True}.

3.5. Outer and Inner Syntax

Isabelle distinguishes between two syntactic levels: the inner and outer syntax.

All of the above, i.e., types and terms, including formulas, are inner syntax. The

inner syntax is marked by enclosing them in quotation marks ". If a piece of inner

syntax only consists of a single identifier, the quotation marks can be omitted, i.e.

instead of "x", "0" and "nat", we can write x, 0 and nat.

The definitional principles and the proof language explained in the following

chapters use the outer syntax, and all expressions of terms and types with more

than a single identifier are enclosed in quotation marks.

3.6. Type and Constant Definitions

Isabelle/HOL provides various ways to introduce types and constants conveniently.

It is possible although not recommended to introduce them by axiomatization.

Axioms are usually avoided because they can easily contradict each other, i.e.,

lead to inconsistent specifications. In this section, I focus on ways to introduce

types and constants more safely.

3.6.1. Typedef

The command typedef is a way to introduce types. It creates types from non-

empty subsets of the universes of other types. The following definition introduces

a type for unordered pairs. In contrast to ordered pairs, the elements (a, b) and

(b, a) are identified.

typedef α unordered pair = "{A::α set. card A ≤ 2 ∧ A 6={}}"

This creates a type unordered pair which is parametrized by a type α. Each

value of this type corresponds to a non-empty set with at most two elements,

which is the usual mathematical definition of unordered pairs.

34

3.6. Type and Constant Definitions

3.6.2. Inductive Datatypes

Another way to introduce types is the command datatype. It creates an algebraic

datatype freely generated by the specified constructors. The constructors may be

parametrized, even by values of the type currently being defined. This leads to a

recursive nature of the values, which can be considered as finite directed graphs.

The introduced types follow the motto “No junk, no confusion”:

• No junk: There are no values in the model of the datatype that do not

correspond to a term built from a finite number of applications of the con-

structors.

• No confusion: Two different constructor terms (terms consisting only of

constructors) are always interpreted as two distinct values.

The following code defines binary trees that store values of type α in their leaf

nodes:

datatype α tree = Leaf α | Branch "α tree" "α tree"

The name of the type is tree, and its constructors are Leaf and Branch. The

simplest tree is Leaf a, where a is of type α. More complex trees can be build up

using the newly introduced keyword Branch, which requires two arguments of type

tree. An example for a nat tree is Branch (Leaf 3) (Branch (Leaf 5) (Leaf 2)).

Incidentally lists are also defined as an inductive datatype.

3.6.3. Plain Definitions

The commands definition and abbreviation can introduce shorter names for

longer expressions. The following code defines a predicate for prime numbers:

definition prime :: "nat ⇒ bool" where

"prime p = (1 < p ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p))"

Here, dvd stands for ‘divides’.

The command abbreviation works similarly on the surface but is only syntactic

sugar. The command definition on the other hand is a disciplined form of axiom

and introduces a new symbol internally. However, at the level of abstraction of

this thesis, we can safely ignore this difference.

3.6.4. Recursive Function Definitions

The command definition can only be used for non-recursive definitions. In some

cases it is desirable to invoke the function under definition on the right-hand side.

For this purpose we can use fun.

The following function sum adds all numbers in a list of reals:

35

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

fun sum :: "real list ⇒ real" where

"sum [] = 0" |

"sum (x # xs) = x + sum xs"

This definition distinguishes two cases (separated by a vertical bar |): The sum of

an empty list is 0. For a non-empty list we can assume that it has a first element

x and the rest of the list xs. Invoking sum recursively we get the sum over the rest

of the list and add the first element to get the sum over the entire list.

The commands definition and fun follow the definition principles of typed func-

tional programming languages like ML.

3.6.5. Inductive Predicates

The command inductive introduces a predicate by an enumeration of introduction

rules. Given these rules, Isabelle generates a least fixed point definition for this

predicate.

The following declaration defines a predicate even, which is True for even num-

bers and False for odd numbers:

inductive even :: "nat ⇒ bool" where

zero: "even 0" |
step: "even n =⇒ even (n + 2)"

The resulting predicate even is the predicate which is True on the smallest set

possible without violation the rules. In this way, inductive behaves like the logic

programming language Prolog, which considers a statement false if it cannot be

derived from the given rules (‘negation as failure‘).

Besides the introduction rules, an inductive predicate declaration also generates

induction, case distinction and simplification rules.

3.7. Locales

A locale is a module that encapsulates a set of definitions, lemmas and theorems,

which by default have a global scope. Locales are also useful to introduce shared

side conditions to several theorems or lemmas, without repeating them in each

theorem statement.

Group theory for example introduces a locale that fixes a group operator and a

neutral element that must fulfill certain assumptions, namely the group axioms.

In this way, these assumptions do not have to be repeated for every lemma. This

locale can be introduced as follows:

locale group =

fixes zero :: α ("0")

and plus :: "α ⇒ α ⇒ α" (infixl "+" 65)

and uminus :: "α ⇒ α" ("- " [81] 80)

assumes add assoc: "(a + b) + c = a + (b + c)"

36

3.8. Proof Language

and add 0 left: "0 + a = a"

and left minus: "- a + a = 0"

begin

...

end

Moreover, locales allow the assumptions and fixed variables to be instantiated

elsewhere, e.g., the real numbers form a group and all group lemmas apply for

them.

3.8. Proof Language

The statement of a lemma in Isabelle creates a proof state, a collection of state-

ments that must be proved to show that the lemma holds. Isabelle provides various

tactics, which are procedures that transform proof goals into zero or more new sub-

goals, ensuring that the original goal is a true statement if the new subgoals can

be discharged. When tactic applications transformed the proof state into having

no more subgoals, the proof is complete.

There are two ways to write proofs in Isabelle: apply scripts and Isar proofs.

An apply script describes the proof backwards, starting with the proof goal, and

applying tactics until the no more proof goals are left. The apply syntax only

states the involved tactics and lemmas explicitly, but not the subgoals after each

step.

In contrast, Isar proofs describe a proof in a forward and more structured way,

from the assumptions to the proof goal. Isar is based on the natural deduction

calculus, which is designed to bring formal proofs closer to how proofs are written

traditionally.

3.8.1. Stating Lemmas

Lemmas can be stated using the commands lemma and theorem, which are tech-

nically equivalent but theorem marks facts of higher significance for human reader.

The commands are followed by an optional label for later reference and the

lemma statement, e.g.,

lemma exists equal: "∃ y. x = y"

All free variables are implicitly universally quantified, i.e. the above abbreviates

lemma exists equal: "
∧
x. ∃ y. x = y"

Alternatively, lemma statements can be divided in three sections as follows:

lemma prod geq 0:

fixes m::nat and n::nat

assumes "0 < m * n"

shows "0 < m"

37

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

The command fixes introduces types of variables. The command assumes states

assumptions and shows states the conclusion. The sections fixes and assumes are

optional. Multiple statements in a section can be concatenated by and.

These two variants to state lemmas are completely exchangeable: The above

lemma statement is equivalent to

lemma prod geq 0: "0 < (m::nat) * n =⇒ 0 < m"

3.8.2. Apply Scripts

The following proof shows a property of the function rev, which reverses the order

of a list, in apply style:

lemma rev rev: "rev (rev xs) = xs"

apply (induction xs)

apply auto

done

The lemma states that reversing a list xs twice will recover the original list. The

command lemma assigns the name rev rev to the lemma for later reference. More-

over, it creates a proof state with a single proof goal, which is identical to the

lemma statement.

The first apply command invokes the tactic induction, which will use the stan-

dard list induction when applied to a list. This tactic transforms the goal rev (rev

xs) = xs into two subgoals:

1. rev (rev []) = []

2.
∧
a xs. rev (rev xs) = xs =⇒ rev (rev (a # xs)) = a # xs

The first subgoal is the base case of the induction which states the property for

the empty list. The second subgoal is the induction step. It states that for some a

and some xs that fulfills the property, the list a # xs fulfills the property as well.

The second apply command invokes the tactic auto, which resolves both sub-

goals. The command done marks the end of the proof.

3.8.3. Isar Proofs

In Isar proofs, intermediate formulas on the way are stated explicitly, which makes

Isar proofs easier to read and understand. Most of my formalization is written in

Isar.

The structure of an Isar proof resembles the structure of the proof goal. A

goal of the form
∧
x1...xk. A1 =⇒ ... =⇒ An =⇒ B can be discharged using the

following proof structure:

proof -

fix x1 ... xk

assume A1

38

3.8. Proof Language

...

assume An

have l1: P1 using ... by ...
...

have ln: Pn using ... by ...

show B using ... by ...

qed

where P1, . . . , Pn are intermediate properties, which are optionally assigned labels

l1, . . . , ln for referencing the property.

Isar proofs are surrounded by the keywords proof and qed. The keyword proof

can be optionally followed by a tactic, which is applied to the proof goal initially.

A minus symbol (-) signifies no tactic application. Omitting the minus symbol

applies a default tactic, which is chosen automatically depending on the proof goal.

Variables and assumptions are introduced by fix and assume.

Intermediate formulas are introduced by the keyword have, whereas the last

formula, which completes the proof goal, is introduced by show. The keywords

have and show introduce proof goals and need to be followed by instructions how

to discharge those. These instructions can either be a nested proof ... qed block

or a proof method, which is a combination of one or more tactics such as metis,

auto and induction.

A proof method is introduced by the keyword by. It is optionally preceded by

a using command, which introduces facts (i.e. other lemmas or properties) as

assumptions to the proof goal. For example, if a property P can be proved with

the tactic metis using another property labeled l, we can write

have P using l by metis

Some tactics such as metis can take facts as arguments such that we can equiva-

lently write

have P by (metis l)

The keywords have and show may be preceded by then to indicate that the

previous property should be used in the proof search as well. If immediately

preceded by the property l, we can abbreviate the above by

then have P by metis

3.8.4. An Example Isar Proof

The following proof shows that the tail of a list is one element shorter than the

original list. Recall that the tail tl xs of a list xs is the list xs without its first

element.

HOL is a logic of total functions, i.e. functions need to be defined on all ar-

guments. A function value can be left unspecified, but it is often convenient to

specify concrete default values.

39

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

For the special case of an empty list we have the default value tl [] = []. At

first sight, it seems as if length (tl xs) = length xs - 1 does not hold for the

empty list. But this is an equation of type nat, and there is no -1 in the type of

natural numbers. Therefore calculations of type nat that would result in a negative

value are assigned 0 instead, for example 0 - 1 = 0. This might seem odd, but

often it results in nice properties without inconvenient side conditions as in the

following lemma:

1 lemma "length (tl xs) = length xs - 1"

2 proof (cases xs)

3 assume "xs = []"

4 then have "tl xs = []" by (metis List.list.sel(2))

5 then show "length (tl xs) = length xs - 1"

6 by (metis diff 0 eq 0 list.size(3) ‘xs = []‘)

7 next

8 fix a as

9 assume "xs = a # as"

10 have "length as + 1 = length (a # as)"

11 by (metis One nat def list.size(4))

12 then have "length (tl xs) + 1 = length xs"

13 by (metis list.sel(3) ‘xs = a # as‘)

14 then show "length (tl xs) = length xs - 1"

15 by (metis add implies diff)

16 qed

Following the informal proof above, we must distinguish two cases in the formal

proof, too. This is done by applying the tactic cases on xs, which can be done

directly after the keyword proof . This will split the proof goal into two subgoals,

one assuming that xs is the empty list, the other assuming that xs is of the form

a # as for some a and as. The two cases are separated by next, the assumptions

are introduced by assume and the two necessary variables a and as are introduced

by fix. For each case, a sequence of have/then have commands and a final then

show explains the proof step by step. In this example, the proof method that is

introduced by by is always metis, which is one of the most basic proof methods

available. The name of the method metis is followed by the names of the lemmas

that are necessary to complete the current proof step or alternatively a literal

property enclosed by ‘‘, e.g., ‘xs = []‘. If a proof step is preceded by then, the

previously proved property is also included in the proof search.

The text editor jEdit that is normally used for Isabelle development constantly

runs the Isabelle process such that a proof method is immediately highlighted if

it fails (Figure 3.1).

3.8.5. Theorem Modifiers

Theorem Modifiers such as OF, of, and unfolded alter or combine already proved

lemmas in various ways. This simplifies the proof search and can make methods

40

3.8. Proof Language

Figure 3.1.: The jEdit text editor is used for Isabelle development. Since a neces-
sary lemma is missing in one of the metis calls, that line is highlighted
in red.

succeed that normally would not.

The Lemma add implies diff in line 15 of the example above states ?c + ?b =

?a =⇒ ?c = ?a - ?b. The question marks in front of the variables indicate that

these variables are variables of the external lemma, and not variables of our proof,

i.e., they can still be instantiated with any term. Instead of leaving that work to

metis we can instantiate them using the modifier of as follows:

add implies diff[of "length (tl xs)" "1" "length xs"]

The terms instantiate the variables in order of appearance in the lemma. This

modified lemma states

length (tl xs) + 1 = length xs =⇒ length (tl xs) = length xs - 1

and metis does not need to search for the right instantiations. Although in this

example metis is able to find the proof without explicit values, in more complicated

contexts it can drastically speed up metis or, in some higher-order cases, make the

difference between unprovable and provable.

The modifier OF works similarly, but on the level of properties, not terms.

For example, we can use OF to eliminate the premise ?c + ?b = ?a from the

41

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

Lemma add implies diff as follows, given that ‘length (tl xs) + 1 = length xs‘

is already proved in line 12:

add implies diff[OF ‘length (tl xs) + 1 = length xs‘]

This modified lemma has no more premises and the variables are instantiated

according to the property that was given to be unified with the premise. It states

the following:

length (tl xs) = length xs - 1

Doing this would take all the work from metis, since the modified lemma is already

identical with the proof goal.

The modifier unfolded modifies lemmas by expanding definitions or other equa-

tions, and can be used similarly to of and OF. Analogously, unfolding expands

definitions, but in the proof goal. All of these keywords and some others are

helpful when inspecting the details of a proof step and to manually assist the

automated proof methods.

3.8.6. Sledgehammer

Sledgehammer is a subsystem of Isabelle that can find proofs automatically. It

can be invoked on a proof (sub)goal to find relevant lemmas automatically and

passes on this information to external automatic provers such as the superposition

provers E, SPASS, Vampire and the SMT solvers CVC4, veriT, and Z3 [24, 7, 5].

If one of the external tools finds a proof, this proof is translated back into an

expression that can be used to prove the goal inside Isabelle, i.e., without relying

on the correctness of the external provers.

3.8.7. SMT Proofs

Satisfiability modulo theory (SMT) solvers are available in Isabelle through the

smt proof method. It invokes the SMT solver Z3 and replays its proof in Isabelle,

exploiting Z3’s reasoning about equality, quantifiers, and linear arithmetic.

There are many different proof methods in addition to metis, such as auto, simp,

blast, force and many more. While all these methods have there place and it is

impossible to say that one is invariably superior to another, I want to highlight

the method smt here, because I found it particularly useful in my formalization,

especially when reasoning about sums or products of real numbers and existential

quantification. At first I tried to avoid smt, because smt depends on external tools

such as Z3, which are not under the control of the Isabelle developers such that

future compatibility cannot be guaranteed. For this reason smt is not accepted in

the Archive of Formal Proofs [20]. Nevertheless, it often showed up as the only

one-line result of Sledgehammer.

Simple examples for the strengths of smt are rare, since they appear most fre-

quently in complex contexts. But the following equation is an example for the

42

3.9. Interactive Proof Development Workflow

strengths of smt (for better readability displayed in standard mathematical type-

setting): ∑
i∈I

∑
j∈J

a · b · f(i) · g(j) =

(∑
i∈I

a · f(i)

)
·

∑
j∈J

b · g(j)


where a, b are real numbers, I, J are arbitrary sets and f, g are real valued func-

tions. The only one-line proof that Sledgehammer can find here is using smt.

Slightly simplified, this one-line proof is

by (smt mult.assoc mult.commute setsum.cong setsum product)

The lemmas mult.assoc and mult.commute are used to rearrange the factors on the

left side. By lemma setsum.cong, the reordering is allowed inside of a sum, too.

The lemma setsum product transforms the two nested sums over a product into a

product of sums.

It does not seem to be possible to solve it with other proof methods without

performing several steps, which may easily take 10 minutes of manual work or

more. Other proof methods fail, because they are not able to find the λ-expressions

that are necessary to instantiate the lemmas.

3.9. Interactive Proof Development Workflow

The user’s task in Isabelle/HOL is to specify sufficiently detailed proof steps for

the automatic proof methods to fill in the missing steps. In my experience, one

can estimate how large these steps must be. The more difficult task is to find the

right lemmas and their names in the library that are needed for the proof. The

most useful feature for this task is Sledgehammer.

Therefore, my workflow usually proceeds as follows: First, I decide what a

reasonable next proof step might be. Isabelle includes counterexample generators,

which can warn if the formula is provably false [4]. If the formula is plausible,

I invoke Sledgehammer on it, supplying names of lemmas as hints that I believe

might be useful. If I believe to know all lemmas necessary, I might try a concrete

proof method or the command try0, which tries the most frequently used proof

methods at once, but in most cases the proof steps are too large to know all

necessary lemmas directly.

If Sledgehammer fails, I usually try to provide a slightly smaller proof step or

an additional lemma that I think is useful, and give it to Sledgehammer again.

Another method to find lemmas is find theorems which can be used to search for

lemmas and theorems by name, contained functions or by a pattern, for example

"_ < _ =⇒ _ < _" where _ is a wildcard.

If I know concrete instantiations of the involved lemmas or how the lemmas

should be applied, I often use OF, of, unfolded or unfolding. This helps Sledge-

hammer avoid search paths that are not useful. Especially if variables must be

instantiated with complex lambda-expressions, Sledgehammer usually fails to find

43

3. Isabelle/HOL: A Proof Assistant for Higher-Order Logic

a proof without me providing these expressions using of or OF. On the other hand

OF etc. are also useful to discover problems, such as noticing typos in the proof

goal.

44

4. Formalization of Deep Learning in

Isabelle/HOL

My formalization [1] provides a formal proof of Theorem 2.4.1 for the case of non-

shared weights as presented in Chapter 2. The formalization does not rely on any

axioms beyond those that are built into Isabelle/HOL. It has an approximate total

size of 6500 lines, including

• a new tensor library (about 1800 lines)

• an extension for submatrices and ranks of Thiemann and Yamada’s matrix

library [29] (about 900 lines),

• an extension of Lochbihler and Haftmann’s polynomial library [16] (about

900 lines)

To give an impression of my formalization, I compare an excerpt of Cohen et al.’s

original work to the corresponding formal proof in Section 4.1.

My formalization is based on existing libraries for matrices, the Lebesgue mea-

sure and multivariate polynomials. Since my project requires an approach that

can handle matrices of different dimensions easily, I decided to use Thiemann and

Yamada’s library [29] (Section 4.2). I developed a general-purpose library for ten-

sors specifically for this project, because no other suitable tensor library exists

(Section 4.3). The Lebesgue measure from Isabelle’s probability library had to be

adapted to the needs of my formalization (Section 4.4). The most suitable polyno-

mial library is an unpublished project by Lochbihler and Haftmann [16], although

many alternative libraries exist (Section 4.5).

A major challenge of the formalization of Theorem 2.4.1 is formalizing of the

networks involved, and establishing their connection to tensor theory. Although

tensors are used in the proof, the final formulation of the theorem is independent of

tensor theory and therefore remains unaffected by any mistakes the tensor library

may contain (Section 4.6).

4.1. A Comparison of Informal and Formal Proofs

To illustrate the process of formal proof development, I compare an excerpt from

the original work by Cohen et al. [11, p. 21] to the corresponding lemma in my

formalization.

45

4. Formalization of Deep Learning in Isabelle/HOL

The excerpt in question proves that rank[A] ≤ CP-rank(A) for a tensor A of

even order (Lemma 2.3.2). Let Z := CP-rankA. By definition of the CP-rank,

there are vectors az,1, . . . ,az,N and real numbers λz such that

A =

Z∑
z=1

λz · az,1 ⊗ · · · ⊗ az,N (4.1)

First, Cohen et al. show that

rank [az,1 ⊗ · · · ⊗ az,N] = 1

I omit their proof for this equation here. With the linearity of the matricization

and the sub-additivity of the matrix rank, it follows that:

rank [A] = rank

[
Z∑
z=1

λz · az,1 ⊗ · · · ⊗ az,N

]

= rank

Z∑
z=1

λz · [az,1 ⊗ · · · ⊗ az,N]

≤
Z∑
z=1

rankλz · [az,1 ⊗ · · · ⊗ az,N] = Z = CP-rank(A)

Before we can analyze the formalization of this proof, we must understand how

the CP-rank is defined in my formalization. In this thesis, I define the CP-rank

as the smallest Z that fulfills equation 4.1 (Definition 2.3.1). This is a possible

formal definition as well but this approach makes the proofs of many properties

cumbersome.

Instead, I divide the definition into three steps: I define the tensors with a CP-

rank of at most 1, then the tensors with a CP-rank of at most j ∈ N, and based

on that the CP-rank itself.

The predicate cprank max1 is true for all tensors with a rank of at most 1:

inductive cprank max1::"α::ring 1 tensor ⇒ bool" where

order1: "order A ≤ 1 =⇒ cprank max1 A" |
higher order: "order A = 1 =⇒ cprank max1 B =⇒ cprank max1 (A ⊗ B)"

The rule order1 states that all tensors of order 0 and 1, i.e., scalars and vectors,

have a CP-rank of at most 1. The rule higher order states that a tensor of CP-

rank at most 1 multiplied by a vector still has a CP-rank of at most 1. Inductively,

this defines all tensors of the form λz · az,1 ⊗ · · · ⊗ az,N .

The predicate cprank max j is true for all tensors with a rank of at most j:

inductive cprank max :: "nat ⇒ α::ring 1 tensor ⇒ bool" where

cprank max0: "cprank max 0 (tensor0 ds)" |
cprank max Suc: "dims A = dims B =⇒ cprank max1 A =⇒ cprank max j B

=⇒ cprank max (Suc j) (A+B)"

46

4.1. A Comparison of Informal and Formal Proofs

The rule cprank max0 declares all zero tensors to have CP-rank at most 0. The

expression tensor0 ds denotes the zero tensor with dimensions ds. The rule

cprank max Suc states that adding a tensor of CP-rank at most 1 and a tensor

of CP-rank at most j yields a tensor of CP-rank at most Suc j = j + 1. The

dimensions in each mode of the tensors must be equal (i.e., dims A = dims B),

because the addition of tensors of different dimensions is unspecified.

Finally, we define the CP-rank of a tensor A as the least j, such that cprank max

j A:

definition cprank :: "α::ring 1 tensor ⇒ nat" where

"cprank A = (LEAST j. cprank max j A)"

Equipped with these definitions, we can analyze the formal version of the infor-

mal proof above:

1 lemma matrix rank le cprank max:

2 fixes A :: "(α::field) tensor"

3 assumes "cprank max r A"

4 shows "mrank (matricize I A) ≤ r"

5 using assms

6 proof (induction rule:cprank max.induct)

7 fix ds :: "nat list"

8 have "matricize I (tensor0 ds)

9 = 0m (dimr (matricize I (tensor0 ds)))

10 (dimc (matricize I (tensor0 ds)))"

11 using matricize 0 by auto

12 then show "mrank (matricize I (tensor0 ds)) ≤ 0"

13 using eq imp le vec space.rank 0I by metis

14 next

15 fix A B::"α tensor" and j::nat

16 assume "dims A = dims B"

17 assume "cprank max1 A"

18 assume "cprank max j B"

19 assume "mrank (matricize I B) ≤ j"

20 have "mrank (matricize I A) ≤ 1"

21 using ‘cprank max1 A‘ matricize cprank max1 by auto

22 have "mrank (matricize I (A + B))

23 ≤ mrank (matricize I A) + mrank (matricize I B)"

24 using matricize add vec space.rank subadditive dims matricize

25 mat carrierI mat index add(2) ‘dims A = dims B‘ by metis

26 then show "mrank (matricize I (A + B)) ≤ Suc j"

27 using ‘mrank (matricize I A) ≤ 1‘ ‘mrank (matricize I B) ≤ j‘

28 by linarith

29 qed

The premise of this lemma is cprank max r A, which subsumes the case that r

is equal to the CP-rank of A. In this way, the lemma is more general than the

informal Lemma 2.3.2.

47

4. Formalization of Deep Learning in Isabelle/HOL

Moreover, the function matricize is a generalization of the matricization de-

scribed in Definition 2.3.2. It takes a set of natural numbers as first parameter I

that determines which tensor modes are mapped to matrix rows, whereas all other

modes are mapped to the matrix columns. If I is the set of even numbers, the

definitions coincide. A more general statement often simplifies a formal proof.

The formal proof applies an induction over the CP-rank in line 6, whereas the

informal proof leaves the induction implicit using the . . . notation. The induction

rule cprank max.induct generated by the definition of cprank max creates a subgoal

for the base case of the zero tensor and a subgoal for the induction step:

1.
∧
ds. mrank (matricize I (tensor0 ds)) ≤ 0

2.
∧
A B j. dims A = dims B =⇒ cprank max1 A =⇒ cprank max j B =⇒

mrank (matricize I B) ≤ j =⇒ mrank (matricize I (A + B)) ≤ Suc j

Both subgoals are proved separately.

For the base case, we show in line 8 that the matricization of a zero tensor is a

zero matrix (0m) and deduce in line 12 that the matrix rank (mrank) must be 0.

The induction step assumes two tensors A and B of equal dimensions, where A

has a CP-rank of at most 1, and B has a CP-rank of at most j for some natural

number j (lines 16 to 18). The induction hypothesis is that the matricization of B

has a rank of at most j (line 19).

We show that the rank of the matricization of A is at most 1 (line 20). Moreover,

we show that the rank of the matricization of A + B is smaller than or equal to

the sum of ranks of separate matricizations of A and B (line 22). By the induction

hypothesis, it follows in line 26 that the rank of the matricization of A + B is at

most j + 1, which concludes the proof.

4.2. Available Matrix Libraries

The proof of Theorem 2.4.1 relies crucially on matrix theory, for which different

Isabelle libraries exist. My formalization requires in particular a formalization

that can reason about matrices of different dimensions, in particular cope with

submatrices, and implements the matrix determinant as well as the matrix rank.

4.2.1. Isabelle’s Multivariate Analysis Library

Isabelle includes a large multivariate analysis (MVA) library of frequently used

definitions and lemmas, including some properties of vectors and matrices in a

collection of theories. The type that represents vectors is (α,β) vec, which de-

pends on two other types α and β. The type variable α stands for the type of the

entries. The type variable β determines the dimension of the vector by the size

of its universe. The type definition of (α,β) vec requires β to be of class finite,

which means that the universe of β is finite. The size of this finite universe is

48

4.2. Available Matrix Libraries

the dimension of the vectors and the values of type β are used as indices for the

vectors. For convenience, the type (α,β) vec is also abbreviated as α^β.

This approach seems to be a bit unnatural, it would seem to be more appro-

priate to define the vector dimension using a natural number instead of a type.

Unfortunately this is not possible, as type definitions may only depend on other

types, but not on values of variables. In higher-order logic (unlike in some stronger

logics, such as dependent type theory), types cannot depend on terms.

This vector definition allows to define matrices as vectors of vectors, i.e., α^β^γ,

which abbreviates ((α,β) vec,γ) vec.

This definition of matrices cannot be used when matrices of different dimensions

are involved, or if the dimension of a matrix depends on a variable in the proof

(called term variables).

4.2.2. Sternagel and Thiemann’s Matrix Library

Another approach to matrices can be found in the matrix library by Sternagel

and Thiemann [28]: The authors define matrices as lists of lists, i.e., α list list.

This definition has two other problems, though. Firstly, the definition cannot

control whether all columns have the same length, which should be the case for

all matrices. So this property must be added as a premise when the type is

used. Secondly, the matrix dimensions cannot be determined in some edge cases.

Normally the number of rows can be determined by the length of the first column.

However, if the number of columns is zero, the (theoretical) number of rows cannot

be determined. Considering n × 0 matrices may seem to be nonsensical at first,

but it can be useful for inductions over the matrix dimension.

Moreover, Sternagel and Thiemann’s library does not contain some definitions

and lemmas that are required for my formalization. Therefore I attempted to

transfer lemmas from the Isabelle’s MVA library to Sternagel and Thiemann’s

library. For example, the following property of the determinant and the rank

does not exist in Sternagel and Thiemann’s library, but can be easily derived in

Isabelle’s MVA library:

lemma det rank:

fixes A::"real^(β::finite)^(β::finite)"

shows "det A 6= 0 ←→ rank A = nrows A"

The lemma states that for a real square matrix, a non-zero determinant is equiva-

lent to full rank in terms of the MVA matrix definition. The function nrows returns

the number of rows, which is equal to the size of the universe of β.

To transfer this lemma to Sternagel and Thiemann’s definition, we first need

analogous definitions of the determinant, the rank and the number-of-rows func-

tion, which we call det’, rank’ and nrows’. We attempt to use the above lemma

to prove the following:

lemma det’ rank’:

49

4. Formalization of Deep Learning in Isabelle/HOL

fixes A’::"real list list"

assumes "square mat A’"

shows "det’ A’ 6= 0 ←→ rank’ A’ = nrows’ A’"

We have to a add the premise square mat A’, meaning that A’ is a square matrix

because in Sternagel and Thiemann’s definition this premise is not ensured by the

type. We denote matrices of type real^β^β (MVA definition) as A and matrices of

type real list list (Sternagel and Thiemann’s definition) as A’.

To connect the two definitions, we need a function T that maps a matrix A’ of

type real list list to its corresponding matrix A of type real^β^β. Although we

can name all of these functions the same using polymorphism, T represents one

function for every instantiation of β.

For example, if we instantiate β with a type three that has three values, we get

a specific instance of T of type

real list list ⇒ real^three^three

This specific instance of T can obviously map only those arguments to a reasonable

function value that represent a 3 × 3 matrix. More generally, if CARD β denotes

the size of β’s universe, the function T::(real list list ⇒ real^β^β) can only

be reasonably specified for arguments that represent CARD β × CARD β matrices.

For this reason, properties such as

det (T A’) = det’ A’

rank (T A’) = rank’ A’

nrows (T A’) = nrows’ A’

with T of type real list list ⇒ real^β^β can only be proved if A’ represents

a square matrix and has the same size as the universe of β. This results in the

following lemma:

lemma

fixes T::"real list list ⇒ real^β^β"

and A’::"real list list"

assumes "CARD(β) = nrows’ A’"

and "square mat A’"

shows "det (T A’) = det’ A’"

and "rank (T A’) = rank’ A’"

and "nrows (T A’) = nrows’ A’"

Combined with the lemma det rank from above with A = T A’, this lemma yields:

lemma det’ rank’ provisory:

fixes A’::"real list list"

assumes "CARD(β) = nrows’ A’"

and "square mat A’"

shows "det’ A’ 6= 0 ←→ rank’ A’ = nrows’ A’"

50

4.2. Available Matrix Libraries

This lemma is almost our desired lemma det’ rank’, the only difference being the

additional premise CARD(β) = nrows’ A’. Note that the type β only appears in this

premise, not elsewhere in the lemma, and not implicitly as the type of a variable.

Therefore, this premise amounts to stating that there is a type β whose universe

has size nrows’ A’.

From an outside perspective, it is obvious that there is such a type β except for

the case nrows’ A’ = 0, because we can introduce a type from any non-empty set

using the typedef command (Section 3.6.1). However, Isabelle does not allow to

introduce types inside of a proof.

An extension of the axiom system called local typedef that would allow this kind

of type introduction is currently being developed [21]. In particular, it enables us

to remove the undesired premise from the lemma det’ rank’ provisory and to

obtain the lemma det’ rank’.

The main challenge of this approach is to proof that the definitions of det, rank

etc. for both matrix types are essentially the same in the sense of det (T A’) =

det’ A’. In particular for as complicated definitions as the definition of det, this

proof can be cumbersome. Moreover I had difficulties to understand how to employ

the local typedef extension.

These difficulties led me to discard the idea of using local typedefs. Nevertheless,

using local typedefs for this purpose is possible, as demonstrated in a formalization

of the Perron-Frobenius theorem [14].

4.2.3. Thiemann and Yamada’s Matrix Library

Since it was hidden in an AFP entry about the Jordan normal form, I only later

discovered the matrix library by Thiemann and Yamada [29]. It completely sub-

sumes the results of the matrix library by Sternagel and Thiemann and of Isabelle’s

MVA library, but it is based on a new definition of matrices:

typedef α mat =

"{(nr, nc, mk mat nr nc f)

| (nr :: nat) (nc :: nat) (f :: nat × nat ⇒ α). True}"

Unlike Sternagel and Thiemann’s definition, this definition explicitly contains

the matrix dimensions nr (number of rows) and nc (number of columns). This

solves the problem of determining the number of rows in n×0 matrices. Moreover,

instead of lists a function f is used to store the entries of the matrix. This function

f maps a pair of natural numbers (the indices) to the according entry. The function

mk mat (whose definition I omit here) overwrites the entries of f that are outside of

the bounds of nr times nc with a default value. If the definition allowed arbitrary

values outside of the bounds, we would end up with multiple values that represent

the same matrix.

One advantage of using a function instead of a list to store the values of the

matrices is the similarity to the matrix definition from Isabelle’s MVA library. It

51

4. Formalization of Deep Learning in Isabelle/HOL

allowed Thiemann and Yamada to copy the existing proofs from there and adapt

them to their definition. The local typedef extension did not exist at the time,

which is why they were not able to transfer the lemmas directly, but a direct

transfer is also possible [14].

There are two properties of matrices that are not contained in Thiemann and

Yamada’s library but necessary for my formalization: the matrix rank and sub-

matrices.

I defined a function submatrix with three arguments: the original matrix of type

α mat, a set of row indices of type nat set, and a set of column indices of type nat

set. It returns the submatrix obtained by deleting all rows and columns whose

indices are not contained in the given sets.

While the rank can be defined in various other ways, the two defining properties

that are most relevant for my formalization are:

• The rank of a matrix is the dimension of the space spanned by the columns

of the matrix.

• The rank of a matrix is the maximum amount of independent columns of

the matrix.

I used the first property as the definition and proved the second property as a

lemma. Moreover, I formalized the fact that the matrix rank is larger than any

submatrix with determinant 6= 0.

4.3. Design of My Tensor Library

A formalization of tensors in Isabelle has not been published before, although there

is an AFP entry called ‘Tensor’ by Prathamesh [26]. Despite the name, this library

discusses the Kronecker product, which is the equivalent of the tensor product on

matrices. More precisely, the Kronecker product of two matrices A and B can be

described as the mapping

(A,B) 7→ [A⊗B]

i.e., the Kronecker product is the matricization of the tensor product, treating the

matrices as order 2 tensors.

In principle, this approach of representing tensors by their matricization is suf-

ficient, since the entries of the matricization are the entries of the tensor. But

it is only sufficient if the tensor dimensions are always known, since they cannot

be determined from the matrix. I found it much easier to work with a proper

definition of tensors.

One could found the definition of the tensor type on their matricization, but it

turns out to be easier to use their vectorization instead. Vectorization is similar

to matricization, but the entries of the tensor are put into a vector instead of a

matrix. More precisely, given an order N tensor of dimension Mi in mode i, the

52

4.3. Design of My Tensor Library

value of at position d1, . . . , dN is written into the vector at position d1 + M1 ·
(d2 +M2 · (· · ·+MN−1 · dN)).

As in Thiemann and Yamada’s matrix definition, the tensor values must contain

their order and dimensions. These can be specified in form of a list ds, whose length

is the order and whose entries are the dimensions in the respective mode:

typedef α tensor =

"{(ds,vs) | (ds::nat list) (vs::α list). length vs = listprod ds}"

Unlike in Thiemann and Yamada’s matrix definition, I used a list rather than

a function to store the tensor values. Therefore I do not need to specify default

values for the out of bounds entries, but I must specify the length of the list

instead, which is listprod ds, i.e., the product of all mode dimensions.

A function representing the tensor values was extremely valuable in the proofs,

though, which is why I defined such a function on top of this type definition. It

would have been equally possible to define the tensor type based on a function

and define the list representation on top, e.g.,

typedef α::zero tensor =

"{(ds,f) | (ds::nat list) (f::nat ⇒ α). ∀ i ≥ listprod ds. f i = 0}"

Both type definitions are essentially equivalent and neither has considerable ad-

vantages. The above definition requires α to be of class zero such that 0 can be

used as a default value, but other default values such as the underspecified value

undefined would be possible without requiring a type class.

When introducing a type, we often need to ask ourselves which type classes they

could belong to. Type classes can be helpful, because they include lemmas and

definitions, which can save a lot of work. For this tensor definition, we should

especially consider type classes representing algebraic structures, such as rings,

groups, and monoids. There are two basic approaches to implement these algebraic

structures:

• In the approach without carrier sets the algebraic structure has to apply to

the entire universe of the type (as implemented in Isabelle’s group theory

library).

• The second approach works with so-called carrier sets, which are a subset

of the type universe that the algebraic structure applies to (as implemented

in Isabelle’s algebra library). This second approach is the more general one,

but a little harder to use.

Both approaches define a hierarchy of algebraic structures with increasingly

restrictive axioms:

• semigroup:

associativity (a+ b) + c = a+ (b+ c)

53

4. Formalization of Deep Learning in Isabelle/HOL

• cancellative semigroup:

semigroup + cancellation properties a + c = b + c =⇒ a = b and c + a =

c+ b =⇒ a = b

• monoid:

semigroup + neutral element e, i.e., e+ a = a and a+ e = a

• group:

monoid + inverse elements −a, i.e., (−a) + a = e and a+ (−a) = e

• commutative versions of each of the above, i.e., a+ b = b+ a

The approach without carrier sets is satisfactory for tensor multiplication, be-

cause tensor multiplication is defined for any two tensors. Tensor multiplication

forms a monoid, which means it is associative and has a neutral element. I instan-

tiated the according type class monoid mult in my formalization.

Unfortunately, addition can be reasonably defined only for tensors of the same

order and dimensions. Restricted to these, the addition is a commutative group,

but this cannot be captured by the approach without carrier sets.

It is desirable to find a definition of tensor addition that generalizes to tensors of

different orders or dimensions and preserves the group axioms. But whatever rule

one chooses, the tensor addition is at most a commutative monoid (using some

arbitrary zero tensor as neutral element).

Tensor addition cannot be generalized without violating the cancellation prop-

erty a+ c = b+ c⇒ a = b: Let e be the neutral element. Let e′ be a zero tensor of

a different order. Then we have e′+ e′ = e′ = e+ e′, but e′ 6= e, which contradicts

the cancellation property. Therefore the set of all tensors can never be instantiated

as a group.

The approach from Isabelle’s algebra library on the other hand allows us to

define the tensors of identical order and dimensions as carrier sets and to prove

that each of those sets forms a commutative group. Since this was irrelevant for

my formalization, I did not implement this, but it would be helpful to complete

my tensor library.

4.4. Adapting the Formalization of the Lebesgue

Measure

The Lebesgue measure as defined in Isabelle’s probability library raised similar

difficulties as the matrix definition of Isabelle’s MVA library. The Lebesgue mea-

sure is defined using the type α::euclidean_space measure, meaning that the sets

being measured must be sets of a type from the type class euclidian_space. This

type class fixes a finite basis such that it fixes especially the dimensionality of the

space being measured. As for the matrices, the dimensionality is therefore pa-

rametrized by types. But the dimension of the space in my formalization depends

54

4.5. Formalization of Multivariate Polynomials

on the number of weights in the network, i.e., on a term variable. As discussed

in Section 4.2.2, it is therefore impossible to use the according lemmas directly.

The obvious alternative is to redefine the Lebesgue measure and to transfer lem-

mas either by finding analogous proofs or by transferring the results using local

typedefs.

Fortunately, in this case there is no need to redefine everything. The measure

lborel for the type real (i.e., for the one-dimensional case) can be reused to define

a more flexible version. To this end I employed the definition of product measures

from Isabelle’s probability library. Since the multidimensional Lebesgue measure

is the product measure of the one-dimensional Lebesgue measure, these two can

be combined to redefine the multidimensional Lebesgue measure depending on a

term variable which specifies the dimensionality:

definition lborel_f :: "nat ⇒ (nat ⇒ real) measure" where

"lborel_f n = (ΠM b∈{..<n}. lborel)"

This version of the Lebesgue measure has one argument n of type nat which spec-

ifies the dimensionality of the space being measured. The measure itself is of type

(nat ⇒ real) measure, i.e., it measures sets of functions mapping from nat to

real, hence the name lborel f, where f stands for “functional”. These functions

represent vectors of Rn, the entries of the vector being the first n values of the

function. All function values after that must be the default value undefined. Any

set containing a function that violates this rule is not measurable. The syntax

ΠM_∈_._ denotes the product measure over a finite number of measures, in this

case the product of n times the lborel measure. From type inference it is clear

that lborel denotes the one-dimensional Lebesgue measure.

The measure lborel for higher dimension is defined using the product measure

as well, just in a slightly different way. Therefore, any proof for lborel can quite

easily be transferred to lborel f. Lemmas connecting different dimensionalities of

lborel f can mostly be easily obtained from lemmas about the product measure.

The notion “almost everywhere” from measure theory, meaning that a property

holds for all x ∈ R except for a null set, is formalized as well in form of the AE

quantifier. The syntax is AE x in M. P x, meaning that P x holds almost every-

where with respect to the measure M. In my formalization, this measure will be

lborel f n with n being the dimension of the space.

4.5. Formalization of Multivariate Polynomials

Isabelle/HOL does not yet include a standard library of multivariate polynomials.

Multivariate polynomial libraries have been developed to support other formaliza-

tion projects, but they are designed for the purposes of the specific project. I will

present some libraries that are most relevant for my formalization, one of which I

finally decided to extend and use.

55

4. Formalization of Deep Learning in Isabelle/HOL

4.5.1. Nested Univariate Polynomials

In the standard Isabelle libraries, there is no formalization of multivariate polyno-

mials, but the formalization for univariate polynomials can be used for multivariate

ones as well. These univariate polynomials are defined as follows:

typedef α poly = "f :: (nat ⇒ α::zero). ∀∞n. f n = 0"

The polynomials are identified with functions from nat to a type of class zero. The

function values represent the coefficients of the polynomial at a given exponent.

The type class zero simply claims that there must be an element called 0, allowing

us to use 0 in the definition. The syntax ∀∞n. stands for “for all but finitely

many n . . . ”. So, the condition for a valid function is that it can be non-zero at

only finitely many places, which forces the polynomials to have only finitely many

terms, i.e., power series are not allowed.

This definition can be used for multivariate polynomials by nesting it. The type

poly itself can be instantiated having the type class zero, using the zero poly-

nomial as 0. Then it is possible to use the type (real poly) poly, ((real poly)

poly) poly, etc, which means that the coefficients of the polynomials are polyno-

mials as well. For the type (real poly) poly an example polynomial, expressed in

traditional notation, follows:

(1 + 2y + 3y2) + (2− 4y)x+ (3 + y2)x2

The names x and y are arbitrary. Note that any multivariate polynomial with two

variables can be written this way. For the type ((real poly) poly) poly the inner

polynomials have polynomial coefficients as well, which results in multivariate

polynomials with three variables and so on.

Unfortunately, this approach does not work for my formalization, since the num-

ber of variables depends on a term variable. It is impossible to reason about this

nesting of types, such as “I need a type that is nesting poly n times.”

4.5.2. Sternagel and Thiemann’s Polynomial Library

Sternagel and Thiemann [27] formalized multivariate polynomials in a project

particularly designed for execution, i.e., generating source code in a functional

programming language from the Isabelle specification. For this reason, there are

multiple values that in the standard view of multivariate polynomials would be

the same, e.g., x ·y+z, y ·x+z and z+x ·y are considered different. To determine

whether two values represent the same polynomial, they define a binary predicate,

which determines whether two values represent the same polynomial. This is an

obstacle for proof automation, which is designed to work with the default equality

predicate =.

56

4.5. Formalization of Multivariate Polynomials

4.5.3. Lochbihler and Haftmann’s Polynomial Library

My formalization builds on an unpublished multivariate polynomial library by

Lochbihler and Haftmann [16]. It introduces a type constructor poly mapping,

which is similar to the function type constructor but allows only functions that

are non-zero at only finitely many points:

typedef (α, β) poly mapping =

"{f :: (α ⇒ β::zero). finite {x. f x 6= 0}}"

This type constructor is abbreviated using the infix ⇒0. In the definition of the

type for multivariate polynomials, it is used twice: once for ensuring that each

term contains only finitely many variables (no infinite products), and once for

ensuring that a polynomial contains only finitely many terms (no infinite sums).

The definition looks as follows:

typedef α mpoly = "UNIV :: ((nat ⇒0 nat) ⇒0 α::zero) set"

The keyword UNIV stands for the universe (i.e., the set of all values of that type) of

the type (nat ⇒0 nat) ⇒0 α::zero. In this approach, variables are represented

as natural numbers, which can be pictured as using x0, x1, x2, etc. The functions of

type nat ⇒0 nat represent power products such as x30x
1
1x

5
2, mapping each variable

index to its exponent. The poly mapping type ensures that all but finitely many

exponents are 0. The type α is the type of the coefficients, which is real in

my formalization. So, the polynomials are represented by mappings from power

products to their coefficients, while the poly mapping type ensures that all but

finitely many power products have the coefficient 0.

The main theorem about polynomials that is needed for my formalization is

Lemma 2.3.1, stating that the zero set of a multivariate polynomial 6= 0 is a

Lebesgue null set. The proof (from [9]) uses an induction that is based on the fact

that multivariate polynomials can be nested as described above (Section 4.5.1). I

extended Lochbihler and Haftmann’s library with lemmas discussing the type α

mpoly mpoly and how it is equivalent to α mpoly. Towards this end, I added more

basic lemmas, also introducing the function vars which determines the set of used

variables in a polynomial. Moreover, I developed a powerful induction principle

which states that instead of proving a property for polynomials directly, it suffices

to show a property for one single variable, multiplication of two monomials, and

addition (some additional constraints are possible).

Furthermore, the proof of Lemma 2.3.1 uses the fact that a univariate real

polynomial 6= 0 has only finitely many zeros. This fact is formalized for the type

poly from Isabelle’s library, so it needed to be transferred to the type mpoly (adding

the premise that the polynomial may have only one variable). This connection

between the type mpoly and poly is part of my formalization.

57

4. Formalization of Deep Learning in Isabelle/HOL

4.5.4. Immler and Maletzky’s Polynomial Library

As part of a formalization of Groebner bases [18], one more definition of multivari-

ate polynomials was published too late to be used in my formalization. I mention

it because it is supposed to become the standard formalization of multivariate

polynomials.

However, the maximal number of variables to be used in the polynomial is

determined by a type. Since the number of variables depends on a term variable

in my formalization, it is impossible to use Immler and Maletzky’s defintion.

4.6. Formalization of the Fundamental Theorem

The goal of this section is eventually to present the fundamental theorem of net-

work capacity in its formalized version, but first I will discuss the involved defini-

tions.

4.6.1. A Type for Convolutional Arithmetic Circuits

At the heart of this theorem are the convolutional arithmetic circuits, appearing in

the shape of the deep and the shallow network model. I created a type convnet that

can represent these kind of networks, and theoretically also the truncated network

model. The type is based on the Figures 2.2a and 2.2b, but only formalizes the

SPN, i.e., the representational layer is not included specifically.

Since the networks are trees, the formalization resembles the example of binary

trees in Section 3.6.2. This tree structure is made out of three building blocks:

• Input nodes, which represent the leaf nodes of the tree. They are parame-

trized by the length of the input vector (corresponding to M in Figures 2.2a

and 2.2b).

• Convolutional nodes, which appear inside the tree structure, but do not

branch. They are parametrized either by a matrix that contains the weights,

or by a pair of natural numbers that describe only the matrix size without

storing concrete weights. Having these two options allows us using the same

type for both networks with concrete weights and network templates without

concrete weights.

• Pooling nodes, which allow branching. I decided to allow only binary branch-

ing, as higher-order branching is equivalent to stacking multiple binary pool-

ing nodes on top of each other.

In Isabelle syntax the type is defined as follows:

datatype α convnet =

Input nat |

Conv α "α convnet" |

Pool "α convnet" "α convnet"

58

4.6. Formalization of the Fundamental Theorem

The type parameter α can be used to reason about networks with concrete weights

(using real mat for α) or network templates without concrete weights (using nat

× nat for α).

This type definition allows us to describe the structure of the networks. It does

not give any meaning to the parts on the networks. The function evaluate net

specifies how calculations in the networks are performed. The function evaluate

net takes two arguments: The first one is the network to be evaluated of type

real mat convnet. The second argument are the input values of the network as a

list of vectors (vec list). The output of the function is the output vector of the

network. The definition looks as follows:

fun evaluate_net :: "real mat convnet ⇒ real vec list ⇒ real vec"

where

"evaluate_net (Input M) inputs = hd inputs" |

"evaluate_net (Conv A m) inputs = A ⊗mv evaluate_net m inputs" |

"evaluate_net (Pool m1 m2) inputs = component_mult

(evaluate_net m1 (take (length (input_sizes m1)) inputs))

(evaluate_net m2 (drop (length (input_sizes m1)) inputs))"

The operator ⊗mv multiplies a matrix with a vector. The function component_

mult multiplies two vectors componentwise.

This function definition specifies the network calculations in a recursive case

distinction. The base case is Input, which simply outputs the first given input

vector. Normally the inputs list of the Input node should have length one, but if

it does not, the remaining list entries are ignored.

The Conv node makes a recursive call and multiplies its response to the contained

matrix. The Pool node makes one recursive calls to each branch. For this purpose

the inputs list must be split into two. The expression length (input_sizes m1)

calculates the correct amount of input vectors for the model m1. The functions

take and drop split the inputs list in two halfs, the first half having that calculated

length. Finally the Pool node calculates the componentwise product of the two

incoming vectors.

Another important function operating on the convnet type is insert weights.

It connects the network templates without weights to the networks with weights.

The first argument is the network to be filled with weights, i.e., of type (nat ×
nat) convnet. The second argument contains the weights in form of a nat ⇒ real

function. Only the first few function values are used (i.e., as many as there are

weights in the network), and the rest is ignored. I decided to use a nat ⇒ real

function here instead of a list, since the Lebesgue measure lborel f (Section 4.4)

is also based on nat ⇒ real functions. The output of insert weights is a network

with the same structure storing the specified weights, i.e., a network of type real

mat convnet. The function is defined as follows:

fun insert_weights

:: "(nat × nat) convnet ⇒ (nat ⇒ real) ⇒ real mat convnet"

59

4. Formalization of Deep Learning in Isabelle/HOL

where

"insert_weights (Input M) w = Input M" |

"insert_weights (Conv (r0,r1) m) w = Conv

(extract_matrix w r0 r1)

(insert_weights m (λi. w (i+r0*r1)))" |

"insert_weights (Pool m1 m2) w = Pool

(insert_weights m1 w)

(insert_weights m2 (λi. w (i+(count_weights m1))))"

This function definition also makes a case distinction on the three network build-

ing blocks. In the base case Input, nothing has to be changed. However note

that the argument is a network of type (nat × nat) convnet, whereas the out-

put is of type real mat convnet, although they are syntactically identical. The

Conv case uses the function extract matrix, which produces a matrix containing

the first r0*r1 function values of w. Then it recursively calls the insert weights

function, but instead of using w itself, it shifts all values of w using the expres-

sion λi. w (i+r0*r1) such that the first r0*r1 values cannot be reused. A similar

shifting is done in the second recursive call of the Prod case. Here, I use a func-

tion count weights, which calculates how many weights are contained in the left

branch, i.e., how far the function values must be shifted such that no weights are

used multiple times.

4.6.2. The Shallow and Deep Network Models

The type convnet could be used to describe all kinds of convolutional arithmetic

circuits. In particular, we need a way to describe the deep and the shallow network

model. To this end, I decided to use functions that generate the network structures

depending on a set of parameters.

The shallow network

Using the convnet type, the shallow network looks as illustrated in Figure 4.1. The

pooling layer with multiple branching must be formalized by multiple binary Pool

nodes.

Conv

Pool

Pool

Pool

Conv

Input

Conv

Input

Conv

Input

Conv

Input

Figure 4.1.: Structure of the shallow model in the formalization

60

4.6. Formalization of the Fundamental Theorem

The definition of the generating function for the shallow network is divided into

two parts. First, the auxiliary function shallow model’ produces the shallow model

without the final Conv node:

fun shallow_model’ where

"shallow_model’ Z M 0 = Conv (Z,M) (Input M)" |

"shallow_model’ Z M (Suc N)

= Pool (shallow_model’ Z M 0) (shallow_model’ Z M N)"

The definition of shallow model’ takes the parameters Z (size of the output

vectors of the first convolutional layer), M (size of the input vectors), and N (number

of inputs) from Section 2.2 as arguments. More precisely the third parameter is

equal to N − 1 for technical reasons.

The definition is recurses over the third argument, i.e., the number of inputs.

The base case is 0, which corresponds to N = 1 input node. The recursive case

assumes that the third argument is Suc N, i.e., the successor of some number N.

There are two recursive calls: one with third argument 0, which creates the short

left branch, and one with third argument N, which creates the longer right branch.

Finally the shallow model needs the final Conv node, which is done in the defi-

nition of shallow model:

definition shallow_model where

"shallow_model Y Z M N = Conv (Y,Z) (shallow_model’ Z M N)"

This definition has one additional parameter, Y, which corresponds to the length

Y of the output vector as described in Section 2.2.

The deep network

The deep network consists of alternating convolutional and pooling layers. As

for the shallow model, it makes sense for the recursive definition to employ an

auxiliary function deep model’ that produces the deep network model without

the last convolutional layer. But here, the two definitions of deep model’ and

deep model call each other recursively:

fun deep_model and deep_model’ where

"deep_model’ Y [] = Input Y" |

"deep_model’ Y (r # rs)

= Pool (deep_model Y r rs) (deep_model Y r rs)" |

"deep_model Y r rs = Conv (Y,r) (deep_model’ r rs)"

The function deep model’ takes two arguments: the length of the output vector

of the last layer, and the lengths of the output vectors of the other layers as a

list bottom up. The function deep model takes three arguments: the length of the

output vector of the last layer, the length of the output vector of the before last

layer, and the lengths of the output vectors of the other layers as a list bottom up.

61

4. Formalization of Deep Learning in Isabelle/HOL

To simplify the definition, the last and next-to-last layers are passed as separate

arguments. When invoking the function, it makes more sense to combine all output

vector lengths in one argument. Therefore I created the following abbreviations:

abbreviation "deep_model’_l rs == deep_model’ (rs!0) (tl rs)"

abbreviation "deep_model_l rs == deep_model (rs!0) (rs!1) (tl (tl rs))"

The function deep model l takes only one list as argument, which contains all

output vector lengths bottom up. This corresponds to the values Y, rL−1, . . . , r0,

M from Section 2.2.

4.6.3. The Fundamental Theorem

The fundamental theorem is stated inside of a locale deep model correct params,

which puts up some requirements to the deep model structure:

locale deep_model_correct_params =

fixes rs::"nat list"

assumes deep:"length rs ≥ 3"

and no_zeros:"
∧
r. r∈set rs =⇒ 0 < r"

This locale fixes the parameter rs for the deep model and requires rs to have

at least three elements (corresponding to Y , r0 and M) and to contain no zeros.

With less than three elements, the corresponding deep model is shallower that the

shallow model, and the theorem is no longer true. If one of the elements of rs is

zero, the entire network can only produce the zero vector as output, therefore the

theorem would be no longer true, too. In the original paper these two requirements

are implicit in the definition of the deep model.

Based on the fixed rs, the locale defines the values r (corresponding to r), N half

(corresponding to N/2) and weight space dim (which defines the number of weights

in the deep network, i.e., the number of dimensions of the weight space):

definition "r = min (last rs) (last (butlast rs))"

definition "N_half = 2^(length rs - 3)"

definition "weight_space_dim = count_weights(deep_model_l rs)"

I decided to use N half instead of N, because it is much easier to reason about

multiplication (e.g., 2*N half) than about division (e.g., N div 2). If I used N, I

would need to thread the assumption that N is an even number through the entire

formalization to use N div 2 properly.

Equipped with these basic definitions, we are able to analyze the fundamental

theorem in its formalized version:

theorem fundamental_theorem_network_capacity_v2:

"AE weights_deep in lborel_f weight_space_dim.

¬(∃ weights_shallow Z. Z < r ^ N_half ∧
(∀ inputs. map dimv inputs = input sizes (deep model l rs) −→

62

4.7. Related Work

evaluate_net (insert_weights (deep_model_l rs) weights_deep) inputs

= evaluate_net (insert_weights

(shallow_model (rs ! 0) Z (last rs) (2*N_half-1))

weights_shallow) inputs))"

When comparing this with the formulation of Theorem 2.4.1, note that the

formalized version does not define the set S and states that it is a null set. Instead,

it states that the property to be in S does not hold almost everywhere.

The line AE weights_deep in lborel_f weight_space_dim. introduces an almost-

everywhere quantification where weights deep is the quantified variable. What

follows is the negated property of being inside S, i.e., what follows the ¬ is the

property to be in S as described in Theorem 2.4.1. There S is described as the

set of weight configurations that represent a deep SPN function which can also be

expressed by the shallow SPN model with Z < rN/2.

The deep SPN function that is represented by our fixed weight configuration

weights deep is calculated using

evaluate_net (insert_weights (deep_model_l rs) weights_deep) inputs

for some valid list of input vectors inputs. The shallow SPN function to be com-

pared to this depends on the parameters of the shallow network model Y , Z, M ,

N and on the weights of the shallow model. The SPN functions can only be the

same if the input and output vector lengths are the same and if the number of

inputs are the same, therefore we can use rs ! 0 as the first, last rs as third

2*N_half-1 as forth argument of shallow model.

The values for the second argument Z and the weights weights shallow can be

chosen arbitrarily, so we use an existential quantifier ∃ to introduce them. The

only condition on Z is that Z < r ^ N_half.

Now, S is described as the set where the SPNs are equal, i.e., where they produce

the same vectors for all valid inputs. Note that we could encounter invalid inputs,

e.g., a list of the wrong length or vectors of a wrong size. The expression map dimv

inputs = input sizes (deep model l rs) excludes such invalid inputs.

It is not easy to see that the formalized theorem is equivalent to Theorem 2.4.1.

Only a detailed study of the involved definitions can convince someone to accept

that the formalization proves what it is supposed to prove. A formalization can

never replace a paper proof, because a formal proof is difficult to read, and the

human insight is hidden under the technical details.

4.7. Related Work

To the best of my knowledge this formalization is the first formal proof about deep

learning. However, other machine learning algorithms including hidden Markov

models [22], expectation maximization and support vector machines [3] have been

formalized.

63

4. Formalization of Deep Learning in Isabelle/HOL

Concerning the theories that support my formalization, there are similar theo-

ries in the equally popular proof assistant Coq: The matrix theory of the Ssreflect

project [15] is comprehensive, and it faces less challenges concerning the type sys-

tem because Coq allows dependent types, i.e., types that depend on term variables.

However, using dependent types for matrices turns out to be unwieldy in practice

[13], which suggests that this is a general problem independent of the tool. The

Coq tensor formalization by Boender [6] restricts itself to the Kronecker prod-

uct on matrices, i.e., there is no type for tensors as provided in my formalization.

Multivariate polynomials have been formalized to show the transcendence of e and

π [2]. The Lebesgue measure only exists in a formalization for of the Lebesgue

integral as part of a formalization of Markov’s inequality [19].

64

5. Conclusion

This formalization is a case study of formalizing current research in the field of ma-

chine learning. It shows that the functionality and libraries of state of the art proof

assistants such as Isabelle/HOL are up to the task. Admittedly, even the formal-

ization of relatively short proofs such as the one presented here is labor-intensive.

On the other hand, the process can not only lead to a computer verification of the

result, but can also reveal new ideas and results, as the generalization obtained

here.

Although convolutional arithmetic circuits are depth efficient, i.e., the functions

generated by shallow networks are null set in the space of the functions gener-

ated by deeper networks, this generalization indicates that this null set might be

extremely large when considering implementations that can naturally only use a

finite subset of the real numbers. Concerning the theory of deep learning, this

generalization raises the question as to whether the generally accepted notion of

complete depth efficiency is the best way to determine the strength of a deep

learning variant.

Concerning the development of proof assistants and formalizations, my work

shows that we need ideas on how to solve the dependent type problem. In several

areas (matrices, Lebesgue measure, polynomials) I ran into this issue, which was

sometimes easier, sometimes harder to avoid. For Isabelle/HOL, a possible solu-

tion called “local typedefs” has recently been published [21]. But even in Coq,

where dependent types are built into the formalism, they may “impose too many

constraints on programming” [13] in practice.

65

Bibliography

[1] Alexander Bentkamp. Expressiveness of deep learning. Archive of Formal

Proofs, November 2016. http://isa-afp.org/entries/Deep Learning.shtml, For-

mal proof development.

[2] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. For-

mal proofs of transcendence for e and pi as an application of multivariate and

symmetric polynomials. In Proceedings of the 5th ACM SIGPLAN Conference

on Certified Programs and Proofs, pages 76–87. ACM, 2016.

[3] Sooraj Bhat. Syntactic foundations for machine learning. PhD thesis, Georgia

Institute of Technology, 2013.

[4] Jasmin Christian Blanchette. Counterexamples for Isabelle: Ground and

beyond. Symbolic Methods in Testing, page 7, 2013.

[5] Jasmin Christian Blanchette, Sascha Böhme, Mathias Fleury, Steffen Juilf

Smolka, and Albert Steckermeier. Semi-intelligible Isar proofs from machine-

generated proofs. Journal of Automated Reasoning, 56(2):155–200, 2016.

[6] Jaap Boender, Florian Kammüller, and Rajagopal Nagarajan. Formalization

of quantum protocols using Coq. arXiv preprint arXiv:1511.01568, 2015.

[7] Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3.

In International Conference on Interactive Theorem Proving, pages 179–194.

Springer, 2010.

[8] Peter Bürgisser, Felipe Cucker, and Martin Lotz. The probability that a

slightly perturbed numerical analysis problem is difficult. Mathematics of

Computation, 77(263):1559–1583, 2008.

[9] Richard Caron and Tim Traynor. The zero set of a polynomial. WSMR

Report, pages 05–02, 2005.

[10] Nadav Cohen, Or Sharir, and Amnon Shashua. Deep simnets. arXiv preprint

arXiv:1506.03059, 2015.

[11] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of

deep learning: A tensor analysis. CoRR, abs/1509.05009, 2015.

[12] Nadav Cohen and Amnon Shashua. Convolutional rectifier networks as gen-

eralized tensor decompositions. arXiv preprint arXiv:1603.00162, 2016.

67

http://isa-afp.org/entries/Deep_Learning.shtml

Bibliography

[13] Maxime Dénes and Yves Bertot. Experiments with computable matrices in

the Coq system. 2011.

[14] Jose Divasón, Ondřej Kunčar, René Thiemann, and Akihisa Yamada. Perron-

Frobenius theorem for spectral radius analysis. Archive of Formal Proofs,

May 2016. http://isa-afp.org/entries/Perron Frobenius.shtml, Formal proof

development.

[15] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflection

extension for the Coq system. PhD thesis, Inria Saclay Ile de France, 2015.

[16] Florian Haftmann, Andreas Lochbihler, and Wolfgang Schreiner. Towards ab-

stract and executable multivariate polynomials in Isabelle. In Isabelle Work-

shop, volume 201, 2014.

[17] Johannes Hölzl and Armin Heller. Three chapters of measure theory in Isa-

belle/HOL. In Interactive Theorem Proving, pages 135–151. Springer, 2011.

[18] Fabian Immler and Alexander Maletzky. Gröbner bases theory. Archive of

Formal Proofs, May 2016. http://isa-afp.org/entries/Groebner Bases.shtml,

Formal proof development.

[19] Robert Kam. Case studies in proof checking. Master’s thesis, San Jose State

University, 2007.

[20] Gerwin Klein, Tobias Nipkow, and Lawrence Paulson. The Archive of Formal

Proofs, 2010. http://isa-afp.org.

[21] Ondrej Kuncar and Andrei Popescu. From types to sets by local type defini-

tions in higher-order logic. Proc. ITP, 2016.

[22] Liya Liu, Vincent Aravantinos, Osman Hasan, and Sofiene Tahar. On the

formal analysis of HMM using theorem proving. In International Conference

on Formal Engineering Methods, pages 316–331. Springer, 2014.

[23] Martin Lotz. On the volume of tubular neighborhoods of real algebraic vari-

eties. Proceedings of the American Mathematical Society, 143(5):1875–1889,

2015.

[24] Lawrence C Paulson and Jasmin Christian Blanchette. Three years of experi-

ence with Sledgehammer, a practical link between automatic and interactive

theorem provers. IWIL-2010, 1, 2010.

[25] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep

architecture. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on, pages 689–690. IEEE, 2011.

[26] T.V.H. Prathamesh. Tensor product of matrices. Archive of Formal Proofs,

January 2016. http://isa-afp.org/entries/Matrix Tensor.shtml, Formal proof

development.

68

http://isa-afp.org/entries/Perron_Frobenius.shtml
http://isa-afp.org/entries/Groebner_Bases.shtml
http://isa-afp.org
http://isa-afp.org/entries/Matrix_Tensor.shtml

Bibliography

[27] Christian Sternagel and René Thiemann. Executable multivariate polyno-

mials. Archive of Formal Proofs, August 2010. http://isa-afp.org/entries/

Polynomials.shtml, Formal proof development.

[28] Christian Sternagel and René Thiemann. Executable matrix operations on

matrices of arbitrary dimensions. Archive of Formal Proofs, June 2010. http:

//isa-afp.org/entries/Matrix.shtml, Formal proof development.

[29] René Thiemann and Akihisa Yamada. Matrices, Jordan normal forms, and

spectral radius theory. Archive of Formal Proofs, August 2015. http://isa-afp.

org/entries/Jordan Normal Form.shtml, Formal proof development.

69

http://isa-afp.org/entries/Polynomials.shtml
http://isa-afp.org/entries/Polynomials.shtml
http://isa-afp.org/entries/Matrix.shtml
http://isa-afp.org/entries/Matrix.shtml
http://isa-afp.org/entries/Jordan_Normal_Form.shtml
http://isa-afp.org/entries/Jordan_Normal_Form.shtml

A. List of Isabelle/HOL Symbols

Symbol Description Section

. part of the quantifier syntax 3.4.1

^ exponentiation operator

:: type or type class constraint 3.3.2, 3.3.3

! nth element lookup for lists 3.4.4

| case separator for datatype and fun 3.6.2, 3.6.4

∧ logical “and” 3.4.1

∨ logical “or” 3.4.1

−→ implication arrow 3.4.1

←→ equivalence arrow 3.4.1

⇒ function type 3.3.1

=⇒ implication arrow (metalogic) 3.4.1

× pair type 3.4.3

⊗mv matrix-vector-multiplication operator 4.6.1

* multiplication operator

list constructor (Cons) 3.4.4

(,) pair syntax 3.4.4

[] empty list (Nil) 3.4.4

{} set syntax 3.4.5

∀ . universal quantifier 3.4.1

∀∞ . “for all but finitely many” quantifier 4.5.1

abbreviation keyword for simple abbreviations 3.6.3

AE . almost-everywhere quantifier 4.4

and connector for multiple facts or symbols 3.8.1

bool boolean type 3.4.1

butlast returns a list without its last element 3.4.4

component_mult componentwise multiplication of vectors 4.6.1

convnet type for convolutional arithmetic circuits 4.6.1

∃ . existential quantifier 3.4.1

datatype keyword for inductive type definitions 3.6.2

defintion keyword for simple definitions 3.6.3

drop list function dropping the first n elements 3.4.4

dvd divisibility predicate 3.6.3

finite type class for types with a finite universe /

predicate for finite sets

3.3.2, 4.5.3

71

A. List of Isabelle/HOL Symbols

fst retrieves the first element of a pair 3.4.3

fun keyword to define recursive functions 3.6.4

hd returns the first element of a list 3.4.4

inductive keyword to define inductive predicates 3.6.5

λ . lambda expression 3.3.3

last returns the last element of a list 3.4.4

mat type for matrices 4.2.3

nat type for natural numbers 3.4.2

ΠM_∈_._ product measure 4.4

real type for real numbers 3.4.2

snd retrieves the second element of a pair 3.4.3

take list function taking the first n elements 3.4.4

tl returns a list without its first element 3.4.4

typedef keyword for defining types from sets 3.6.1

vec type for vectors

72

	Introduction
	The Expressiveness of Deep Learning
	Sum-Product Networks
	Convolutional Arithmetic Circuits
	Mathematical Background
	Lebesgue Measure
	Tensors

	Theorems of Network Capacity
	Discussion of the Original Result
	Null Sets and Approximation
	ReLU Networks

	The Restructured Proof of the Fundamental Theorem of Network Capacity
	Proof Outline
	Tensors and Sum-Product Networks
	The Restructured Proof

	Analogous Restructuring for the Generalized Theorem of Network Capacity
	The "Squeezing operator"
	CP-rank of Truncated SPN Tensors
	The Restructured Proof

	Comparison with the Original Proof
	Proof Structure
	Unformalized Parts

	Generalization Obtained from the Restructuring
	Algebraic Varieties
	Tubular Neighborhood Theorems
	Calculation of the Bounds

	Isabelle/HOL: A Proof Assistant for Higher-Order Logic
	Isabelle's Architecture
	The Archive of Formal Proofs
	Isabelle's Metalogic
	Types
	Type Classes
	Terms

	The HOL Object Logic
	Logical Connectives and Quantifiers
	Numeral Types
	Pairs
	Lists
	Sets

	Outer and Inner Syntax
	Type and Constant Definitions
	Typedef
	Inductive Datatypes
	Plain Definitions
	Recursive Function Definitions
	Inductive Predicates

	Locales
	Proof Language
	Stating Lemmas
	Apply Scripts
	Isar Proofs
	An Example Isar Proof
	Theorem Modifiers
	Sledgehammer
	SMT Proofs

	Interactive Proof Development Workflow

	Formalization of Deep Learning in Isabelle/HOL
	A Comparison of Informal and Formal Proofs
	Available Matrix Libraries
	Isabelle's Multivariate Analysis Library
	Sternagel and Thiemann's Matrix Library
	Thiemann and Yamada's Matrix Library

	Design of My Tensor Library
	Adapting the Formalization of the Lebesgue Measure
	Formalization of Multivariate Polynomials
	Nested Univariate Polynomials
	Sternagel and Thiemann's Polynomial Library
	Lochbihler and Haftmann's Polynomial Library
	Immler and Maletzky's Polynomial Library

	Formalization of the Fundamental Theorem
	A Type for Convolutional Arithmetic Circuits
	The Shallow and Deep Network Models
	The Fundamental Theorem

	Related Work

	Conclusion
	List of Isabelle/HOL Symbols

